¤W­¶¡@1¢x2¢x3¢x4¢x5¢x6¢x7¢x8¢x9¢x10¢x11¢x12¢x13¢x14¢x15¢x16¢x17¢x18¢x19¡@¦¸­¶

¥N¼Æ¾Çªº¬G¨Æ ¡]²Ä 10 ­¶¡^

§õ¥Õ­¸

 

­º­¶ | ·j´M

¡D­ì¸ü©ó¬ì¾Ç¤ë¥Z²Ä¤Q¨÷²Ä¥|´Á¡B²Ä¤Q¨÷²Ä¤­´Á
¡D§@ªÌ·í®É¥ô±Ð©ó»O¤j¼Æ¾Ç¨t

¡EµùÄÀ
¡E¹ï¥~·j´MÃöÁä¦r
 
¸¯Ã¹¥Ë¸s¨£¤À¾å

¦Ò¼{¤@­Ó¥H x1,x2,¡K,xn ¬°®Úªºn¦¸¤èµ{¦¡

\begin{displaymath}
x^n+a_1x^{n-1}+\cdots +a_n=0
\end{displaymath}

¦b³o¸Ì¡A§Ú­Ì¨Ì·Ó¬Y¤@­Ó©T©wªº¦¸§Ç¡A¨Ó¼Ð¥Ü³o¨Ç®Ú¡C³o¨Ç®Úªº¬Y¤@­Ó¡u±Æ¦C¡v¡A«K¬O±Nx1,x2,¡K,xn ­«·s±Æ¦¨ xi1,xi2,¡K,xin ªº¬Y¤@ºØ¤èªk¡C³oùتº x1,x2,¡K,xn ¨ä¹êÁÙ¬O 1,2,¡K,n ³o n ­Ó¼Æ¡A¨C­Ó¥X²{¤@¦¸¡A¦¸§ÇÅܧó¦Ó¤w¡C¬°¤F¤è«K°_¨£¡A³q±`§â¤@­Ó±Æ¦C·Q¦¨¡ux1 ´«¦¨ xi1¡Ax2 ´«¦¨ xi2¡A¡K¡v¡C¦]¦¹¡A²ßºD¤W§â¤@­Ó±Æ¦C°O¦¨

\begin{displaymath}\left(
\begin{array}{cccc}
1&2&\cdots &n \\
i_1&i_2&\cdots &i_n \\
\end{array}\right) \end{displaymath}

³o­Ó°O¸¹ªí¥Ü±N xj ´«¦¨ xij¡A( $1 \leq j \leq n$)¡Cx1,x2,¡K,xn ªº©Ò¦³±Æ¦C¥þÅé´N°O¬° Sn¡C

¸¯¤óªº°ò¥»ºc·Q¬O³o¼Ëªº¡G¹ï¥ô¤@¦h¶µ¦¡

\begin{displaymath}
x^n+a_1x_{n-1}+\cdots +a_n \eqno{(3)}
\end{displaymath}

§Ú­Ì¦bSn¤¤§ä¥X¤@²Õ±Æ¦C¸ò¥¦¬ÛÀ³¡A³o¨Ç±Æ¦C¥Ñ x1,¡K,xn ³o¨Ç«Y¼Æ¨Ó¨M©w¡C³o¤@²Õ¯S©wªº±Æ¦C¡Aºc¦¨¤@ºØ¥N¼Æ¨t²Î¡A§Y©Ò¿×ªº¡u¸s¡v¡C³o­Ó¸s§Ú­Ì§â¥¦ºÙ¬°¬°¤W¦C¦h¶µ¦¡(3)ªº¡u¸¯Ã¹¥Ë¸s¡v¡C§Ú­Ì¤£¥´ºâ¦b³o¸Ì§ïÅܸÜÃD¡A¥h©ú½T©w¸q¸sªºÆ[©À¡C¤£¹L§Ú­Ì¥i¥H¤j­P»¡©ú¤@¤U¸¯Ã¹¥Ë¸s¬O«ç¼Ë±o¨ìªº:ÁöµM x1,x2,¡K,xn¡A³o n ­Ó®ÚÁ`¦@¦³ n! ºØ±Æ¦C¡A¦ý¬O¸¯Ã¹¥Ë¸sùتº±Æ¦C¡A«o¥²¶·«O«ù½Ñ®Ú¤§¶¡ªº¤@¤ÁÃö«Y¡CÄ´¦p»¡¡A¤èµ{¦¡

\begin{displaymath}
x^4-x^2-2=0 \eqno{(4)}
\end{displaymath}

¦³¥|­Ó®Ú¡G$x_1=\sqrt{2}$¡A$x_2=-\sqrt{2}$¡Ax3=i¡Ax4=-i¡C¦b©Ò¦³ªº24ºØ±Æ¦C¤¤¡A¥u¦³¤U¦C4ºØ±Æ¦C¯à«O«ù x12=x22 ©M x32=x42 ³o¨â­ÓÃö«Y¡G

\begin{displaymath}
\left(
\begin{array}{cccc}
1&2&3&4\\
1&2&3&4\\
\end{array}...
...ray}{cccc}
1&2&3&4\\
2&1&4&3\\
\end{array}\right)
\eqno{(5)}
\end{displaymath}

¨ä¥Lªº±Æ¦C¡AÄ´¦p

\begin{displaymath}
\left(
\begin{array}{cccc}
1&2&3&4\\
3&2&1&4\\
\end{array}\right)
\end{displaymath}

§â x12=x22 Åܦ¨ x32=x22¡A¤]´N¬O»¡ $(i)^2=(-\sqrt{2})^2$¡A³o·íµM¤£¹ï¡C¨Æ¹ê¤W¡A§Ú­Ì¥i¥H¶i¤@¨BÃÒ©ú¤W­zªº¥|ºØ±Æ¦C«O«ùµÛ¡u¤@¤Á¡vªºÃö«Y¡C(4)¦¡ªº¸¯Ã¹¥Ë¸s«K¥Ñ(5)¦¡³o4ºØ±Æ¦C©Ò²Õ¦¨¡C

¤@­Ó¦h¶µ¦¡ªº¥N¼Æ©Ê½è¡A¥i¥H±q¥¦ªº¸¯Ã¹¥Ë¸s¤Ï¬M¥X¨Ó¡C¨Ò¦p¡A¤@­Ó¦h¶µ¤èµ{¦¡¡A¨ä¥i¸Ñ©Ê«K¥iÂà¤Æ¦¨¨ä¸¯Ã¹¥Ë¸sªº¬YºØ«D±`²³æªº©Ê½è¡C¨Æ¹ê¤W¡A·í¤@­Óµ¹©wªº¤èµ{¦¡¥i¥H¥Î®Ú¦¡¸Ñªº®É­Ô¡A§Ú­Ì¥i¥H§Q¥Î¨ä¸¯Ã¹¥Ë¸sªº©Ê½è¡A¨Ì·Ó¤@­Ó©T©wªº¨BÆJ¡A§â¥¦ªº®Ú¯u¥¿¦a¥Î®Ú¦¡ªí¥Ü¥X¨Ó¡C¦Ó¥B¡A·í³o­Ó¨BÆJ¦æ¤£³qªº®É­Ô¡A¤@©w´N¬O³o­Ó¤èµ{¦¡¤£¯à¥Î®Ú¦¡¸Ñ¡C·Ó³o­Ó¿ìªk¡A§Ú­Ì¥i¥H±o¨ìªü¨©º¸ªº©w²z©M¥|¦¸¥H¤U¤èµ{¦¡ªº¸Ñµª¤½¦¡¡C

ªþ±a­È±o¤@´£ªº¬O¡Aªü¨©º¸©M¸¯Ã¹¥Ë¦b¬ã¨s¸Ñ¤èµ{¦¡ªº¹Lµ{¤¤¤Þ¶i¤F¥N¼Æ¾Çªº¥t¤@­«­nÆ[©À¡G©M®t¿n°Ó³£¦b¶°¦X¤ºªº¤@¼Æ¶°ºÙ¬°Åé¡A¦p¦³²z¼Æ¥þÅé©Î¥Ñ¤@¤èµ{¦¡©Ò¦³ªº®Ú©M¦³²z¼Æ¥þÅé¸g¥[´î­¼°£©Ò­l¥Í¥X¨Óªº¼ÆÅé³£¬O¡C

   

¤W­¶¡@1¢x2¢x3¢x4¢x5¢x6¢x7¢x8¢x9¢x10¢x11¢x12¢x13¢x14¢x15¢x16¢x17¢x18¢x19¡@¦¸­¶

¦^­¶­º
 
¡]­Y¦³«ü¥¿¡BºÃ°Ý¡K¡K¡A¥i¥H¦b¦¹ ¯d¨¥ ©Î ¼g«H µ¹§Ú­Ì¡C¡^
EpisteMath

EpisteMath (c) 2000 ¤¤¥¡¬ã¨s°|¼Æ¾Ç©Ò¡B¥x¤j¼Æ¾Ç¨t
¦Uºô­¶¤å³¹¤º®e¤§µÛ§@Åv¬°­ìµÛ§@¤H©Ò¦³


½s¿è¡G³¯¤å¬O ³Ì«á­×§ï¤é´Á¡G6/17/2002