¤W­¶¡@1¢x2¢x3¢x4¢x5¢x6¢x7¡@¦¸­¶

²Î­p¾Ç²L½Í ¡]²Ä 5 ­¶¡^

­ð¤å¼Ð

 

­º­¶ | ·j´M

¡D­ì¸ü©ó¼Æ¾Ç¶Ç¼½²Ä¤T¨÷²Ä¤T´Á
¡D§@ªÌ·í®É¥ô±Ð©ó­^°ê¼C¾ô¤j¾Ç
¡E¹ï¥~·j´MÃöÁä¦r
 
(¥³)·§²v¨ç¼Æ¡G

X «e­±¥X²{ ·§ ³Ì¤Ö¥X²{ ·§ ³Ì¦h¥X²{ ·§ ­±¬°¥þ¦P ·§
  ªº¦¸¼Æ ²v ¤G¦¸±öªá ²v ¤@¦¸±öªá ²v   ²v
(±ö,±ö) X=0 $\frac{1}{4}$ X=2 $\frac{1}{4}$ X=0 $\frac{1}{4}$ X=1 $\frac{1}{4}$
(±ö,Äõ) X=1 $\frac{1}{4}$ X=0 $\frac{1}{4}$ X=1 $\frac{1}{4}$ X=0 $\frac{1}{4}$
(Äõ,±ö) X=1 $\frac{1}{4}$ X=0 $\frac{1}{4}$ X=1 $\frac{1}{4}$ X=0 $\frac{1}{4}$
(Äõ,Äõ) X=2 $\frac{1}{4}$ X=0 $\frac{1}{4}$ X=1 $\frac{1}{4}$ X=1 $\frac{1}{4}$

§Ú­Ì³o­Óªí­n»¡©ú¦P¤@­Ó¹êÅç¡A¥i¥H©w¸q«Ü¦h¤£¦Pªº¨ç¼Æ-ÀH¾÷ÅܼơC ºî¦XÀH¾÷Åܼƪº­È©M·§²v¡A§Ú­Ì¥i¥H¦³¤@ºØ®e©ö¹B¥Îªº·§²v¨ç¼Æ¡C ¤W­±ªí¤¤ªº·§²v¨ç¼Æ©M²Ö¿n·§²v¤À§G¨ç¼Æ¬O¡G

X P(X=x)=ai $\sum_{-\infty}^{N} P(X=x)=P(X\leq N)$
Äõ­± $P(X=0)=\frac{1}{4}$ $P(X\leq 0)=\frac{1}{4}$
¥X²{ $P(X=1)=\frac{2}{4}$ $P(X\leq 1)=\frac{3}{4}$
ªº¦¸¼Æ $P(X=2)=\frac{1}{4}$ $P(X\leq 2)=1$
³Ì¤Ö¥X²{ $P(X=0)=\frac{3}{4}$ $P(X\leq 0)=\frac{3}{4}$
¤G¦¸±öªá $P(X=2)=\frac{1}{4}$ $P(X\leq 2)=1$
³Ì¦h¥X²{ $P(X=0)=\frac{1}{4}$ $P(X\leq 0)=\frac{1}{4}$
¤@¦¸±öªá $P(X=1)=\frac{3}{4}$ $P(X\leq 1)=1$
¨â­± $P(X=0)=\frac{1}{2}$ $P(X\leq 0)=\frac{1}{2}$
¥þ¦P $P(X=1)=\frac{1}{2}$ $P(X\leq 1)=1$
  ·§²v¨ç¼Æ ²Ö¿n¤À§G¨ç¼Æ

³oùتº¨Ò¤l¦ÛµM²³æ¤@ÂI¡A¦³®É¦b½ÆÂøªº¹êÅç©Î·Ðº¾ªº­n¨D®É¡A ÀH¾÷ÅܼƩM¥¦ªº·§²v¨ç¼Æ¤]¬ÛÀ³ªº½ÆÂø°_¨Ó¡A§Ú­Ì¥B¤£½Í³o¨Ç§Þ¥©¤Wªº°ÝÃD¡A ­n«ü¥Xªº­Ë¬O¡G§Ú­Ì¦³¦¨¤d¤W¸UªºÀH¾÷ÅܼơA¨C¤@­Ó³£¦³¤@­Ó·§²v¨ç¼Æ¬ÛÀH¡A ¨C¤@­Ó²{¶H©Î­n¨D¥i¥H­pºâ¥X¤@­ÓÀH¾÷ÅܼƥX¨Ó¡A ¥u¦³º¡¨¬´X­Ó²³æ±ø¥ó³£¥i¥H¹LÃö¤F¡G

(¤@)ÀH¾÷Åܼƪº©w¸q­È¬O¤¬¤£²V²cªº¡C
(¤G)¹ï¨C¤@­Ó­È³£¦³¤@­Ó0©M1¤§¶¡ªº·§²v¨ç¼Æ­È»P¤§¬Û¹ïÀ³¡G

\begin{displaymath}P(X=x_i)=a_i,0\leq a_i \leq 1 \end{displaymath}

(¤T)ÀH¾÷Åܼƪº²Ö¿n¤À§G¨ç¼Æªº³Ì¤p­È¬°0¡A³Ì¤j­È¬°1¡C§Y¬O

\begin{displaymath}
0 \leq P(X\leq x) \leq 1
\end{displaymath}

³o´X±ø±ø¥ó¨Ã¤£¤ÓÃøº¡¨¬¡A¦]¦¹¤À§G¨ç¼Æ¦h±o«Ü¤F¡C §Ú­Ì¦^¨ì­ì¨Ó°ÝÃD·Q¡C¨ì²{¦b¬°¤î¡A¶i®i¬O¡G§Ú­Ì­n¸ÑÄÀ¤@ºØªÀ·|²{¶H¡A ­º¥ý°²³]¥i¥H¦³¤@­Ó¼Æ¾Ç¼Ò«¬(·§²vªÅ¶¡)¨Óº¡¨¬³o­Ó­n¨D¡C¬°¤F¤è«K­pºâ¡A §â³o¼Ò«¬¥ÎÀH¾÷ÅܼƳoºØ¤è¦¡¼g¥X¨Ó¡C¤]´N¬O»¡¡A§Ú­Ì¥ý¸Ñµª¤FÀH¾÷ÅܼơA µM«á§â³o¼Ò«¬¼g¦¨¬°¥¦ªº¤À§G¨ç¼Æ¡C ¦]¬°ªÀ·|²{¶H¦p¤µ¥i¥H°²³]¥¦¬O¤@­Ó¤À§G¨ç¼Æ¡A ©Î³o²{¶Hªº³æ¤¸ªA±q¬Y­ÓÀH¾÷Åܼƪº·§²v(±K«×)¨ç¼Æ¡C (±K«×¨ç¼ÆÀ³¥Î¨ì³sÄò«¬ªºÀH¾÷ÅܼƤW­±¡C) ¸ÑÄÀªÀ·|²{¶HÅܬ°¤F¸Ñ¥¦¬Û¦ñªº¤À§G¨ç¼Æ¡A¤]´N¬O¦b³o¤À§G¨ç¼Æ¤¤§ä¨ì¡u´ú«×¡v¨Ó¡C

ªÀ·|²{¶H«Ü¦h¡A¨C¤@¦¸­n¤ÀªR¤@­Ó²{¶H¡A¦A­n­«·s¬ã¨s¥¦©Ò¬ÛÀ³¦Ó¥ÍªºÀH¾÷ÅܼƩM¤À§G¨ç¼Æ¡A¤Ó³Â·Ð¤F¡C ¨Æ¹ê¤W¡AÁöµMÀH¾÷Åܼƫܦh¡A¦ý¨å«¬ªº¤À§G¨ç¼Æ¡A¨Ñ§Ú­Ì±`¥Îªº¤£¥~¤G¤Q­Ó¥ª¥k¡A ©Ò¥H§Ú­Ì¤£§«¥ý¬ã¨s¤@¤U´X­Ó¦³¥Nªí©Êªº¤À°t¨ç¼Æ¡C¥H«á¸I¨ì¤@­ÓªÀ·|²{¶H®É¡A ¥u­n§âÀH¾÷ÅܼÆÃþ«¬»{²M·¡¡AÂk¨ì¬Y¤@¨å«¬ªº¤À§G¨ç¼Æ¡A §Ú­Ì«K¥i¥H²³æ§Q¥Î¤w¬ã¨s²M·¡ªº©Ê½è©M©w²z¤F¡C ¨å«¬ªº¤À§G¨ç¼Æ¬O

(¤@)¤G¶µ¤À§G¨ç¼Æ¡G(¦³­­Â÷´²«¬)

¤ZÀH¾÷ÅܼƦ³¤G¤À«¬ªº¯S©Ê;¨Æ¥ó¥X²{ªº¤èªk«D¦¹§Y©¼¡A«D¥Ò§Y¤A¡A«Dµ½§Y´c¡K¡K®É¡A ³£¬OÄÝ©ó³o¤@Ãþªº¤À§G¨ç¼Æ¡C¥¦ªº·§²v¨ç¼Æ¬O

\begin{displaymath}
P(X=x)=C_x^nP^x(1-P)^{n-x},x=0,1,2,\cdots\cdots,n
\end{displaymath}

(¤G)µL­­Â÷´²«¬;ªiº¸ªQ«¬¡G

¤ZÀH¾÷Åܼƺ¡¨¬¤@¨Ç±ø¥ó¡G

(1)¨Æ¥óµo¥Íªº·§²v»P¡]®É¶¡¡^°Ï¶¡ªøµu¦³Ãö¡A¦Ó»P¶}©l©Îµ²§ô¦aÂIµLÃö¡C
(2)²{¦bµo¥Í¤§¨Æ¥ó¸ò¹L¥h¨Æ¥ó©Î¥¼¨Ó¨Æ¥óµLÃö¡C
(3)µu®É´Á¤º¥u¥X²{¤@²³æ¨Æ¥óªº·§²v©M°Ï¶¡ªø«×¦¨¤ñ¨Ò¡C
(4)µu®É¶¡¤º¥X²{¦h¹L¤@²³æ¨Æ¥ó¾÷·|«Ü¤Ö¡C

¦b³o¨Ç±ø¥ó¤§¤U¡A¥X²{¤F¤@­Óªiº¸ªQ«¬ÀH¾÷Åܼƥ¦ªº·§²v¨ç¼Æ¬O¡A

\begin{displaymath}
P(X=x)=\frac{e^{-\lambda}(\lambda)^x}{x!} ,x=0,1,2,\cdots\cdots
\end{displaymath}

(¤T)³sÄò«¬¡F±`ºA¤À§G¨ç¼Æ¡G

·í¼Ë¥»¼Æ«Ü¤j¡AÀH¾÷ÅܼƩҨúªº­È¬°«Ü¦h®É¡A¾A·íÅÜ´««á¡A¦³¤@­Ó²z·Q«¬ªº¤À§G¨ç¼Æ¥X²{¡G

\begin{displaymath}
P(X)=\frac{1}{\sqrt{2\pi}\rho}e^{-\frac{(x-\mu)^2}{2\rho^2}},
-\infty \leq x < \infty,-\infty < \mu < \infty,0<\rho
\end{displaymath}

¦b´¶³q±¡§Î¤¤¡A¤j¦hÀH¾÷Åܼƥi¥Î³o¤TÃþ«¬¨Ó¥Nªí¡C¦ÛµM¤]¥i¥H¶i¤@¨B¾Ç¦h´X­Ó¤£¦PÃþ§ÎªºÀH¾÷ÅܼơC ¦p¥d¤è¤À§G¡B´X¦ó¤À§G¡BStudent ¤À§G

   

¤W­¶¡@1¢x2¢x3¢x4¢x5¢x6¢x7¡@¦¸­¶

¦^­¶­º
 
¡]­Y¦³«ü¥¿¡BºÃ°Ý¡K¡K¡A¥i¥H¦b¦¹ ¯d¨¥ ©Î ¼g«H µ¹§Ú­Ì¡C¡^
EpisteMath

EpisteMath (c) 2000 ¤¤¥¡¬ã¨s°|¼Æ¾Ç©Ò¡B¥x¤j¼Æ¾Ç¨t
¦Uºô­¶¤å³¹¤º®e¤§µÛ§@Åv¬°­ìµÛ§@¤H©Ò¦³


½s¿è¡G¦¶¦w±j ³Ì«á­×§ï¤é´Á¡G4/26/2002