¤W­¶¡@1¢x2¢x3¢x4¢x5¢x6¢x7¢x8¢x9¢x10¡@¦¸­¶

¤èµ{¦¡¨D¸Ñ°ÝÃD ¡]²Ä 7 ­¶¡^

±d©ú©÷

 

­º­¶ | ·j´M

¡D­ì¸ü©ó¼Æ¾Ç¶Ç¼½²Ä¤K¨÷²Ä¥|´Á¡B²Ä¤E¨÷²Ä¤@´Á
¡D§@ªÌ·í®É¥ô±Ð©ó¥x¤j¼Æ¾Ç¨t

¡EµùÄÀ
¡E¹ï¥~·j´MÃöÁä¦r
 
¤C¡BGalois ²z½×ªº¼vÅT

¥Ñ©ó Liouville ªº¹ª§j¡A¼Æ¾Ç®a¶}©l»{ÃÑ Galois ²z½×ªº­«­n©Ê¡C ¹ï©ó¤j³¡¤À¼Æ¾Ç®a¡AGalois ªº½×¤å¬O«D±`²`¶ø¦ÓÃø¥HÁA¸Ñªº¡C J.A. Serret ªº¡m°ªµ¥¥N¼Æ±Ðµ{¡n(Cours d'algébre supérieure, 1849) »P G. Salmon ªº¡mªñ¥@°ªµ¥¥N¼Æ¡n(Modern Higher Algebra, 1859) ¬O¤Q¤E¥@¬ö«á¥b´Á³Ì¬y¦æªº¨â¥»°ªµ¥¥N¼Æ½Ò¥»¡C Serret ªº®Ñ¥D­nªº¥Øªº¬O°Q½×¤èµ{¦¡½×¡ASalmon ªº®Ñ¥D­n¥Øªº¬O¤¶²Ð¤£Åܶq²z½× (Invariant theory)¡C¦b Serret ®Ñªº²Ä¤@ª©¨Ã¨S¦³ Galois ²z½×¡A1866¦~ Serret ªº®Ñ¤Tª©µo¦æ¡A¤~¥[¤J Galois ²z½×¡AGalois ²z½×±q¦¹¼sªxªº¬°¼Æ¾Ç®a²z¸Ñ¡C

§Y¨Ï¦p¦¹¡A¸s½× (group theory) ¬O³q¹L Galois ²z½×ªº­«­nÃöÀY¡C ¹ï³\¦h¤H¦Ó¨¥¡A¡u¸s¡vªº·§©À¬O¬Û·í©â¶Hªº¡C1870¦~ Camille Jordan¡]1838¡ã1922¡^¼g¤F¤@¥»®Ñ¡A¡m¸m´«½×¡n(Traité des substitutions et des équations algébriques)¡A°Q½×¸m´«»P Galois ²z½×¡C¸s½×ªº¬ã¨s¦]¦¹´¶¤Î°_¨Ó¡C ¸sªº·§©À¶i¤J¼Æ¾Ç¬ã¨sªº³\¦h»â°ì¡A¦¨¬°ªñ¥@¼Æ¾Ç¬ã¨sªº·s­±»ª¤§¤@¡C

Galois ²z½×«P¶i¸s½×»P¦UºØÅÜ´«¸sªº¬ã¨s¡AGalois ²z½×¥»¨­¤S¥¥²[³\¦hªñ¥@©â¶H¥N¼Æªº°ò¥»·§©À¡C¥H¤U§Ú­Ì±N²³æªº±Ô­z³o¨Çµo®i¡C

   
 
7.1 ¸s½× (group theory)

¦­¦b1815¦~ Cauchy ´N¼g¤F¤@½g¦³Ãö¸m´«¸sªº½×¤å¡A¦ý¬O¥Lªºµ²ªG¨Ã¤£¤Q¤À²`¨è¡C ¯u¥¿°Q½×¸s½×ªº²Ä¤@½g½×¤å¬OGalois±Hµ¹Poisson¡A¼f¬dªº¨º½g¤å³¹¡C

§â¸m´«¸sªº·§©À¥[¥H±À¼s¡A´N±o¨ì¸sªº·§©À¡C¤@­Ó¸s G ¬O¤@­Ó¨ã¦³¤@­Ó¹Bºâ $\circ$ ªº¶°¦X¡G¹ï©ó¥ô·N¨â­Ó¤¸¯À $g,h \in G$¡A$g \circ h$ ¤]¬O G ªº¤@­Ó¤¸¯À¡A¨Ã¥Bº¡¨¬¥H¤U©Ê½è¡C

(1)(µ²¦X«ß) $(g \circ h)\circ k =g \circ (h \circ k)$¡Ag,h,k ¬O¥ô·N¤¸¯À¡C
(2)(³æ¦ì¤¸¯À) ¦s¦b¤@­Ó¤¸¯À e¡A¨Ï±o $e \circ g $ $= g \circ e =g$¡Ag ¬O¥ô·N¤¸¯À¡C
(3)(¤Ï¤¸¯À) ¹ï©ó¥ô·N¤¸¯À g¡A¦s¦b $h \in G$¡A¨Ï±o $g \circ h = h \circ g=e$¡C

¨Ò¦p¡A¾ã¼Æ¦b¥[ªkªº¹Bºâ¤§¤U¦¨¬°¤@­Ó¸s¡A¾ã¼Æ¦b­¼ªkªº¹Bºâ¤§¤U¤£¬O¤@­Ó¸s¡A ¸m´«¸s¬O¤@­Ó¸s¡AªÅ¶¡ªº­èÅé¹B°Ê¤]§Î¦¨¤@­Ó¸s¡C

¬ã¨s¦UºØ¸sªºµ²ºc¤Î¨äªí²{²z½× (representation theory) ¬O«D±`­«­nªº¼Æ¾Ç¤ÀªK¡C1980¦~¼Æ¾Ç®a²×©ó¯à°÷§â¦³­­³æ¯Â¸s¥[¥H¤ÀÃþ¡C³o¬O¸s½×¬ã¨sªº¤@­Ó·¥­«­nªº¬ð¯}¡C

¥»¥@¬ö¤G¤Q¦~¥N¡A¸s³Q©Ý¾ë¾Ç®a®³¨Ó°µ´y­z©Ý¾ë¤£Åܶqªº¤u¨ã¡A³o´N¬O¦P½Õ¸s (homology group)¡A¤W¦P½Õ¸s (cohomology group) »P¦P­Û¸s (homotopy group)¡C

   
 
7.2 Lie ¸s»P Erlangen ºõ»â (Lie groups and Erlangen program)

1870¦~¡A·í Jordan §¹¦¨¥Lªº¡u¸m´«½×¡v¤£¤[¡A¦³¨â­Ó¥~°ê¾Ç¥Í¨Ó¨ì¤Ú¾¤¡C ¤@­Ó¬O¼w°ê¤H Felix Klein¡]1849¡ã1925¡^¡A ¤@­Ó¬O®¿«Â¤H Sophus Lie¡]1842¡ã1899¡^¡C ¥L­Ì¥ß¨è¦¨¬°¦nªB¤Í¡A¥L­Ì¤]¥ß¨è»{ÃѨì¡u¸s¡vªº­«­n©Ê¡C

Lie ·Q¥ÎÃþ¦ü Galois ªº¤èªk¥h¬ã¨s·L¤À¤èµ{¦¡¡A µ²ªG¥L±o¨ì Lie ¸s (Lie groups)¡C©Ò¿× Lie ¸s¡A¬O¤@ºØ³sÄòªºÅÜ´«¸s(continuous transformation group)¡C Lie ¤@¥Í¬ã¨s³oºØ¸sªºµ²ºc»P¨ä¤£Åܶq¡CLie ¸s¦b·L¤À´X¦ó¾Ç¡B¶q¤l¤O¾Ç¡B ±`·L¤À¤èµ{¦¡»P°¾·L¤À¤èµ{¦¡ªº¬ã¨s³£§êºt«D±`­«­nªº¨¤¦â¡C

Klein §â¡u¸s¡vªº·§©ÀÀ³¥Î¨ì½u©Ê·L¤À¤èµ{¦¡»P Abel ¨ç¼Æªº¬ã¨s¡C ¥L´£¥X¤@­Óºc·Q¡A¥L»{¬°¡A¤£¦Pªº´X¦ó¾Ç¨ä¹ê¥u¬O¤£¦PªºÅÜ´«¸sªº¤£Åܶqªº¬ã¨s¡C ¨Ò¦p¡A¼Ú¤ó´X¦ó¬O¬ã¨s¶Z¶q¸s (metric groups) ªº¤£Åܶq¡A ®g¼v´X¦ó¬O¬ã¨s®g¼v¸s (projective groups) ªº¤£Åܶq¡C ³o´N¬O Klein ¦³¦Wªº Erlangen ºõ»â (Erlangen program)¡C 13

   
 
7.3 ÃþÅé½× (class field theory)

David Hilbert¡]1862¡ã1943¡^§â Galois ¸sªº·§©À¤Þ¤J¥N¼Æ¼Æ½×ªº¬ã¨s¡C Galois ¸s§@¥Î©ó¥N¼Æ¾ã¼ÆÀôªº½è²z·Q¡C³o´N¬O Hilbert ªº¤Àª[²z½× (ramification theory)¡C

¦b Hilbert ¤§«e¡AL. Kronecker¡]1823¡ã1891¡^»P H. Weber¡]1842¡ã1913¡^¹ï©ó Galois ¸s»P¥N¼Æ¼Æ½×ªºÃö«Y¤w¦³¬Û·íªº»{ÃÑ¡C©Ò¿×ªº Kronecker-Weber ©w²zÃÒ©ú¡A¦³²z¼Æ Q ªº¥ô·N Abel ÂX±iÅé³£¬O¬Y¤@­Ó $\mathbf{Q}(\zeta_n)$ ªº¤lÅé¡C¨ä¤¤ $\zeta_n = \cos{\frac{2\pi}{n}} + \sqrt{-1}\sin{\frac{2\pi}{n}}$¡C Weber ¹ï©óÃþÅé (class field) §ó¦³¬Û·í²`¨èªº»{ÃÑ¡C Hilbert §âÃþÅ骺¬ã¨s´£¨ì¤@­Ó§ó°ªªº¦a¦ì¡CHilbert ªº²Ä12°ÝÃD´N¬O°Q½×ÃþÅé Abel ¦h¼ËÅé (abelian variety) »P¦Û¦u¨ç¼Æ (automorphic function) ªº¬Û¤¬Ãö«Y¡C

   
 
7.4 ªñ¥@©â¶H¥N¼Æ (modern abstract algebra)

Galois °£¤F³Ð³y¤F¸s½×¤§¥~¡Aªñ¥@©â¶H¥N¼ÆùØ­±¡uÅé¡v(field) ªº·§©À¦b Galois ªº½×¤å¤]¥i²¤¨£Âú§Î¡A¥L¬Æ¦ÜÁٳгy¤F¦³­­Åé (finite field)¡A¨Ã¥B°Q½×¦³­­Åé¤Wªº®g¼v½u©Ê¸s (projective linear groups over finite fields)¡C

¨Æ¹ê¤W¤Q¤E¥@¬ö«á¥b´Áªº³\¦h¦³¦Wªº¥N¼Æ¾Ç®a³£¦b Galois ²z½×¤U¹L¥\¤Ò¡A ¨Ã¥B±o¯q¤£¤Ö¡C·N¤j§Q¼Æ¾Ç®a E. Betti ¦b1851¦~´N¶}©l¬ã¨s Galois ²z½×¡C C. Jordan ¬ã¨s Galois ²z½×ªºµ²ªG¬O§ó²`¤JªºÁA¸Ñ½u©Ê¸s (general linear groups)¡C L. Kronecker »P R. Dedekind ¤¶²Ð Galois ²z½×®É¡A¤Þ¤J¡uÅé¡vªº·§©À¡F H. Weber ÃÒ©ú§ó¦hªº¡u¸s¡v»P¡uÅé¡vªº­«­n©Ê½è¡C

¦¹¥~ Galois ªº«ä¦Ò¤è¦¡¤]«P¶i©â¶H¥N¼Æªº½Ï¥Í¡CGalois «D±`¤Ï¹ïª¼¥Øªº¤¾ªøªº­pºâ¡A¥L»{¬°¡A¥u¦³´x´¤ÃöÁä©Êªº·§©À¤~¯à±o¨ì²¼äªºÃÒ©ú¡A¤]¤~¯à¬}¨£¨º¨Ç½ÆÂøªº­pºâ¹Lµ{ªº¥Ñ¨Ó¡C³o¥¿¬O¤é«áªº P.G.L Dirichlet¡]1805¡ã1859¡^»P R. Dedekind¡]1831¡ã1916¡^©Ò¤@¦A±j½Õªº¡C©â¶H¥N¼Æªº³Ð©l¤H Emmy Noether¡]1882¡ã1936¡^»P Emil Artin¡]1898¡ã1962¡^´N¬O±q³oùاl¨ú¾i®Æªº¡C

   
 
7.5 ¨ä¥L

Galois ²z½×ªº¤èªk½×¹ï©ó¼Æ¾Ç®a¬O¤@­Ó«Ü¦nªº±Ò¥Ü¡C©Ý¼³¾Ç®a¬ã¨sÂл\­± (covering spaces) »P°ò¦¸s (fundamental groups) ªºÃö«Y¡A¨äµ²ªG¥¿¦n©M¤lÅé»P Galois ¸sªºÃö«Y¬Û§Ï©»¡CLiouville ¥Î Galois ªº¤âªk¬ã¨s·L¤À¤èµ{¦¡¡A³o­Ó¤è¦V¦¨¬°½u©Ê¥N¼Æ¸s (linear algebraic groups) ªº¤@­Ó¨Ó·½¡C

¦¹¥~¡AÁÙ¦³¤£¤Ö¦³¦Wªº°ÝÃD»P Galois ²z½×¦³±K¤ÁªºÃö«Y¡A¦p Hilbert Ãö©ó¥ô·N¦³­­¸s¬O§_³£¥i¥HÅܦ¨¥ô·N¥N¼Æ¼ÆÅ骺 Galois ¸s (I.R. Shafarevich, 1954)¡ANoether Ãö©ó¦³²z¨ç¼ÆÅ骺¤£ÅÜÅé¬O§_¤´¬°¦³²z¨ç¼ÆÅé (R.G. Swan, 1969)¡C

   

¤W­¶¡@1¢x2¢x3¢x4¢x5¢x6¢x7¢x8¢x9¢x10¡@¦¸­¶

¦^­¶­º
 
¡]­Y¦³«ü¥¿¡BºÃ°Ý¡K¡K¡A¥i¥H¦b¦¹ ¯d¨¥ ©Î ¼g«H µ¹§Ú­Ì¡C¡^
EpisteMath

EpisteMath (c) 2000 ¤¤¥¡¬ã¨s°|¼Æ¾Ç©Ò¡B¥x¤j¼Æ¾Ç¨t
¦Uºô­¶¤å³¹¤º®e¤§µÛ§@Åv¬°­ìµÛ§@¤H©Ò¦³


½s¿è¡G¦¶¦w±j ³Ì«á­×§ï¤é´Á¡G4/26/2002