¤W­¶¡@1¢x2¢x3¢x4¢x5¢x6¢x7¢x8¡@¦¸­¶

·L¿n¤À¥v¸Ü ¡]²Ä 6 ­¶¡^

±ä«G¦N

 


­º­¶ | ·j´M

¡D­ì¸ü©ó¬ì¾Ç¤ë¥Z
¡D§@ªÌ·í®É¥ô±Ð©ó¥x¤j¼Æ¾Ç¨t
¡E¹ï¥~·j´MÃöÁä¦r
 
5. ·L¤À¾ÇªºÁßÆC

¤Q¤C¥@¬öªº«e¤T¤À¤§¤G¡A¥i¥H»¡¬O·L¿n¤À¾ÇªºÁßÆC®É´Á¡C¨º®É­Ô¦]¬°¬ì¾Çªº¶i¨B¡A°£¤F¨D¿nªº°ÝÃD¥~¡A¼Æ¾Ç®aÁÙ¦Ò¼{ºØºØ¨ä¥Lªº°ÝÃD¡A¨ä¤¤³Ì­«­nªº¦³¡G

¤@¡B¥Ñ¶ZÂ÷¨D³t«×¤Î¥[³t«×¡F¤Ï¤§¡A¥Ñ¥[³t«×¨D³t«×¡B¨D¶ZÂ÷¡C
¤G¡B§@¦±½uªº¤Á½u¡C
¤T¡B¨D¨ç¼Æªº·¥¤j­È¡B·¥¤p­È¡C
¥|¡B¨D¦±½uªø¡B­±¿n¡BÅé¿n¡B­«¤ß¡C

²Ä¥|Ãþ°ÝÃD°_·½¸û¦­¡A§Ú­Ì¤j­P¤w¸g½Í¹L¡C­È±o¸É¥Rªº¬O¡A¨ì¤Q¤C¥@¬ö¤j®a¤w¸gª¾¹D¨D¦±½uªø©Î­«¤ßªº°ÝÃD¡A³£¥i¤Æ¬ù¦¨¬°¨D­±¿n¡BÅé¿nªº°ÝÃD¡C

Ãö©ó²Ä¤@Ãþ°ÝÃDªº²Ä¤G³¡¤À¡A§Ú­Ì¤w¸g½Í¹L¦÷§Q²¤ªº¬Ýªk¡C¥L¬O¹ïªº¡G¥Ñ³t«×¨ç¼Æ¨D¿n´N±o¨ì¶ZÂ÷¨ç¼Æ¡C

³Ñ¤U¨D³t«×¡B¤Á½u¤Î·¥¤j¡B·¥¤pªº°ÝÃD¡A´N¬O§Ú­Ì³o¤@¸`©Ò­n½Íªº¥DÃD¢w¢w·L¤À¾Ç¡C

¥Ñ©ó¤å©úªº±À¶i¡AÀRºA¨Æª«ªº¬ã¨s¤w¸g¤£¯àº¡¨¬¤HÃþªº»Ý­n¡A°ÊºAªº¥@¬É¹GµÛ¬ì¾Ç®a¬ã¨s°_³t«×¨Ó¡F±q¯Â´X¦óªºÆ[ÂI¨Ó¬Ý¡A¼Æ¾Ç®a¹ï¥ô¦ó¦±½u³£­n·Q¿ìªk¨D¨ä¤Á½u¡A¦Ó¥ú¾Ç¤Wªº»Ý­n§ó«P¨Ï¬ì¾Ç®a«æµÛ´M§ä§@¤Á½uªº¤èªk¡F¤HÁ`¬O·Q¥Î³Ì¸gÀÙªº¿ìªk°µ³Ì°ª«×ªºµo´§¡A¦Ó´y­z¦ÛµM¬É²{¶Hªº¨ç¼Æ¡A©¹©¹¦b¨ä·¥­È®É¦³¯S®íªºª«²z·N¸q¡A³oºØºØ³£¨Ï¤HÃö¤ß°_¨D·¥­Èªº°ÝÃD¡C

   
 
Àþ¶¡

¥­§¡³t«×ªºÆ[©À«Ü®e©ö¨Ï¤H±µ¨ü¡A¦ý¡]Àþ¶¡¡^³t«×ªºÆ[©À«h¨Ï¤HÃþ¾Ä°«¨}¤[¡A¤~§Ë±o²M·¡¡C¨è¤R°Çªº¦æ¬P¹B°Ê©w«ß¡B¦÷§Q²¤ªº¸¨Åé¹B°Ê©w«ß¡BÄÁÂ\¡B©ß®gÅ骺¹B°Êµ¥µ¥¡A·í®É¤j®a¦³¿³½ìªº°ÝÃD³£Åã¥Ü¹B°Ê±`±`¤£¬Oµ¥³tªº¡A©Ò¥H¡]Àþ¶¡¡^³t«×ªº¬ã¨s¦³¨ä¥²­n¡C³Ì¦­ªº·Qªk¡AÀþ¶¡³t«×´N¬O¡uÀþ¶¡¡vªº¥­§¡³t«×¡C¦ý¡uÀþ¶¡¡v¨ì©³¬O¦hµu©O¡H¦pªG³o¤@¡uÀþ¶¡¡v¨S¦³ªø«×¡A«h¦b³o¤@¡uÀþ¶¡¡v¤º¶ZÂ÷¨S¦³¤°»òÅܤơA©Ò¥H

\begin{displaymath}
\mbox{{\fontfamily{cwM7}\fontseries{m}\selectfont \char 109}...
...y{cwM0}\fontseries{m}\selectfont \char 147}} } = \frac{0}{0} .
\end{displaymath}

$ \frac{0}{0} $ ¤£¬O­Ó¼Æ¡A¦ÛµM¤£¯àªí³t«×¡A©Ò¥H¦¹¸ô¤£³q¡C¦n¤F¡A¡uÀþ¶¡¡v¤@©w­n¦³ªø«×¡C¦ý©Ò¿×ªºªø«×¦pªG¬O³q±`Æ[©À¤¤ªºªø«×¡A¨º»ò¥¦ªº¤@¥b¤£¤]¬Oªø«×¶Ü¡H¨º»ò¡uÀþ¶¡¡v«ç»òÁÙ¯àºÙ°µ¡uÀþ¶¡¡v©O¡H¦¹¸ô¤S¤£³q¡I¨º»ò¡uÀþ¶¡¡v¨ì©³¬O¤°»ò¡H©ó¬O¦³¤H·Q¥Xµ´©Û»¡¡G¡uÀþ¶¡¡vªºªø«×¬°µL½a¤p¡A¥¦¤£¬° 0¡A¦ý¤ñ¥ô¦óªºªø«×³£­n¤p¡C¤S¹J¨ì¤F¡uµL½a¤p¡v¡I

¦P¼Ë¦a¡A·í®É§@¤Á½u¡B¨D·¥­È®É³£­n¶D½ÑµL½a¤p¤èªk¡C§Ú­Ì½Í¿n¤Àªº®É­Ô¡A»¡¨ìµL½a¤pªºÆ[©ÀÁöµM¶D½Ñª½Æ[¡A¦ý¨ä¹Bºâ«o¨S¦³ÄY®æªº°ò¦¡A·í®É¥u¯à¥Î¤@¨Ç¥©§®ªº¤èªk¨D±o¹s¬Pªºµ²ªG¡Cª½¨ì«á¨Ó¤~ª¾¹D¥Î·¥­­ªºÆ[©À¤Î§Þ¥©¨Ó¥N´ÀµL½a¤p¡A¦Ó°µÄY®æ¥B¦³¨t²Îªº³B²z¡C¨D³t«×¡B¤Á½u¡B·¥­È³o¨Ç·L¤À¾Ç¤è­±ªº¾ú¥vµo®i¤]¬O¤@¼Ë¡A¦³µL½a¤pªºÆ[©À¡A¦³¥©§®ªº¤èªk¡A¦³·¥­­ªº¤èªk¡C

¤j·§»¡¨Ó¡A¿n¤ÀªºÆ[©À®e©öÀ´¦ý­pºâÃø¡A¦Ó·L¤À¥¿¦n¬Û¤Ï¡AÃøÀ´¦Ó©öºâ¡C¬°¤F¤£¨Ï¤j®a¹³«e¤H¤@¼Ë¡A³´¤J·L¤ÀÆ[©ÀªºªdªhùØ¡A§Ú­Ì¥ý¥Î·¥­­ªº¤èªk§Ë²M·¡¤F·L¤ÀªºÆ[©À«á¡A¦A¦^¹LÀY¨Ó¬Ý«e¤H¦p¦ó¦bªdªh¤¤¥Î¥©§®ªº¤èªk±Ã¤ãµÛ¡C

¨Ò¡G ³]¶ZÂ÷ y »P®É¶¡ x ªºÃö«Y¬° y=x2¡A¨D¦b®É¶¡ x=2 ®Éªº¡]Àþ¶¡¡^³t«×¡C

¸Ñ¡G ¥Î·¥­­¤èªkªº­nÂI´N¬O¥ý¬Ý x=2 ªþªñªº°Ï¶¡¤ºªº¥­§¡³t«×¡AµM«áÅý°Ï¶¡³vº¥ÁY¤p¨ì 2 ³o¤@ÂI¡A¬Ý¥­§¡³t«×¬O§_Áͪñ©ó¬Y©w­È¡F¦pªG¬O¡A«h¸Ó©w­È´N³Q©w¸q¬°³o®É¨èªº¡]Àþ¶¡¡^³t«×¡C

³q±`°Ï¶¡ªº¿ï¾Ü¤èªk¬O±q¤p©ó 2 ªº¬Y®É¨è x ¨ì 2¡F¦P®É¤]¦Ò¼{±q 2 ¨ì¤j©ó 2 ªº¬Y®É¨è x¡C¤£½× x ¤j©ó 2 ©Î¤p©ó 2¡A¦b³o°Ï¶¡¤ºªº¥­§¡³t«×À³¸Ó¬O

\begin{displaymath}
\frac{ \mbox{{\fontfamily{cwM9}\fontseries{m}\selectfont \ch...
...4}\fontseries{m}\selectfont \char 207}}} = \frac{x^2-2^2}{x-2}
\end{displaymath}

¦]¬°³o­Ó¥­§¡³t«×©M x ªº¨úªk¦³Ãö¡A©Ò¥Hªí¦¨¨ç¼Æ

\begin{displaymath}
D(x) = \frac{x^2-2^2}{x-2}
\end{displaymath}

¤U¤@¨B´N¬O­nÅý x Áͪñ©ó 2¡A¨Ó¬Ý¬Ý D(x) ªºÅܤƱ¡§Î¡C·í x Áͪñ©ó 2 ®É¡AD(x) ªº¤À¤l©M¤À¥À¦P®É³£Áͪñ©ó 0¡C¤S¬O $ \frac{0}{0} $ ªº±¡§Î¡I¦b ¡±4 ¤¤Á¿¶Oº¿ªº¤èªk®É¡A¤£¬O¤]¹J¨ì³oºØ±¡§Î¶Ü¡H©Ò¥H§Ú­Ìª¾¹D¸Ó«ç»ò°µ¡G¥ý§â¤À¤l¡B¤À¥À¬ù¤À¡A±o D(x) = x +2¡C²{¦bÅý x Áͪñ©ó 2¡A«hª¾ D(x) ­nÁͪñ©ó 4¡C¥Î²Å¸¹¤Î¦¡¤l¼g¤U¨Ó¡A«h¦³

\begin{displaymath}
\mbox{{\fontfamily{cwM2}\fontseries{m}\selectfont \char 167}...
... } \frac{ x^2-2^2 }{ x-2 }
= \lim_{ x \rightarrow 2}(x+2) = 4
\end{displaymath}

¤£¦ý¦b x=2 ¥i¥H¨D±o³t«×¡A¦b¥ô¤@®É¨è x=x0¡A¨D³t«×ªº¤èªk¤]¬O¤@¼Ë¡G

\begin{displaymath}
\mbox{{\fontfamily{cwM0}\fontseries{m}\selectfont \char 202}...
...c {x^2-x_0^2}{x-x_0}
= \lim_{x \rightarrow x_0} (x+x_0) =2x_0
\end{displaymath}

³oºØ¨D³t«×ªº¤èªk¤£­­©ó y ©M x ¶¡­n¦³¦p y=x2 ªº¯S®íÃö«Y¡A¥u­n y ©M x ¦³¥ô¦óÃö«Y y=f(x)¡A§Ú­Ì³£¥i¥H¦Ò¼{¦b x0 ªþªñªº¥­§¡³t«×

$D(x)=\frac{f(x)-f(x_0)}{x-x_0}$¡AµM«á¦Ò¼{ $\lim_{x\rightarrow x_0}D(x)$¡A§Y·í x Áͪñ©ó x0 ®É D(x) ªº·¥­­­È¡C¦pªG·¥­­­È¦s¦b¡A§Ú­Ì´N»¡¸Ó·¥­­­È´N¬O¦b x0 ªº³t«×¡C

¨Ò¡G ³]¦³¦±½u y=x2 ¡A¨D¸g¹L¦±½u¤W¤@ÂI P(2, 4) ªº¤Á½u¡C

¸Ñ¡G ¤Á½u¬O¤@±øª½½u¡A²{¦b§Ú­Ì¦³¤F¨ä¤Wªº¤@ÂI (2, 4)¡A¦pªG¥ÎÂI±×¦¡ªí¦¹¤Á½u¡A«h»Ý­n¨D¨ä±×²v¡C³]¦b¦±½u¤W¥ô¨ú¤@ÂI Q¡A°µ³Î½u PQ¡]¨£¹Ï¤Q¤@¡^¡C·í Q ÂI¦V P ÂIÁͪñ®É¡A³Î½u PQ ªº¤è¦VÀ³¸ÓÁͪñ©ó¤Á½uªº¤è¦V¡A¤]´N¬O»¡³Î½u PQ ªº±×²v­nÁͪñ©ó¤Á½uªº±×²v¡C¡]¦^·Q¤@¤U¡u±×¡v²vªº·N¸q¡I¡^



¹Ï¤Q¤@

³Î½uªº±×²v¬° $\frac{y-4}{x-2}=\frac{x^2-2^2}{x-2}$¡C³o¤£´N¬O¤W¨Ò¤¤ªº D(x) ¶Ü¡HÅý Q ÂIÁͪñ©ó P ÂI¡A¤]´N¬OÅý x Áͪñ©ó2¡A¤]´N¬O¨D $\lim_{x \rightarrow 2}D(x)$¡A¥¿¬O¤W¨Ò¤¤ªº³t«×¡C ¦]¬° $\lim_{x \rightarrow 2}D(x) = 4$¡A©Ò¥H¤Á½uªº¤èµ{¦¡¬° y-4 = 4(x-2)¡C¦P²z¡A¨D¹L¦±½u¤W¥ô¤@ÂI (x0, y0) ªº¤Á½u±×²v¤]´N¬O¨D $\lim_{x \rightarrow x_0} \frac{x^2-x_0^2}{x-x_0}$¡C¤£¦ý¦p¦¹¡A¨D¹L¤@¦±½u y=f(x) ¤W¥ô¤@ÂI P(x0, y0) ªº¤Á½u±×²v¡A¨ä¤èªk©M¨D³t«×§¹¥þ¤@¼Ë¡G¥ô¨ú¦±½u¤W¤@ÂI Q(x,y)¡A±o³Î½u PQ ªº±×²v¬° $\frac{f(x)-f(x_0)}{x-x_0}$¡A¦Ó¤Á½uªº±×²v«h¬°

\begin{displaymath}
\lim_{Q \rightarrow p} \frac{f(x)-f(x_0)}{x-x_0}
= \lim_{x \rightarrow x_0} \frac{f(x)-f(x_0)}{x-x_0}
\end{displaymath}

   
 
·L¤À

¬JµM¨D±×²v¤Î¨D³t«×ªº¤èªk§¹¥þ¤@¼Ë¡A¬°¤Fºî¦X¤]¬°¤F±À¼s¡A¹ï¥ô¦ó¨ç¼Æ y=f(x)¡A³£¥i¥H¦Ò¼{¥­§¡Åܲv $\frac{f(x)-f(x_0)}{x-x_0}$ ¤Î¨ä·¥­­­È¡]Àþ¶¡Åܲv¡^ $\lim_{x \rightarrow x_0} \frac{f(x)-f(x_0)}{x-x_0}$¡C¦pªG·¥­­­È¦s¦b¡A«hºÙ¦¹·¥­­­È¬°¨ç¼Æ f(x) ¦b x0 ªº¾É¼Æ(derivative)¡A°O°µ f'(x)¡C­Y X0 ¦b¬Y½d³ò¤º¡Af'(x0) ³£¦³©w¸q¡A«h X0 ¨ì f'(x0) ªº¹ïÀ³¬O¤@ºØ¨ç¼Æ¡AºÙ°µ­ì¨ç¼Æ f(x) ªº¾É¨ç¼Æ¡A°O°µ f'(x)¡C ¨D¾É¼Æªº¹Lµ{¥s°µ·L¤À (differentiation)¡A¬ã¨sÅܤƲv¤Î¨äÀ³¥Îªº³oªù¾Ç°Ý¥s°µ·L¤À¾Ç (differential calculus)¡C¥Î·L¤ÀªºÆ[ÂI¨Ó»¡¡A¨D³t«×©M¨D±×²v¬O¤@½X¨Æ¡]§Y¨D¾É¼Æ¡^¡A¥i¥H¤@°_¦Ò¼{¡C¤£¥u¦p¦¹¡C¤Z¬O·Qª¾¹D¤@¨ç¼Æ f(x) ¦b x0 ÂI¦]ÅÜ¼Æ x ¦ÓÅܤƪº±¡§Î¡A§Ú­Ì´N­n¨D¨äÅܤƲv¡A¤]´N¬O f(x) ¦b x0 ÂIªº¾É¼Æ f'(x0)¡C©Ò¥H±q²{¥Nªº²´¥ú¬Ý¨Ó¡A·L¤À¬O¨DÅܤƲv¡A¦Ó³t«×»P¤Á½u±×²v¥u¬O¨ä¤¤ªº¨âºØ¯S¨Ò¡C

¾É¼Æªº¤@¤jÀ³¥Î´N¬O¨M©w¨ç¼Æªº·¥¤j¡B·¥¤p­È¡C§â¨ç¼Æ y=f(x) ¥Î¦±½uªí¥X¡]¨£¹Ï¤Q¤G¡^¡A«h¹L¨ä·¥¤j­È©Î·¥¤p­ÈÂIªº¤Á½u­n¥­¦æ©ó x ¶b¡C©Ò¥H¤Á½u±×²v­n¬° 0¡C¦]¦¹º¡¨¬ f'(x)=0 ªº x0¡A¥i¯à¡]¦ý¤£¤@©w¡^´N¬O¨ç¼Æ f(x) ¨ú±o·¥¤j©Î·¥¤p­Èªº¦a¤è¡C



¹Ï¤Q¤G

²{¦b¨Ó¹ï·Ó¤@¤U¡A¦b¨S·¥­­Æ[©À¤§«e¡A¤j®a¬O«ç»ò¨D³t«×¡B¤Á½u¤Î·¥¤j¡B·¥¤p­È¡C

   
 
°à°s±í

¨è¤R°Ç³Ì¥ýª`·N¨ì·¥­È»PÅܤƲv¤§¶¡ªºÃö«Y¡C¥L¦b­pºâ°à°s±íªºÅé¿n®É¡A·Q¨ì¤FºØºØªº·¥­È°ÝÃD¡CÄ´¦p¡A¥L´¿ÃÒ©ú¤º±µ©ó¤@©w²y¤ºªº¶ê¬WÅéÅé¿n¡A­n¥Hª½®|»P°ª«×¤§¤ñ¬° $\sqrt{2} : 1$ ªÌ¬°³Ì¤j¡C¥L¦C¤F¤@³s¦ê¶ê¬WÅ骽®|»P°ª«×¤Î¨ä¬Û¹ïÀ³Åé¿nªº¼Æ¾Ú¡A±q¨ä¤¤¨úÅé¿n³Ì¤jªÌ¦Ó±o¨ä¡uÃÒ©ú¡v¡C¦bÀ˵ø¼Æ¾Ú®É¡A¥Lµo²{¤@¶µ¦³½ìªº¨Æ¹ê¡A§Y¡A±Nªñ·¥¤j­È®É¡AÅé¿nªº¡]ÀHª½®|©Î°ª«×¦ÓÅܪº¡^ÅܤƲvÅܱo·U¨Ó·U¤p¡C®Ú¾Ú³oºØÆ[¹î¶Oº¿¥ÎµL½a¤p¤èªk¸Ñ¨M¤F¤@¨Ç·¥­È°ÝÃD¡C¤U­±¬O¤@­Ó¨Ò¤l¡C

¨Ò¡G³]¤@½u¬qªø¬° a¡A±N¥¦¤À¦¨¨â¬q¡A¥H¤§§@¯x§Îªº¨âÃä¡C°Ý¦p¦ó¤Àªk¡A¨Ï©Ò±oªº¯x§Î­±¿n³Ì¤j¡C

¸Ñ¤@¡G¡]·L¤Àªº¤èªk¡^³]¨â¬qªø¦U¬° x ¤Î a-x¡A«h­±¿n¬° f(x)=ax-x2¡C ­Y x=x0 ®É¦³·¥¤j­È¡C«h¨D¾É¼Æ f'(x0)=a-2x0¡A¥O¨ä¬° 0 ¦Ó±o a=2x0¡A§Y±N­ì½u¬qµ¥¤À¥i±o³Ì¤j­±¿n¡C¡]µ¥©Pªº½Ñ¯x§Î¤¤¥H¥¿¤è§Îªº­±¿n¬°³Ì¤j¡C

¸Ñ¤G¡G¡]¶Oº¿ªº¤èªk¡^³]¨â¬q¬° x0 ¤Î a-x0 ®É­±¿n³Ì¤j¡A«h¯x§Î­±¿n¬° ax0-x02¡C³] E ¬°µL½a¤p¶q¡A¥H x0+E ¥N´À­±¿n¤½¦¡¤¤ªº x0¡A¦Ó¥O¤§»P­ì¦¡¬Ûµ¥¡G a(x0+E) - (x0+E)2 = ax0-x02¡A¤Æ²±o a0E = 2x0E + E2¡A°£¥H E «á±o a=2x0+E¡A¥á±¼µL½a¤p¶q E¡A±o a=2x0¡C

®Ú¾Ú¨è¤R°ÇªºÆ[¹î¡A·í f(x) ªñ©ó·¥¤j­È®É¡A¨äÅܤƲv·U¨Ó·U¤p¡A©Ò¥H¶Oº¿»{¬°¦b x0 ¤Î¨äµL½a¤pªñ¾F x0+E ªº f ­ÈÀ³¸Ó¬Ûµ¥¡A³o¬O¶Oº¿¤èªkªºÃöÁä³B¡]§®µÛ¡I¡^¡C±o a=2x0+E «á¡A¦] E ¬°µL½a¤p¡A°_¤£¤F§@¥Î¡A©Ò¥H¹Lªe©î¾ô´N§â¥¦¥á¤F¡]¤S¬O¤@§®µÛ¡I¡^¡C¦ý¦b¨D±o a=2x0+E «e­n¥ý¥H E ¥h°£¡A§_«h¤@¤U¤l§â E ¥á±¼¡]E=0¡^«h¤°»ò³£¨S¦³¤F¢w¢wÁÙ¨S¹Lªe¤£¯à©î¾ô¡I

¥J²Ó¤ñ¸û¨âºØ¸Ñªk¡A·|µo²{¸Ñ¤G¨ä¹ê´N¬O¸Ñ¤@¡G¥O x=x0+E¡A«h a(x0+E)-(x0+E)2 = ax0-x02 ´N¬O f(x)=f(x0)¡F¤Æ²°£¥H E(=x-x0) «á´N±o $\frac{f(x)-f(x_0)}{x-x_0}=0$¡F¥á±¼µL½a¤p E ¨ä¹ê´N¬O¥O x Áͪñ©ó x0¡A¦Ó±o f'(x0)=0¡C

   
 
¬¾·ÆªºµL½a¤p

¶Oº¿ªº¤èªk¥©«h¥©¨o¡A¦ý´N¹³¿n¤À¤¤ªºµL½a¤p¤èªk¤@¼Ë¡A¦³³\¦h¦a¤è¤£¯à¥O¤H«HªA¡G§â f(x0+E) ©M f(x0) ¬Ûµ¥¤Î¥á±¼ E ®É¡A´N¬O»{¬° E=0¡F¦ý¥Î E °£µ¥¦¡®É¡A«h»{¬° $E \neq 0$¡A³o¬OµL½a¤p¯«¯µ¬¾·Æªº¨â­±©Ê¡C¦ý¬O¤]¹³¿n¤À¤¤ªºµL½a¤p¤èªk¤@¼Ë¡A·L¤ÀªºµL½a¤p¤èªk»á¨ü¼Æ¾Ç®aªº¿E½à¡Aª½¨ì¨â­Ó¥@¬ö«á¡A¾É¼Æ¦³¤FÄY®æªº©w¸q¡A¤~¯à§¹¥þ¨ú¦Ó¥N¤§¡C

   
 
¤Á½u

³Ì¦­ªº¤Á½uÆ[©À¡A¤j·§¬O¬ã¨s¶ê¦Ó¦³ªº¡C¦­´Áªº¼Æ¾Ç®a»{¬°¤Á½u´N¬O¥u¥æ¦±½u©ó¤@ÂIªºª½½u¡A¦Ó¨ä¨Dªk«h¨Ì¦±½u¦Ó¦³¤£¦P¡C¦³¤F¸ÑªR´X¦ó¡A²Ã¥d¨à¡]R. Descartes, 1596¡ã1650¡^·Q¨ì¥Î¨D­«®Úªº¤èªk¨Ó¨D¤Á½uªº¤èµ{¦¡¡C¦ý¦pªG¹J¨ì½ÆÂø¤@ÂIªº¦±½u¡A«h¨D­«®Úªº¤èªk«D±`¤£¦n¥Î¡A¦Ó¥B¤Á½u¤]¤£¤@©w¥u¥æ¦±½u©ó¤@ÂI¡C¥t¥~¦³¤@ºØ¤èªk¡A´N¬O§â¦±½u¬Ý¦¨¤@ª«Åé¦b¤ô¥­¤Î««ª½¨â¤è¦V¦³¤F³t«×¦Ó´y¥Xªº­y¸ñ¡A©Ò¥H¤Á½uÀ³¸Ó¬O¤ô¥­¤Î««ª½¨â³t«×¦V¶qªº¦X¦V¶q¡Cù§B¥Ë¡]G.P. Roberval, 1602¡ã1675¡^¡B¦«¨½©î§Q¡]E. Torricelli, 1608¡ã1647¡^µ¥¤H´N¥Î³oºØ¬Ýªk¨D±o¤£¤Ö¦±½uªº¤Á½u¡C¦ý¦±½u«ç»ò¤@©w©M¹B°Ê¦³Ãö©O¡Hªp¥B¨D³t«×ªº°ÝÃD¤]©M¨D¤Á½uªº°ÝÃD¤@¼Ë¡A¤j®aÁÙ¦bºN¯Á¤§¤¤¡C¥i¬O³oºØ¬Ýªk«o¤j¨üÅwªï¡A¤é«á¥BºtÅܦ¨¤û¹yªº¬y¼Æªk¢w¢w¤@ºØ·L¤Àªk¡C



¹Ï¤Q¤T

¶Oº¿¨D¤Á½uªº¤èªk¦p¤U¡G³] PT ¬°¹L P ÂIªº¤Á½u¡A¥æ¾î¶b©ó T ¡]¨£¹Ï¤Q¤T¡^¡CTQ ºÙ¬°¦¸¤Á½u(subtangent)¡C¶Oº¿ªº¤èªk´N¬O·Q¿ìªk¨D±o TQ ªø¡A¥H¤§¨M©w T ÂI¡A¥Ñ T ÂI´N¥i§@¤Á½u¤F¡C³] QQ1(=E) ¬° TQ ¤è¦VªºµL½a¤p¼W¥[¶q¡C¦] $\bigtriangleup TQP$ »P $\bigtriangleup PRT_1$ ¬Û¦ü¡A¬G $TQ = \frac{E \cdot PQ}{T_1R}$¡C¦ý T1R ´X¥G©M P1R ¬Ûµ¥¡]¦] E ¬°µL½a¤p¡^¡A©Ò¥H¥Î«áªÌ¥N´À«eªÌ¥i±o

\begin{displaymath}
TQ = \frac{E \cdot PQ}{P_1Q_1-PQ} = \frac{E}{f(x_0+E)-f(x_0)}f(x_0) .
\end{displaymath}

¦b¶Oº¿©Ò¦Ò¼{ªº¦±½u¡A¤W¦¡¥kÃ䪺¤À¥À³£«Ü®e©ö´£¥X E ¦Ó»P¤À¤lªº E ¬ù±¼¡A µM«á¥á±¼ E¡]E=0¡^¡A¨D±o TQ ªº­È¡C

¥J²Ó¬ã¨s¤@¤U¡A´Nª¾¹D¶Oº¿ªº¤èªk©M²{¦bªº·¥­­¨D¾É¼Æªº¤èªk¬Ûªñ¡G¥H P1R ¥N´À T1R ´N¬O¥ý¥H³Î½u¥N´À¤Á½u¡F¥á±¼ E ´N¬O·¥­­ªº¤èªk¡C¥u¬O·í®É°ÊºAªº·¥­­Æ[©ÀÁ٫ݵުޡA¥u¯à¥H¨ã¦³¨â­±©ÊªºµL½a¤p¶q¨Ó¥N´À¤F¡C

³o®É¥N¨D³t«×©Î¨DÅܤƲv®É©Ò¾D¹J¨ìªº§xÃø©M¨D·¥­È¡B¤Á½u®É©Ò¾D¹Jªº¤@¼Ë¡A¤j®a³£¨S¦³©ú½Tªº·¥­­Æ[©À¨Ó³B²z¡uÀþ¶¡¡vªº°ÝÃD¡A¥u¯à¶D½Ñ¯«¯µªºµL½a¤p¤èªk¡C¨ä¨å«¬ªº§Þ¥©¤Î§ï¶iªº¤è¦V±N¦b¤U¤@¸`½Í¨ì¡C

   
 
²ßÃD

  1. ¦b¨D³t«×ªº¨Ò¤¤¡A¤£§â D(x) ªº¤À¤l¤À¥À¬ù¤À¡A¸Õ¥Î¹ê»Úªº x ­È¡A¦p x = 1.7, 1.8, 1.9, 1.95, 1.99, 1.999, 2.001 ¡K¡Kµ¥¡A¬Ý D(x) ¬O§_Áͪñ©ó 4¡C
  2. ­Y f(x) = ax-x2¡A¸Õ¥Î·¥­­ªkÃÒ©ú f'(x0) =a-2x0¡C
  3. ­Y f(x)=x3¡A¸Õ¥Î·¥­­ªkÃÒ©ú f'(x0) = 3x02¡C
  4. ¤À§O¥Î¶Oº¿¤Î¨D¾É¼Æªº¤èªkÃÒ©ú¤º±µ©ó©w²y¤ºªº¶ê¬WÅéÅé¿n¡A­n¥Hª½®|»P°ª«×¤§¤ñ¬° $\sqrt{2} : 1$ ªÌ¬°³Ì¤j¡C¡]´£¥Ü¡G¥O x ¬°°ª«×¡Af(x) ¬°Åé¿n¡C¡^
  5. ¦b¤WÃD¤¤¡A¸ÕµÛ³y¼Æ¾Úªí»¡©ú¨è¤R°Ç©ÒÆ[¹î¨ìªº²{¶H¡C
  6. ¯Â¥Î´X¦ó¤èªk¦p¦ó¨D¦UºØ¤G¦¸À@½uªº¤Á½u¡C
  7. ¥Î­«®Úªk¨D¦UºØ¤G¦¸À@½uªº¤Á½u¡H
  8. ¥Î­«®Úªk¨D¦±½u y=x3 ¦b x=1 ®Éªº¤Á½u¡A¨Ã±À¦Ó¼s¤§¡C°Q½× y = xn(n>3) ®É¡A¥Î­«®Úªk¨D¤Á½u¦³¨S¦³§xÃø¡C¡]´£¥Ü¡G¥O¤Á½u±×²v¬° m¡A«h m º¡¨¬¤@­Ó¤T¦¸¤èµ{¦¡¡A¦¹¤èµ{¦¡¦³¤G¸Ñ¡C¡^

   

¤W­¶¡@1¢x2¢x3¢x4¢x5¢x6¢x7¢x8¡@¦¸­¶

¦^­¶­º
 
¡]­Y¦³«ü¥¿¡BºÃ°Ý¡K¡K¡A¥i¥H¦b¦¹ ¯d¨¥ ©Î ¼g«H µ¹§Ú­Ì¡C¡^
EpisteMath

EpisteMath (c) 2000 ¤¤¥¡¬ã¨s°|¼Æ¾Ç©Ò¡B¥x¤j¼Æ¾Ç¨t
¦Uºô­¶¤å³¹¤º®e¤§µÛ§@Åv¬°­ìµÛ§@¤H©Ò¦³


½s¿è¡G·¨¨ÎªÚ ¢A ®Õ¹ï¡G·¨¨ÎªÚ ¢A ø¹Ï¡G±iÖq´f ³Ì«á­×§ï¤é´Á¡G2/17/2002