¤W­¶¡@1¢x2¢x3¢x4¢x5¢x6¢x7¡@¦¸­¶

±q²¦¤ó¾Ç¬£¨ì¼Ú¤ó´X¦óªº½Ï¥Í ¡]²Ä 2 ­¶¡^

½²Áo©ú

 


­º­¶ | ·j´M

¡D­ì¸ü©ó¬ì¾Ç¤ë¥Z²Ä¤G¤Q¤»¨÷²Ä¤G´Á¡ã²Ä¤C´Á
¡D§@ªÌ·í®É¥ô±Ð©ó¥x¤j¼Æ¾Ç¨t

¡EµùÄÀ
¡E¹ï¥~·j´MÃöÁä¦r
 
¤@¡B

   
 
¸gÅç»PÅÞ¿è

ª«²z¾Ç®a·R¦]´µ©Z»{¬°¡A¦è¤è¤å©ú¹ï¤HÃþªº¨â¤j°^Äm¬O¡G

1. ¥j§Æþ­õ¾Ç®aµo©úªººtö¨t²Î¡A§Y±Ä¥ÎÅÞ¿è±À²z¨Ó²Õ´ª¾ÃѪº¤èªk¡G¥ý°l´M¥X°ò¥»­ì²z¡A¦A½×ÃҨñÀ¾É¥X¦UºØµ²½×¡AÁ`µ²¼Ú¤ó´X¦ó¡C

2. ¤åÃÀ´_¿³®É¥N¡]¤Q¤­¡B¤»¥@¬ö¡^µo®i¥X¨Óªº¹êÃҶDzΠ(positivistic tradition)¡A§Y³z¹L¦³¥Øªº»P¦³¨t²Îªº¹êÅçÆ[¹î¡A¥H§ä´M¯u²z»PÀËÅç¯u²zªººA«×¡C

·R¦]´µ©Z¡uª½«ü¥»¤ß¡v¦aÂI©ú¥X¡G¸gÅç»PÅÞ¿è¬O¦è¤è¤å©úªº°©·F¡A¥¦­Ì¬O«Ø¥ß¬ì¾Ç»P¼Æ¾Çªº¨â¶ô°ò¥Û¡A¯Ê¤@¤£¥i¡Cª¾ÃѦb¡u²´¨£¡v¡]¸gÅç¡^¥[¤W¡u½×ÃÒ¡v¡]ÅÞ¿è¡^ªºÂù­«Áè·Ò¤U¡A¤~Åܦ¨¯u½T¥i«H¡C³o¬O¨ä¥L¥Á±Ú©Ò¤í¯Ê©Î¨S¦³³þ¤Uªº°ò¦¡C

¸gÅç»PÅÞ¿è¬O¬ì¾Çªº¨â°¦²´·ú¡A¥¦­Ì¦b¤Q¤C¥@¬öºò±Kµ²¦X°_¨Ó¡A³z¹L¨è¤R°Ç¡B¦÷§Q²¤»P¤û¹yµ¥¤Hªº°¶¤j¤u§@¡A²×©ó²£¥Í¤Fªñ¥Nªº¬ì¾Ç¤å©ú¡C

   
 
§Æþ©_ÂÝ

¤@¯ë¦Ó¨¥¡A¤@ªù¾Ç°Ýªºµo®i³£¬O¥ý±q²Ö¿nª½Æ[ªº¡B¹ê¥Îªº¡B¸gÅ窺ª¾ÃѶ}©l¡AÀx¦sÂ×´I¤F¤§«á¡A¤~¶i¤@¨B¦a²Õ´¦¨¤ñ¸ûÄYÂÔªºª¾ÃѨt²Î¡C³o¬O¦]¬°¸gÅ窾ÃÑÃø§K·|¦³¿ù»~¡B§t²V¡B¬Æ¦Ü¥Ù¬Þ¡A©Ò¥H»Ý­n¥[¥H¾ã²z¡A¥h¿¾¦sµ×¡C¼w°ê­õ¾Ç®a±d¼w¡]I. Kant, 1724¡ã1804¡^»¡ªº¦n¡G

©Ò¦³ªº¤HÃþª¾ÃÑ°_·½©óª½Æ[¸gÅç (intuitions)¡A¦Aµo®i¥X·§©À (concepts)¡A³Ì«á¤î©ó²z©À (ideas)¡C

³Ì¥O¤HÅå©_ªº¬O¡A¥j§Æþ¤H±N¥j®J¤Î»P¤Ú¤ñ­Ûªø´Á²Ö¿n¤U¨Óªº¸gÅç´X¦óª¾ÃÑ¡A¥ÎÅÞ¿èÁè·Ò¦¨ºtö¨t²Î¡A¥Ñ¤@¨Ç°ò¥»­ì²z¡]¤½²z¡^±À¾É¥X©Ò¦³ªºµ²½×¡]©w²z¡^¡C±q¡u¹ê¥Î¡v¡AÂàÅܦ¨¡u½×²z¡v¤§§¹¥þ¡u½èÅÜ¡v¡A³o´N¬O¾ú¥v¤W©ÒºÙªº¡u§Æþ©_ÂÝ¡v(the Greek miracle) ¤§¤@¡C

¥j§Æþ¤H±N¼Æ¾Ç´£¤É¨ì¥i¥H¡uÃÒ©ú¡v¨Ã¥B­nÁ¿¨s¡uÃÒ©ú¡vªº¹Ò¬É¡A¨Ï±o¼Æ¾ÇÅܦ¨³ÌÄY±K¥i¾aªºª¾ÃÑ¡A¦Ó¦³§O©ó¨ä¥L¾Ç°Ý¡C³o¬O¼Æ¾Çªº¾y¤O¤§¤@¡C­^°êÅÞ¿è®aù¯À¡]B. Russell, 1872¡ã1970¡^»¡¡u¼Æ¾Ç³ÌÅý§ÚªY³ßªº¬O¡A¨Æª«¥i¥H³QÃÒ©ú¡C¡v(What delighted me most about mathematics was t hat things could be proved.)

¥j§Æþ¤H±q½s³y¯«¸Ü¬G¨Æ¨Ó¸ÑÄÀ¥@¨Æ¡]¯«¸Ü¸ÖÆ[¡^¡A¶i®i¨ì¨È¨½´µ¦h¼w (Aristotle) ªº¦³¾÷¥ØªºÆ[¡G¤@¤Á¨Æª«³£ÁͦV¨ä¥Øªº¦a¦Ó¹B°Ê¡C¦b¼Æ¾Ç¤¤¡A§ó¶i¨B¨ì¼Ú¤ó´X¦óªº¤½²z¤ÆÅé¨t¡A§Q¥Îª½Æ[¦Û©úªº¤½²z¨Ó¸ÑÄÀ©Ò¦³Æ[´ú¨ìªº¸gÅç´X¦óª¾ÃÑ¡C³o¬Oª¾ÃѪº¾d©T¡A¤]¬O¶i¤@¨Bµo®iªº°ò¦¡C

   
 
ª½Æ[¸gÅç´X¦ó

´X¦ó¾Ç°_·½©ó´ú¦a¡B¯è®ü¡B¤Ñ¤å¾Ç¡A¥H¤Î¤é±`¥Í¬¡ªº´ú¿n¡]ªø«×¡B­±¿n¡B®e¿n¡^»PçE¦aªOµ¥µ¥¡C´«¨¥¤§¡A¤j¦ÛµM»P¥Í¬¡¬O´X¦ó¾Ç¤D¦Ü¬O¼Æ¾Çªºµo·½¦a¡C

   
 
´X¦óÆ[©Àªº¨Ó·½

®Ú¾Ú§Æþ¾ú¥v¾Ç®a§Æù¦h¼w¡]Herodotus, ¬ù¦è¤¸«e485¡ã425¦~¡^ªº»¡ªk¡A´X¦ó¾Ç¶}©l©ó¡u´ú¦a¡v¡C¥j®J¤Îªº¥§Ã¹ªe¨C¦~¥ÆÀÝ¡A´ó¨S¥Ð¦a¡A¦]¦¹»Ý­n­«·s´ú¶q¤g¦a¡C´X¦ó¾Ç¡uGeometry¡v¤@µü´N¬O¥Ñ¡uGeometrein¡vºtÅܦӨӪº¡A¨ä¤¤¡ugeo¡v¬O«ü¤g¦a¡A¡umetrein¡v¬O«ü´ú¶q¡C´ú¶q¤g¦aªº§Þ³N­û ¥s°µ¾Þ÷®v (rope-stretchers)¡A¦]¬°Ã·¤l¬O¥Î¨ÓÀ°¦£´ú¶qªº¤u¨ã¡C­ì¤l½×¤j®v¼wÂÓ§J·ç¶ð´µ¡]Democritus, ¦è¤¸«e460¡ã370¦~¡^´¿´£¨ì¡A·í®Éªº¾Þ÷®v¨ã¦³ºë´ïªº´ú¶q§Þ³N»PÂ×´Iªº´X¦óª¾ÃÑ¡A´X¥G§Ö­n¸ò¥L¤@¼Ë¦n¡C¼wÂÓ§J·ç¶ð´µ¦Û¸Ø¹D¡G¡u¦b«Øºc¥­­±¹Ï§Î»PÃÒ©ú¤è­±¡A¨S¦³¤H¯à¶W¹L§Ú¡A¬ ƦܬO®J¤Îªº¾Þ÷®v¤]¤£¨Ò¥~¡C¡v

´X¦óÆ[©Àªº²Ä¤G­Ó¨Ó·½¬O¯è®ü»P¤Ñ¤å¾Ç¡C­õ¾Ç®a±d¼w»¡¡G

¦³¨â¼Ë¨Æª«¥Rº¡µÛ§Úªº¤ß¡A¨Ã¥B²£¥Í¥Ã¤£¤î®§ªº·q¬È¡C¨º´N¬O¡G¦bÀY¤WÀéÄꪺ¬PªÅ¡A¥H¤Î¤ß¤¤ªº¹D¼wªk«h¡C

¤HÃþªø¤[¥H¨Ó¹ï¬PªÅªºÆ[¹î¡A°£¤F·q¬È»P­q¾äªk¤§¥~¡AÁÙ±q¤¤©â¨ú¥XÂI¡B½u¡B¤T¨¤§Î¡B¦hÃä§Î¡B¶ê¡B¤è¦V¡B¨¤«×¡B¶ZÂ÷¡K¡Kµ¥´X¦ó·§©À¡A¥H¤Î¤T¨¤§Îªº´ú¶q¡C§ó­«­nªº¬O¡A±q¦æ¬P¤«µM¦³§Ç»P©P¦Ó´_©lªº¹B¦æ¤¤¡A²£¥Í¤F³W«ß·P»P¬ü·P (the sense of orders and beauty)¡A³o¬O¬ì¾Çµo®iªº¥²­n ±ø¥ó¡C¼Æ¾Ç®a­Ý­õ¾Ç®aÃh®ü¼w¡]Whitehead, 1861¡ã1947¡^»¡±o¦n¡G

¬¡¥Í¥Íªº¬ì¾Ç¬O¤£¥i¯à²£¥Íªº¡C°£«D¤H­Ì¨ã¦³´¶¹M¦Ó¥»¯à¦a²`«H¡G¨Æª«¦s¦b¦³³W«ß¡F©Î¯S§O¦a¡A¤j¦ÛµM¦s¦b¦³³W«ß¡C

¬ì¾Ç°l´M¤j¦ÛµMªº¤º¦b¯´§Ç»P³W«ß¡C¦P²z¡A´X¦ó°l¨D´X¦ó¹Ï§Îªº¤º¦b¯´§Ç»P³W«ß¡C¥¦­Ì³Ì¦­³£¬O±q¤Ñ¤å¾Ç±o¨ì±Ò¥Ü¡C¤Ñ¤å¾Ç¬O¼Æ¾Çªº¬G¶m»Pµo·½¦a¡C²¦¤ó¾Ç¬£±N´X¦ó¾Ç¡B¤Ñ¤å¾Ç¡Bºâ³N»P­µ¼Ö¨Ã¦C¬°¥|ÃÀ¡A¬O¦³»·¨£ªº¡]¤¤¥@¬ö®É¡A¦A¥[¤W¤åªk¡B­×Ãã»PÅGÃÒ (Dialectic)¡A¦XºÙ¤CÃÀ¡^¡C

´X¦ó¾Çªº²Ä¤T­Ó¨Ó·½¬O¤é±`¥Í¬¡ªº´ú¿n¡C¥Ñ¦¹¤Þ¥X¤Fªø«×¡B­±¿n¡B®e¿n¡BÅé¿n¡Bªí­±¿n¡B­«¤ßµ¥·§©À¡A¤]Âkµ²¥X¤@¨Ç­pºâ¤½¦¡¡C

³o¨Çª½Æ[ªº¡B¹êÅ窺¡B¸gÅ窺´X¦ó·§©À»Pª¾ÃÑ¡A¥@¬É¤W¦U¥j¦Ñ¥Á±Ú³£¥X²{¹L¡A¨Ã¤£­­©ó¥j®J¤Î»P¤Ú¤ñ­Û¡C°£¤F¹ê¥Î¤§¥~¡A§ó­nºòªº¬O¡A¤H­Ì±q¤¤¬Ý¥X¡]©Îµo²{¡^¤F´X¦ó¹Ï§Îªº¤@¨Ç³W«ß¡C§Ú­Ì¶È¾Ü´X­Ó­«­nªº¤¶²Ð¡A¤À§O©ó¦U¤p¬q»¡©ú¡C

   
 
çE¦aªO¥u¦³¤TºØ¼Ë¦¡

®Ú¾Ú´¶Ã¹§J©Ô´µ¡]Proclus, 410¡ã485¡^ªº»¡ªk¡A²¦¤ó¾Ç¬£¤w¸gª¾¹D¡A¥Î¦P¼Ë¤j¤p¥B¦P¤@ºØªº¥¿¦hÃä§ÎçE¦aªO®É¡A¥u¯à¥Î¥¿¤T¨¤§Î¡B¥¿¤è§Î»P¥¿¤»Ãä§Î¡A±o¨ì¤TºØ¹Ï®×¡]¨£¹Ï¤@¡ã¹Ï¤T¡^¡CŪªÌ¥i¥H¥Î³Ò§@°Å¯È¤ù©Î¿n¤ì¹CÀ¸¥[¥HÃÒ¹ê¡CµM¦Ó¡A¼Æ¾Ç¥v®aªüº¸°Ò (Allman) «o»{¬°¡A¥j®J¤Î¤H²ß»ù¥Î ³o¤TºØ¥¿¦hÃä§Î¨ÓçE¦aªO¡A¨Ã¥B±qªø´Áªº¥Í¬¡¸gÅ礤¡AÆ[¹î¦Óµo²{¡u²¦¤ó©w²z¡v»P¤T¨¤§Î¤T¤º¨¤©M©w²z¡C



¹Ï¤@



¹Ï¤G



¹Ï¤T

¦pªG¦UºØ¤£¦Pªº¥¿¦hÃä§Î¡]Ãäªø³£¬Ûµ¥¡^¥i¥H²V¦X¨Ï¥Î¡A¨Ã¥B­nçE¦¨¹ïºÙªº¹Ï®×¡A«h¥i±o¨ì 13 ºØ¼Ë¦¡¡A³o¬O¤@­Ó«Ü¦nªº«ä¦Ò½×ÃD¡C

   
 
¤T¨¤§Î¤T¤º¨¤©M©w²z

¥j®J¤Î¤H¤S±qçE¦aªO¤¤¡Aµo²{¤T¨¤§Î¤T¤º¨¤©M¬°¤@¥­¨¤¡]§Y180«×¡^¡C¦b¹Ï¤@¤¤¡A¶¤@³»ÂIªº¤»­Ó¨¤¡A¦X°_¨Ó¤@¦@¬O¤@©P¨¤¡]§Y360«×¡^¡A¦]¦¹¥¿¤T¨¤§Î¤T¤º¨¤©M¬°¤@¥­¨¤¡C³oÁö¥u¬O¯S¨Ò¡A¦ý«o¬O¶i¤@¨Bµo²{¯u²zªº«´¾÷¡C¦b¹Ï¤G¤¤¡A¶¤@³»ÂIªº¥|­Óª½¨¤¡A¦X°_¨Ó¤@¦@¬O¤@©P¨¤¡A¦]¦¹¥¿¤è§Î¥|­ Ó¤º¨¤©M¬°¤@©P¨¤¡v¡C§@¥¿¤è§Îªº¹ï¨¤½u¡A±o¨ì¨â­Ó¬Û¦Pªºµ¥¸yª½¨¤¤T¨¤§Î¡A±q¦Ó±oª¾µ¥¸yª½¨¤¤T¨¤§Î¤T¤º¨¤©M¬°¤@¥­¨¤¡C±N¥¿¤è§Î§ï¬°ªø¤è§Î¡A«e­z½×ÃÒ¤]¦¨¥ß¡A¦]¦¹¥ô¦ó¤T¨¤§Î³£¥i¥H¤À³Î¦¨¨â­Óª½¨¤¤T¨¤§Î¡]§@¤@Ã䪺°ª¡^¡A©Ò¥H¥ô·N¤T¨¤§Î¤T¤º¨¤©M¬°¤@¥­¨¤¡C

³o­Óµ²ªG¬ü±o¹³ª«²z¾Çªº¤@±ø¦u«í©w«ß (conservation law)¡A¥O¤H¿E½à¡C©_§®ªº¬O¡A¥¦¤]¥i¥H¥Î°Å¤M³Ò§@¬Ý¥X¨Ó¡G±N¤T¨¤§Îªº¤T­Ó¨¤°Å¶}¨Ó¡]¨£¹Ï¥|¡^¡A¦A±N¤T­Ó¨¤±Æ¦b¤@°_¡A´N±o¨ì¤@­Ó¥­¨¤¡]¨£¹Ï¤­¡^¡AµÛ¦Wªº°¶¤j¬ì¾Ç®a¤Ú´µ¥d¡]Pascal, 1623¡ã1662¡^¤p®É­Ô´N¬O¦p¦¹³o¯ë­«·sµo²{³o­Ó ©w²z¡C



¹Ï¥|



¹Ï¤­



¹Ï¤»

§Ú­Ì¤]¥i¥H§Q¥ÎºP¯Èªº¹êÅç¡Aµo²{³o­Ó©w²z¡]¨£¹Ï¤»¡^¡C§YªuµÛ DE¡BDG¡BEF §â¤T¨¤§ÎºP¦¨ªø¤è§Î DEFG¡A¨º»ò $\angle A, \angle B, \angle C$ Å|¦X©ó A' ÂI¡A¦¨¬°¤@¥­¨¤¡C

§Q¥Î±ÛÂà¹]µ§ªº¹êÅç¡A¤]¥i¬Ý¥X³o­Ó©w²z¡]¨£¹Ï¤C¡^¡C



¹Ï¤C

   
 
²¦¤ó©w²z

³o¬OÃö©óª½¨¤¤T¨¤§Î¤TÃä³W«ßªº©w²z¡G¹ï©ó¡u¥ô·N¡vªºª½¨¤¤T¨¤§Î³£¦³ c2 = a2 + b2¡]¨£¹Ï¤K¡^¡C



¹Ï¤K

¥j®J¤Î¤H¤´µM¬O±qçE¦aªO¤¤¬Ý¥X¨äºÝ­Ù¡C¦b¹Ï¤E¤¤¡Aª½¨¤¤T¨¤§Î ABC ±×Ãä AB ¤Wªº¥¿¤è§Î­±¿n¡Aµ¥©ó¨âªÑ¤W¥¿¤è§Î­±¿n¤§©M¡C³o¬O²¦¤ó©w²zªº¤@­Ó¯S¨Ò¡C



¹Ï¤E

§Ú­Ì¥i¥H§Q¥Î´X¦óªO (geoboard)¡Aª±¥X§ó¦h²¦¤ó©w²zªº¯S¨Ò¡C¹Ï¤Q»P¹Ï¤Q¤@´N¬O¨â­Ó¨Ò¤l¡C



¹Ï¤Q



¹Ï¤Q¤@

¥t¤@¤è­±¡A¤Ú¤ñ­Û¤H»P¤¤°ê¤H³£Æ[¹î¨ì¤@­Ó¤ì¦Kªk«h¡C§Y¤ì¦K¦b¨M©w««ª½¡Bª½¨¤¤ÎÃäªø®É¡Aµo²{Ãäªø¬° 3, 4, 5 ªº¤T¨¤§Î¡A¤TÃä¨ã¦³ 32 + 42 = 52 ªºÃö«Y¨Ã¥B¬°ª½¨¤¤T¨¤§Î¡]²¦¤ó°f©w²z¤§¯S¨Ò¡^¡C

³o¨Ç½u¯Á¦n¹³¬OÄq­]¡A¤H­Ì«Ü§Ö´Nµo²{¤F²¦¤ó©w²z¤§¡uª÷Äq¡v¡C³o¥u»Ý¥Î°Å¤M³Ò§@¡]°÷ª½Æ[¸gÅç§a¡I¡^´N¥i¥H¬Ý¥X¨Ó¡C¦b¹Ï¤Q¤G¤¤¡A¥HÃäªø a+b §@¨â­Ó¥¿¤è§Î¡F¥ª¹Ï°Å±¼¥|­Óª½¨¤¤T¨¤§Î¡A³Ñ¤U¨â­Ó¤p¥¿¤è§Î¡A­±¿n¤§©M¬° a2 + b2¡F¥k¹Ï±q¥|­Ó¨¤°Å±¼¥|­Óª½¨¤¤T¨¤§Î¡A³Ñ¤U¤@­Ó¤p¥¿¤è§Î¤§­±¿n¬° c2¡Fµ¥¶q´î¥hµ¥¶q¡A¨ä®t¬Ûµ¥¡C¦]¦¹ a2 + b2 = c2¡C



¹Ï¤Q¤G

   
 
¬Û¦ü¤T¨¤§Î°ò¥»©w²z

¦pªG¨â­Ó¤T¨¤§Îªº¤T¤º¨¤¤À§O¹ïÀ³¬Ûµ¥¡A«h¹ïÀ³Ã䦨¤ñ¨Ò¡C¥ç§Y¡A¦b¹Ï¤Q¤T¤¤¡A­Y $\angle A = \angle A'$¡A $\angle B = \angle B'$¡A $\angle C = \angle C'$¡A«h

\begin{displaymath}
\frac{AB}{A'B'} = \frac{BC}{B'C'} = \frac{AC}{A'C'}
\end{displaymath}

³o­Óµ²ªG¬Oª½Æ[Åã©úªº¡C¦]¬°¨â­Ó¤T¨¤§Î¤T¤º¨¤¤À§O¹ïÀ³¬Ûµ¥¡Aªí¥Ü¥¦­Ì¤§¶¡¦³¤@­Ó¬O¥t¤@­Óªº©ñ¤j©ÎÁY¤p¡A©Ò¥H¥¦­Ìªº¤j¤p¤£¦P¦ý¬O§Îª¬¬Û¦P¡A¥s°µ¬Û¦ü¡C±q¦Ó¹ïÀ³Ã䦨¤ñ¨Ò¡A¤ñ­È´N¬O©ñ¤j²v©ÎÁY¤p²v¡C§Ú­Ìª`·N¨ì¡G¤T¨¤§Î¦b§@©ñ¤j©ÎÁY¤p®É¡A¥u¦³¨¤«×¬O¤£Åܪº¡C

®Ú¾Ú¾ú¥v°O¸ü¡A®õ§Q´µ¡]Thales, ¦è¤¸«e640¡H¡ã546¡^·í¦~¹C¾Ç¥j®J¤Î®É¡A´N´¿§Q¥Î³o­Ó©w²z±Àºâ¥Xª÷¦r¶ðªº°ª«×¡C¥t¥~¡A¥L¤]±Àºâ¥X®ü­±¤Wªº²î°¦¨ì©¤Ã䪺¶ZÂ÷¡C

   
 
¬f©Ô¹Ï¤­ºØ¥¿¦h­±Åé

¥¿¦hÃä§Î¦³µL½a¦hºØ¡A¦ý¬O¥¿¦h­±Å餣¦h¤]¤£¤Ö«ê¦n¦³¤­ºØ¡C³o¬O«Ü¬ü§®ªºµ²ªG¡C¤p«Ä¤lª±¡u¿n¤ì¤ù¡v¡]¨Ò¦p¥«­±¤W¬y¦æªº¦Ê¤O´¼¼z¤ù¡^ªº«÷´ê¹CÀ¸´N¥i¥H°µ¥X¨Ó¡A¬O¯u¥¿¥i¥H¬Ý±o¨£¡BºN±o¨ìªº¡C¦b¹Ï¤Q¥|¤¤¡AÁ`¦@¦³¥¿¥|­±Åé (tetrahedron)¡A¥¿¤»­±Åé (cube)¡B¥¿¤K­±Åé (octahedron)¡B¥ ¿¤Q¤G­±Åé (dodecahedron) ¥H¤Î¥¿¤G¤Q­±Åé (icosahedron)¡C

®Ú¾Ú¼Æ¾Ç¥v®a®O´µ¡]Heath, 1861¡ã1940¡^ªº¬Ýªk¡A²¦¤ó¾Ç¬£¥i¯à¤wª¾³o¤­ºØ¥¿¦h­±Åé¡C¼Æ¾Ç®aÃQº¸¡]H. Weyl, 1885¡ã1955¡^»{¬°¥¿¦h­±Å骺µo²{¡A¦b¼Æ¾Ç¥v¤W¬O¿W¤@µL¤Gªººë«~¡A¬O³Ì¥O¤HÅå©_ªº¨Æª«¤§¤@¡C¬f©Ô¹Ï®³¥¦­Ì¨Ó«Øºc¥Lªº¦t©z½×¡A±q¥¿¥|­±Åé¨ì¥¿¤G¤Q­±Åé¤À§O¥Nªí¤õ (fire)¡B¤g (earth)¡B®ð (air)¡B¦t©z (universe) »P¤ô (water)¡C



¹Ï¤Q¤T



¹Ï¤Q¥|

   

¤W­¶¡@1¢x2¢x3¢x4¢x5¢x6¢x7¡@¦¸­¶

¦^­¶­º
 
¡]­Y¦³«ü¥¿¡BºÃ°Ý¡K¡K¡A¥i¥H¦b¦¹ ¯d¨¥ ©Î ¼g«H µ¹§Ú­Ì¡C¡^
EpisteMath

EpisteMath (c) 2000 ¤¤¥¡¬ã¨s°|¼Æ¾Ç©Ò¡B¥x¤j¼Æ¾Ç¨t
¦Uºô­¶¤å³¹¤º®e¤§µÛ§@Åv¬°­ìµÛ§@¤H©Ò¦³


½s¿è¡G¦¶¦w±j ¢A ø¹Ï¡G²¥ßªY ³Ì«á­×§ï¤é´Á¡G2/17/2002