¤W­¶¡@1¢x2¢x3¢x4¢x5¢x6¢x7¢x8¡@¦¸­¶

·L¿n¤À¥v¸Ü ¡]²Ä 4 ­¶¡^

±ä«G¦N

 


­º­¶ | ·j´M

¡D­ì¸ü©ó¬ì¾Ç¤ë¥Z
¡D§@ªÌ·í®É¥ô±Ð©ó¥x¤j¼Æ¾Ç¨t
¡E¹ï¥~·j´MÃöÁä¦r
 
3. µL½a¤p»P¨D¿n

ªü°ò¦Ì¼w¤§«á¡A«áÄ~µL¤H¡Aª½¨ì¤åÃÀ´_¿³®É¥N¡A¥j§Æþ¤§¾Ç³vº¥¨ü¦è¤è­«µø¡A¬ì¾Çº¥¿³¡A¨D¿n°ÝÃD¤~¤Þ°_«Ü¦h¤Hªº±´°Q¡C

¬°¤F¨D±o§ó¦hªº­±¡]Åé¡^¿n¡A¤j®a©ñÃP¹ïÄYÂÔªº­n¨D¡A´X¥G±Ë±ó¤Fªü°ò¦Ì¼w¨B¨B¬°À窺ºë¯«¡C³o¤§¤¤¸g±o°_¦ÒÅç¦Ó¤é«á¦¨¬°¿n¤À¾Ç¥D­n«ä¼éªº¦³¨âºØ¤èªk¡A¨ä¤@´N¬O§â­±¡]Åé¡^¿n¬Ý¦¨¥ÑµL½a½u±ø¡]Á¡¤ù¡^©Ò²Õ¦¨ªºµL½a¤p¤èªk¡F¥t¥~¤@­Ó¬O¸g¹L§ï¨}ªº½aºÉªk¢w¢w°ÊºA½aºÉªk¡C²Ä¤@ºØ¤èªk¶D½Ñª½Æ[¡AÁöµM½×ÃÒ¤í¯ÊÄYÂÔ¡A«o¤©¿n¤À¾Çªºµo®i«Ü¤jªº°Ê¤O¡F²Ä¤GºØ«h½×ÃÒ¸ûÄYÂÔ¡A²×©ó¨Ï¨D¿n¤èªk¦³¤F²`«pªº¼Æ¾Ç°ò¦¡C

¦b³o¤@¸`ùØ¡A§Ú­Ì¥ú¬ÝµL½a¤p»P¨D¿nªºÃö«Y¡C

   
 
µL½a¤p

µL½a¤pªºÆ[©À°_·½«Ü¦­¡A¨ì¤åÃÀ´_¿³¥H«á¡A¥Î¥¦¨D¿nªº¤H«Ü¦h¡A¥B¬Ýªk¡B¨Dªk¦U¦³¤d¬î¡A§Ú­Ì¥u¯àÁ|´X¦ì¥Nªí©Ê¤Hª«¡A¦p¨è¤R°Ç¡]J. Kepler, 1571¡ã1630¡^¡B¦÷§Q²¤¡]Galileo Galilei, 1564¡ã1642¡^¤Î¥dªk¨½¬ù§Q¡]B. Cavalieri, 1598¡ã1647¡^µ¥¤H¡C

¨è¤R°Ç»{¬°¶ê¬O­ÓµL½aÃ䥿¦hÃä§Î¡A©Ò¥H¶ê­±¿nµ¥©óµL½a­ÓµL½a¤p¤T¨¤§Îªº­±¿n©M¡C¨C¤@¤T¨¤§Îªº°ª¬°¶êªº¥b®|¡A¦Ó¨äµL½a¤pªº©³Ãä«h¦b¶ê©P¤W¡C¦]¬°¨C¤@¤T¨¤§Îªº­±¿n¬° $\frac{1}{2}$ ¡Ñ¥b®|¡Ñ©³¡A©Ò¥H³o¨Ç¤T¨¤§Îªº­±¿n©M¬° $\frac{1}{2}$ ¡Ñ¥b®|¡Ñ¶ê©P¡C¦P²z¡A¥L»{¬°¶ê²y¬O¥ÑµL½a¤pªº¶êÀ@Åé©Ò²Õ¦¨¡A¨C¤@¶êÀ@Å骺³»ÂI´N¬O¶ê²yªº²y¤ß¡A°ª´N¬O¥b®|¡A¦Ó©³­±¿n¡]µL½a¤p¡^«h¦b²y­±¤W¡A¥Ñ¦¹¥i±À±o¶ê²yÅé¿n¬° $\frac{1}{3}$ ¡Ñ¥b®|¡Ñ²y­±­±¿n¡C°£¦¹¤§¥~¡A¥LÁÙ¨D±o¤@¨Ç­±¿n©M±ÛÂàÅ骺Åé¿n¡C

   
 
¶ZÂ÷»P­±¿n

¦÷§Q²¤¦b°Q½×µ¥¥[³t¹B°Ê®É¡A¥ÎµL½a¤pªº½×ÃÒªkÃÒ©ú®É¢w³t¦±½u¤Uªº­±¿n´N¬O¶ZÂ÷¡A³o¬O¨D¿nªºÀ³¥Î¸ó¥X¯Âºé¨D¿n½d³òªº¤@¤j¨B¡C¥Lªº·Qªk¦p¤U¡G³]¤@ª«ªº¹B¦æ³t«× v ©M®É¶¡ t ªºÃö«Y¬° v = 32t¡A«h¦b t-v §¤¼Ð¤¤¡A¸ÓÃö«Y¥Ñ¤@ª½½u OB ©Òªí¡]¨£¹Ï¤­¡^¡C¦b¥ô¤@®É¨è A' ªº³t«×µ¥©ó A'B' ªø¡A©Ò¥H¦b¦¹®É¨è©Ò¨«ªº¶ZÂ÷¬° A'B' ªø­¼¥H¡uµL½a¤p¡vªº®É¨è¡A§Y¡u½u±ø A'B' ªº­±¿n¡v¡C·í®É¶¡¥Ñ O Åܨì A ®É¡A½u±ø A'B' ¤]³v¦¸¥Ñ O Åܨì AB¡A©Ò¥HÁ`¶ZÂ÷¬°½Ñ½u±ø A'B'¡u­±¿n¡v¤§©M¡A¤]´N¬O $\triangle OAB$ ªº­±¿n¡C³] A ÂIªº§¤¼Ð¬° t¡A«h¶ZÂ÷ = $\triangle OAB$ ªº­±¿n = $\frac{1}{2} \times t \times 32t = 16t^2$¡C



¹Ï¤­

³t«×¬O¶ZÂ÷ªºÅܤƲv¡A¦Ó±N³t«×¨ç¼Æ¡u¨D¿n¡v«h¦^¨ì¶ZÂ÷¨ç¼Æ¡A³oºØ¨D¿n»PÅܤƲvªº¤¬°fÃö«Y¡A´N¬O©Ò¿×ªº·L¿n¤À°ò¥»©w²z¡C·íµM¡A¨º®É­Ô®É¾÷ÁÙ¥¼¦¨¼ô¡A¦÷§Q²¤¨S¿ìªk¦³³o»ò²`¨èªº»{ÃÑ¡C

¥HÄYÂÔªº²´¥ú¬ÝµL½a¤p¤èªk¡A·|µo²{¥¦¦³ºØºØªº§xÃø¡AÄ´¦p¡A¤°»ò¬OµL½a¤p¡HµL½a­ÓµL½a¤pªº©M¤S¬O¤°»ò·N«ä¡HÁöµM«Ü¦h¤H·Q¿ìªk­n§â³o¨Ç´X¦óÆ[©ÀÄY±K¤Æ¡A¦ý¤@ª½¨S¦³¦¨¥\¡Cª½¨ì³Ìªñ¸gù»«¥Í¡]A. Robinson, 1918¡ã1974¡^µ¥¤Hªº§V¤O¡AµL½a¤pªºÆ[©À¤~¦³¤F¼Æ¾Ç°ò¦¡C¦ý­n²`¤J¤F¸ÑµL½a¤pªº¼Æ¾Ç¡A«o»Ý­n¦³¨ÇÅÞ¿è¾Çªº°V½m¡A¤@¯ë¤H¬O§_¯à¸g¥Ñ¦¹³~®|¾Ç±o·L¿n¤À¡AÁÙ¦³«Ý®É¶¡ªº¦ÒÅç¡C

µL½a¤p¤èªkÁöµM¨­¤À¤@ª½¤£©ú¡A¦ý­YÂÔ·V¨Ï¥Î¡A¥Î³B¤]«Ü¤j¡A©Ò¥H²`¨ü¼Æ¾Ç®aªºÅwªï¡AÄ´¦p¡A¥dªk¨½¬ù§Q´N¥ÎµL½a¤pªº¤èªk±Àºâ¥X«Ü¦h­±¿n¡C¦ý¬O³\¦h¤H¹ï¨ä¤£ÄY±K©Ê²`·P¤£¦w¡A¦Ó¥t¿Ñµo®i³~®|¡A¨ä¤¤³Ì¦³¦¨´Nªº¬O¤U¤@¸`­n½Íªº°ÊºA½aºÉªk¡C

   
 
¥d¤ó­ì²z

µL½a¤p¤èªk°£¤F´£¨Ñª½Æ[¬Ýªk¥~¡AÁÙ¯d¤U¤@±ø«D±`¦³¥Îªº¥d¤ó­ì²z (Cavalieri Principle)¡C¥d¤ó­ì²z¤£¦ý¬Oª½Æ[ªº²£ª«¡A¦Ó¥B¬O¥i¥Î²{¥N·L¿n¤À¾ÇÃÒ©úªº¤@­Ó©w²z¡C§Ú­Ì¥ý¥Î¤@­Ó¨Ò¤l¨Ó»¡©ú¥d¤ó­ì²zªº¤j·N¡C¦p¹Ï¤»¡A³] $\triangle ABC$¡B$\triangle DEF$ µ¥©³µ¥°ª¡A§Ú­Ì¥i¥ÎµL½a¤p¤èªkÃÒ©ú¨ä­±¿n¬Ûµ¥¡G³] B'C'¡BE'F' ¬°¤À§O¥­¦æ©ó BC¡BEF ªºª½½u¡A¥B¶Z©³Ãäµ¥°ª¡A«h¥Ñ¤ñ¨Ò¥iª¾ B'C'=E'F' ¡C¬JµM $\triangle ABC$¡B$\triangle DEF$ ¤À§O¥Ñ¬Ûµ¥ªº½u±ø B'C'¡BE'F' ©Ò²Õ¦¨¡A©Ò¥H¨â¤T¨¤§ÎÀ³¸Ó¦³¦P¼Ëªº­±¿n¡C



¹Ï¤»

¥dªk¨½¬ù§Q©Ò´£ªº­ì²z¥i¥Ñ¤U­±¨â¬q¤å¦r¨Óªí¥Ü¡C

¤@¡B¦pªG¨â¥ßÅé¨ã¦³¦P¼Ëªº°ª«×¡A¦Ó¥B»P©³µ¥°ª¥B¥­¦æ©ó©³­±ªººI­±¿n¨â¨â¦¨©T©wªº¤ñ­È¡A«h³o¨â­Ó¥ßÅ骺Åé¿n¤ñµ¥©ó¸Ó©T©wªº¤ñ­È¡C

¤G¡B¦pªG¨â­±¿n¨ã¦³¦P¼Ëªº°ª«×¡A¦Ó¥B»P©³µ¥°ª¥B¥­¦æ©ó©³½uªººI½uªø¨â¨â¦¨©T©wªº¤ñ­È¡A«h³o¨â­Ó­±¿nªº¤ñµ¥©ó¸Ó©T©wªº¤ñ­È¡C

¥iª`·NªÌ¡A¥d¤ó­ì²zÁö¥Ñª½Æ[¦Ó±o¡A¦ý¨ä¤º®e«o¤£§t¥ô¦óÀǬN¦r²´¡]¦pµL½a¤pµ¥¡^¡F¥Î²{¥Nªº²´¥ú¨Ó¬Ý¡A¥¦¬O­Ó©w²z¡C¤ÏÂЧQ¥Î³o­Ó­ì²z¡C¥d¤óÃÒ©ú¤F¶êÀ@Å骺Åé¿n¬°¦P©³µ¥°ª¶ê¬WÅéÅé¿nªº¤T¤À¤§¤@¡C

¤£¦ý¦è¤è¦³¥d¤ó­ì²z¡A¤¤°ê¤]¦³¡A¦Ó¥B­n¦­¤d¦~¤§¤[¡C«n¥_´Â®Éªº¯ª¨R¤§¡A´N¤@¦A¥©¥Î³o­Ó­ì²z¡A¤£¥Î²{¥N·L¿n¤À§Þ¥©¡A´N¨D±o²yÅéÅé¿nªº¤½¦¡¡]½Ð°Ñ¦Òªþ¿ý¤@¡^¡C¥d¤ó­ì²z¤]À³¸Ó¥s°µ¯ª¤ó­ì²z¡I

§Ú­Ì²{¦b¥Î³o­Ó­ì²z¨Ó¨D¾ò¶êªº­±¿n¡C

¨Ò¡G ­Y¾ò¶êªº¤èµ{¦¡¬° $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ ¡A«h¨ä­±¿n¬° $\pi ab $¡C



¹Ï¤C

ÃÒ¡G ¦p¹Ï¤C¡A¥H¾ò¶êªºµu¶b¬°¥b®|°µ¶ê¡A§Ú­Ì­n¥Î¥d¤ó¡]¯ª¤ó¡^­ì²z¨Ó¤ñ¸û¾ò¶ê©M¶êªº­±¿n¡C§@¥ô¤@ª½½u¥­¦æ©óªø¶b¦Ó±o¾ò¶êªººI½u LL' ¤Î¶êªººI½u MM'¡C¥Ñ§¤¼Ðªº­pºâª¾ $\frac{LL'}{MM'}=\frac{a}{b}$ ¡A¬°©T©w¤ñ­È¡C©Ò¥H¥Ñ¥d¤ó¡]¯ª¤ó¡^­ì²zª¾

\begin{displaymath}
\frac{\mbox{{\fontfamily{cwM16}\fontseries{m}\selectfont \ch...
...family{cwM2}\fontseries{m}\selectfont \char 9}}}=\frac{a}{b} ,
\end{displaymath}

§Y¾ò¶ê­±¿n = $\frac{a}{b}$ ¶ê­±¿n = $\frac{a}{b} \pi b^2=\pi ab$ ¡C

   
 
²ßÃD

  1. ¥Î§Ú­Ì²ßª¾ªº¤½¦¡¡A»¡©ú¨è¤R°Ç©Ò±o²yÅéÅé¿n¤Î²y­±­±¿n¶¡ªºÃö«Y¬O¥¿½Tªº¡C
  2. ³]¨â©ßª«½u y=2x-x2 ¤Î y=-2x2+12x-16 »P x ¶b©Ò³ò¦¨ªº­±¿n¦U¬° A ¤Î B¡A¸Õ¥Î¥d¤ó­ì²z¨D A »P B ¤§¤ñ¡C¤S¡A¥Î¡±2ªºµ²ªG¨D A ¤Î B¡C
  3. §â¤å¤¤¨D¾ò¶ê­±¿nªºÃÒ©ú¸É¨¬¡C
  4. ¥Î¥d¤ó­ì²z¨D¾ò¶êÅé $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ ªºÅé¿n¡C
  5. ­Y¤wª¾ª÷¦r¶ðªºÅé¿n¤½¦¡¬° $\frac{1}{3}$¡Ñ©³­±¿n¡Ñ°ª¡A¸Õ¨D¶êÀ@Å骺Åé¿n¤½¦¡¡C
  6. ¤U­±¬O¤@ºØ¨Dª÷¦r¶ðÅé¿n¤½¦¡ªº¤èªk¡G(1)±N¤@¥¿¥ß¤èÅéµ¥¤À¦¨¤T¥÷¡A¨C¤@¥÷¦¨±×ª÷¦r¶ð§Î¡A¨ä©³¬°¥¿¥ß¤èÅ骺¤@­±¡A¨ä°ª¬°¥¿¥ß¤èÅ骺¤@Ãä¡C (2)±N¤@¯ëªºª÷¦r¶ð©M³oºØ¯S®íªº±×ª÷¦r¶ð¬Û¤ñ¡C
  7. ±N¦÷§Q²¤ªº½×ÃÒ±À¼s¡A»¡©ú¥ô¤@®É¢w³t¦±½u¡]¤£¤@©wª½½u¡A§Y¤£¤@©w¬Oµ¥³t¹B°Ê¡^¤Uªº­±¿n´N¬O¶ZÂ÷¡C
  8. ¤U­±¬O¤@ºØ¨D¶ê²yÅé¿nªº¤èªk¡G¦Ò¼{°ª¤Î¥b®|¦Uµ¥©ó¶ê²y¥b®|ªº¶ê¬WÅé¡C¦Ò¼{¥H¸Ó¶ê¬WÅé³»­±¬°©³¡A¶ê¬WÅ驳­±¤¤¤ß¬°³»ÂIªº¶êÀ@Åé¡C±N¶êÀ@Åé±q¶ê¬WÅ餤°£¥h«á©Ò³Ñ¤UªºÅé¿n©M¥b²yÅéÅé¿n¬Û¤ñ§Y±o¡C

   

¤W­¶¡@1¢x2¢x3¢x4¢x5¢x6¢x7¢x8¡@¦¸­¶

¦^­¶­º
 
¡]­Y¦³«ü¥¿¡BºÃ°Ý¡K¡K¡A¥i¥H¦b¦¹ ¯d¨¥ ©Î ¼g«H µ¹§Ú­Ì¡C¡^
EpisteMath

EpisteMath (c) 2000 ¤¤¥¡¬ã¨s°|¼Æ¾Ç©Ò¡B¥x¤j¼Æ¾Ç¨t
¦Uºô­¶¤å³¹¤º®e¤§µÛ§@Åv¬°­ìµÛ§@¤H©Ò¦³


½s¿è¡G·¨¨ÎªÚ ¢A ®Õ¹ï¡G·¨¨ÎªÚ ¢A ø¹Ï¡G±iÖq´f ³Ì«á­×§ï¤é´Á¡G2/17/2002