¤èµ{¦¡¨D¸Ñ°ÝÃD ¡]²Ä 7 ¶¡^ ±d©ú©÷
|
¡Dì¸ü©ó¼Æ¾Ç¶Ç¼½²Ä¤K¨÷²Ä¥|´Á¡B²Ä¤E¨÷²Ä¤@´Á ¡D§@ªÌ·í®É¥ô±Ð©ó¥x¤j¼Æ¾Ç¨t ¡EµùÄÀ ¡E¹ï¥~·j´MÃöÁä¦r |
¦¦b1815¦~ Cauchy ´N¼g¤F¤@½g¦³Ãö¸m´«¸sªº½×¤å¡A¦ý¬O¥Lªºµ²ªG¨Ã¤£¤Q¤À²`¨è¡C ¯u¥¿°Q½×¸s½×ªº²Ä¤@½g½×¤å¬OGalois±Hµ¹Poisson¡A¼f¬dªº¨º½g¤å³¹¡C §â¸m´«¸sªº·§©À¥[¥H±À¼s¡A´N±o¨ì¸sªº·§©À¡C¤@Ó¸s G ¬O¤@Ө㦳¤@Ó¹Bºâ ªº¶°¦X¡G¹ï©ó¥ô·N¨âÓ¤¸¯À ¡A ¤]¬O G ªº¤@Ó¤¸¯À¡A¨Ã¥Bº¡¨¬¥H¤U©Ê½è¡C
¨Ò¦p¡A¾ã¼Æ¦b¥[ªkªº¹Bºâ¤§¤U¦¨¬°¤@Ó¸s¡A¾ã¼Æ¦b¼ªkªº¹Bºâ¤§¤U¤£¬O¤@Ó¸s¡A ¸m´«¸s¬O¤@Ó¸s¡AªÅ¶¡ªºèÅé¹B°Ê¤]§Î¦¨¤@Ó¸s¡C ¬ã¨s¦UºØ¸sªºµ²ºc¤Î¨äªí²{²z½× (representation theory) ¬O«D±`«nªº¼Æ¾Ç¤ÀªK¡C1980¦~¼Æ¾Ç®a²×©ó¯à°÷§â¦³³æ¯Â¸s¥[¥H¤ÀÃþ¡C³o¬O¸s½×¬ã¨sªº¤@Ó·¥«nªº¬ð¯}¡C ¥»¥@¬ö¤G¤Q¦~¥N¡A¸s³Q©Ý¾ë¾Ç®a®³¨Ó°µ´yz©Ý¾ë¤£Åܶqªº¤u¨ã¡A³o´N¬O¦P½Õ¸s (homology group)¡A¤W¦P½Õ¸s (cohomology group) »P¦PÛ¸s (homotopy group)¡C
|
1870¦~¡A·í Jordan §¹¦¨¥Lªº¡u¸m´«½×¡v¤£¤[¡A¦³¨âÓ¥~°ê¾Ç¥Í¨Ó¨ì¤Ú¾¤¡C ¤@Ó¬O¼w°ê¤H Felix Klein¡]1849¡ã1925¡^¡A ¤@Ó¬O®¿«Â¤H Sophus Lie¡]1842¡ã1899¡^¡C ¥L̥ߨ覨¬°¦nªB¤Í¡A¥L̤]¥ß¨è»{ÃѨì¡u¸s¡vªº«n©Ê¡C Lie ·Q¥ÎÃþ¦ü Galois ªº¤èªk¥h¬ã¨s·L¤À¤èµ{¦¡¡A µ²ªG¥L±o¨ì Lie ¸s (Lie groups)¡C©Ò¿× Lie ¸s¡A¬O¤@ºØ³sÄòªºÅÜ´«¸s(continuous transformation group)¡C Lie ¤@¥Í¬ã¨s³oºØ¸sªºµ²ºc»P¨ä¤£Åܶq¡CLie ¸s¦b·L¤À´X¦ó¾Ç¡B¶q¤l¤O¾Ç¡B ±`·L¤À¤èµ{¦¡»P°¾·L¤À¤èµ{¦¡ªº¬ã¨s³£§êºt«D±`«nªº¨¤¦â¡C Klein §â¡u¸s¡vªº·§©ÀÀ³¥Î¨ì½u©Ê·L¤À¤èµ{¦¡»P Abel ¨ç¼Æªº¬ã¨s¡C ¥L´£¥X¤@Óºc·Q¡A¥L»{¬°¡A¤£¦Pªº´X¦ó¾Ç¨ä¹ê¥u¬O¤£¦PªºÅÜ´«¸sªº¤£Åܶqªº¬ã¨s¡C ¨Ò¦p¡A¼Ú¤ó´X¦ó¬O¬ã¨s¶Z¶q¸s (metric groups) ªº¤£Åܶq¡A ®g¼v´X¦ó¬O¬ã¨s®g¼v¸s (projective groups) ªº¤£Åܶq¡C ³o´N¬O Klein ¦³¦Wªº Erlangen ºõ»â (Erlangen program)¡C 13
|
David Hilbert¡]1862¡ã1943¡^§â Galois ¸sªº·§©À¤Þ¤J¥N¼Æ¼Æ½×ªº¬ã¨s¡C Galois ¸s§@¥Î©ó¥N¼Æ¾ã¼ÆÀôªº½è²z·Q¡C³o´N¬O Hilbert ªº¤Àª[²z½× (ramification theory)¡C ¦b Hilbert ¤§«e¡AL. Kronecker¡]1823¡ã1891¡^»P H. Weber¡]1842¡ã1913¡^¹ï©ó Galois ¸s»P¥N¼Æ¼Æ½×ªºÃö«Y¤w¦³¬Û·íªº»{ÃÑ¡C©Ò¿×ªº Kronecker-Weber ©w²zÃÒ©ú¡A¦³²z¼Æ Q ªº¥ô·N Abel ÂX±iÅé³£¬O¬Y¤@Ó ªº¤lÅé¡C¨ä¤¤ ¡C Weber ¹ï©óÃþÅé (class field) §ó¦³¬Û·í²`¨èªº»{ÃÑ¡C Hilbert §âÃþÅ骺¬ã¨s´£¨ì¤@ӧ󰪪º¦a¦ì¡CHilbert ªº²Ä12°ÝÃD´N¬O°Q½×ÃþÅé Abel ¦h¼ËÅé (abelian variety) »P¦Û¦u¨ç¼Æ (automorphic function) ªº¬Û¤¬Ãö«Y¡C
|
Galois °£¤F³Ð³y¤F¸s½×¤§¥~¡Aªñ¥@©â¶H¥N¼Æùر¡uÅé¡v(field) ªº·§©À¦b Galois ªº½×¤å¤]¥i²¤¨£Âú§Î¡A¥L¬Æ¦ÜÁٳгy¤F¦³Åé (finite field)¡A¨Ã¥B°Q½×¦³Åé¤Wªº®g¼v½u©Ê¸s (projective linear groups over finite fields)¡C ¨Æ¹ê¤W¤Q¤E¥@¬ö«á¥b´Áªº³\¦h¦³¦Wªº¥N¼Æ¾Ç®a³£¦b Galois ²z½×¤U¹L¥\¤Ò¡A ¨Ã¥B±o¯q¤£¤Ö¡C·N¤j§Q¼Æ¾Ç®a E. Betti ¦b1851¦~´N¶}©l¬ã¨s Galois ²z½×¡C C. Jordan ¬ã¨s Galois ²z½×ªºµ²ªG¬O§ó²`¤JªºÁA¸Ñ½u©Ê¸s (general linear groups)¡C L. Kronecker »P R. Dedekind ¤¶²Ð Galois ²z½×®É¡A¤Þ¤J¡uÅé¡vªº·§©À¡F H. Weber ÃÒ©ú§ó¦hªº¡u¸s¡v»P¡uÅé¡vªº«n©Ê½è¡C ¦¹¥~ Galois ªº«ä¦Ò¤è¦¡¤]«P¶i©â¶H¥N¼Æªº½Ï¥Í¡CGalois «D±`¤Ï¹ïª¼¥Øªº¤¾ªøªºpºâ¡A¥L»{¬°¡A¥u¦³´x´¤ÃöÁä©Êªº·§©À¤~¯à±o¨ì²¼äªºÃÒ©ú¡A¤]¤~¯à¬}¨£¨º¨Ç½ÆÂøªºpºâ¹Lµ{ªº¥Ñ¨Ó¡C³o¥¿¬O¤é«áªº P.G.L Dirichlet¡]1805¡ã1859¡^»P R. Dedekind¡]1831¡ã1916¡^©Ò¤@¦A±j½Õªº¡C©â¶H¥N¼Æªº³Ð©l¤H Emmy Noether¡]1882¡ã1936¡^»P Emil Artin¡]1898¡ã1962¡^´N¬O±q³oùاl¨ú¾i®Æªº¡C
|
Galois ²z½×ªº¤èªk½×¹ï©ó¼Æ¾Ç®a¬O¤@ӫܦnªº±Ò¥Ü¡C©Ý¼³¾Ç®a¬ã¨sÂл\± (covering spaces) »P°ò¦¸s (fundamental groups) ªºÃö«Y¡A¨äµ²ªG¥¿¦n©M¤lÅé»P Galois ¸sªºÃö«Y¬Û§Ï©»¡CLiouville ¥Î Galois ªº¤âªk¬ã¨s·L¤À¤èµ{¦¡¡A³oÓ¤è¦V¦¨¬°½u©Ê¥N¼Æ¸s (linear algebraic groups) ªº¤@Ó¨Ó·½¡C ¦¹¥~¡AÁÙ¦³¤£¤Ö¦³¦Wªº°ÝÃD»P Galois ²z½×¦³±K¤ÁªºÃö«Y¡A¦p Hilbert Ãö©ó¥ô·N¦³¸s¬O§_³£¥i¥HÅܦ¨¥ô·N¥N¼Æ¼ÆÅ骺 Galois ¸s (I.R. Shafarevich, 1954)¡ANoether Ãö©ó¦³²z¨ç¼ÆÅ骺¤£ÅÜÅé¬O§_¤´¬°¦³²z¨ç¼ÆÅé (R.G. Swan, 1969)¡C
|
|
¡]Y¦³«ü¥¿¡BºÃ°Ý¡K¡K¡A¥i¥H¦b¦¹ ¯d¨¥ ©Î ¼g«H µ¹§ÚÌ¡C¡^ |
EpisteMath (c) 2000 ¤¤¥¡¬ã¨s°|¼Æ¾Ç©Ò¡B¥x¤j¼Æ¾Ç¨t ¦Uºô¶¤å³¹¤º®e¤§µÛ§@Åv¬°ìµÛ§@¤H©Ò¦³ |
½s¿è¡G¦¶¦w±j | ³Ì«áקï¤é´Á¡G4/26/2002 |