¤W­¶¡@1¢x2¢x3¢x4¢x5¢x6¢x7¢x8¡@¦¸­¶

³Î¶ê³N©l¥½ ¡]²Ä 3 ­¶¡^

¬x¸U¥Í

 


­º­¶ | ·j´M

¡D­ì¸ü©ó¼Æ¾Ç¶Ç¼½²Ä¤T¨÷²Ä¤G´Á
¡D§@ªÌ·í®É¥ô±Ð©ó®v¤j¼Æ¾Ç¨t

¡EµùÄÀ
¡E¹ï¥~·j´MÃöÁä¦r
 
¼BÀ²ªº³Î¶ê³N

¼BÀ²³Ð¥ß¤F³Î¶ê³N¡Aµ¹¥X¤F¡u³Î¶ê¡vªº¤@¯ëªk«h¡A«á¥@ªº³Î¶ê®a¥i¯à¦b £k ªºªñ¦ü­È¤W¦ô­p±o¤ñ¥Lºë±K¡A¦ý­Y½×¤Î³Ð©lªº¥\³Ò¡A«h¥Lªº¦a¦ì¬OµL¤H¥i¥H´À¥Nªº¡C

¼BÀ²¬OÃQ¤H¡A¸g¾ú¥i¯à©µªø¨ì®Ê´Â¡A³o¬O¥v®a®Ú¾Ú¡m¶¦®Ñ¡n°O¸üªº¡uÃQ³¯¯d¤ý´º¤¸¥|¦~¡]263 A.D.¡^¼BÀ²ª`¤E³¹¡vªº¤å¥y±ÀÂ_¥X¨Óªº¡C°£¦¹¤§¥~¡A§Ú­Ì¹ï¥Lªº¨­¥@¤@µL©Òª¾¡C®Ê´Âºâ¾Ç³Õ¤h¤ý§µ³q¡]¡m½r¥jºâ¸g¡nªº§@ªÌ¡^ºÙÆg¥L¡u«ä·¥²@¨~¡v¡A±À³\¥LªºµÛ§@¡u¤@®É¿W¨B¡v¡C¥L¨º·¥´I­ì³Ð©Êªº¡m¤E³¹ºâ³Nª`¡n¡]ªþ©ó²{¶Ç¥»ªº¡m¤E³¹ºâ³N¡n¤º¡^¡A¤Î¡m­«®t³N¡n¡]§Y²{¶Çªº¡m®ü®qºâ¸g¡n¡^¤G³¡µÛ§@¡Aªº½T¬O¥L¤£¦´Án¦Wªº³Ì¨Îµù¸}¡C

¼BÀ²ªº³Î¶ê³N°O¸ü¦b¤E³¹ºâ³N²Ä¤@¨÷¤è¥Ð³¹ªº²Ä32ÃDÃö©ó¶ê­±¿n­pºâªºª`¤åùØ¡C§Ú­Ì§â¥¦Âk¯Ç¬°¤U¦C´XÂI¨Ó¥[¥H»¡©ú¡C

¤@¡B¼BÀ²­º¥ý«ü¥X§Q¥Î £k=3 ³o¤@¼Æ­Èºâ±oªºµ²ªG¤£¬O¶ê­±¿n¡A¦Ó¬O¶ê¤º±µ¥¿¤Q¤GÃä§Îªº­±¿n¡A³o­Óµ²ªG¤ñ £k ªº¯u­È¤Ö¡C

¤G¡B¥L¥Ñ¶ê¤º±µ¥¿¤»Ãä§Îºâ°_¡A³vº¥§âÃä¼Æ¥[­¿¡Aºâ¥X¥¿12Ãä§Î¡B¥¿24Ãä§Î¡B¥¿48Ãä§Î¡B¥¿96Ãä§Î¡K¡Kªº­±¿n¡A³o¨Ç­±¿n·|³vº¥¦a±µªñ¶ê­±¿n¡C

¤T¡B¤wª¾¥¿6Ãä§Î¤@Ãä¡]«ê»P¥b®|µ¥ªø¡A²M´ÂÀ¹¾_®Õ°Éºâ¸g®É¡A´¿¸g¸É¤W¤@­ÓÃÒ©ú¹Ï¡A¸Ô¨£¡m¤E³¹ºâ³N¡n¡^¡A§Y¨D±o¥¿12Ãä§ÎÃäªø¡A¡K¡K¡C¥Ñ¥¿12Ãä§Î¨D¥¿24Ãä§Î¤@Ã䤧ªø®É¡A¼BÀ²¤ÏÂЦaÀ³¥Î¨ì¥yªÑ©w²z¡]©ÎºÙ°Ó°ª¡B²¦¤ó©w²z¡^¡A¦p¹Ï¤G¡G



¹Ï¤G


\begin{eqnarray*}
&& OA = OB = OC = r(\mbox{{\fontfamily{cwM0}\fontseries{m}\sel...
... \; l_{4n}=([r-\sqrt{r^2-(l_{2n}/2)^2}]^2 + (l_{2n}/2)^2)^{1/2}
\end{eqnarray*}


¬°¤F¦LÃҧڭ̤W­zªº¸Ñ»¡¡A¦b¦¹§Ú­Ì¯S§OºK¿ý¤F¼BÀ²ªºª`¤å µù3 ¡G
¡u³Î¤»ÛÔ¥H¬°¤Q¤GÛÔ¡A³N¤ê¡G¸m¶ê®|¤G¤Ø¡A¥b¤§¬°¤@¤Ø¡A§Y¶êùØÛÔ¤§­±¤]¡C¥O¥b®|¤@¤Ø¬°©¶¡A¥b­±¤­¤o¬°¥y¡A¬°¤§¨DªÑ¡C¥H¥y¾­¤G¤Q¤­¤o´î©¶¾­¡A¾l¤C¤Q¤­¤o¡A¶}¤è°£¤§¤U¦Ü¬í©¿¡A¤S¤@°hªk¡A¨D¨ä·L¼Æ¡C·L¼ÆµL¦W¡Aª¾¥H¬°¤À¤l¡A¥H¤U¬°¤À¥À¡A¬ù§@¤­¤À©¿¤§¤G¡A¬G±oªÑ¤K¤o¤»¤À¤»Âç¤G¬í¤­©¿¤­¤À©¿¤§¤G¡C¥H´î¥b®|¡A¾l¤@¤o¤T¤À¤TÂç¤E²@¤C¬í¥|©¿¤­¤À©¿¤§¤T¡A¿×¤§¤p¥y¡CÛÔ¤§¥b­±¡A¤S¿×¤§¤pªÑ¡A¬°¤§¨D©¶¡C¨ä¾­¤G¤d¤»¦Ê¤C¤Q¤E»õ¥|¤d¤E¦Ê¤@¤Q¤E¸U¤T¤d¥|¦Ê¥|¤Q¤­©¿¡A¾l©¿±ó¤§¡C¶}¤è°£¤§¡A¸`¤Q¤GÛÔ¤§¤@­±¤]¡C¡v

«öµÛ¡A§Ú­Ì¦A¥[¤J¹Ï¸Ñ¡]§Æ±æ¤£¬O²K¨¬¡^¦p¹Ï¤T¡A



¹Ï¤T

100¤è¤o ¡Ð 25¤è¤o ¡× 75¤è¤o¡A

\begin{displaymath}
\begin{eqalign}
\sqrt{75} \mbox{{\fontfamily{cwM0}\fontserie...
...tfamily{cwM5}\fontseries{m}\selectfont \char 31}}
\end{eqalign}\end{displaymath}

¡]³Ì«á³o­Óªñ¦ü­È­ìª`¤å¨S¦³µ¹¥X¡A¬O§Ú­Ì¥t¥[¤W¥hªº¡C¡^

¼BÀ²ªºª`¤å¤¤ÁÙ¦³³Î12Ã䬰24Ãä¡A³Î24Ã䬰48Ãä¡A³Î48Ã䬰96Ãä¡A¤Î³Î96Ã䬰192Ãä¡A¦¹³B¤£ÂØ¡A¦³¿³½ìªºÅªªÌ½Ð¦Û¦æ¥h¬d¾\¡C

¥|¡B¦³¤F¥¿ 2n Ãä§ÎªºÃäªø l2n¡A«h«ö¡m¤E³¹ºâ³N¡n¤¤ªº¡u¥b©P¡B¥b®|¬Û­¼¡v¤½¦¡¡A¥i¥Hºâ¥X¥¿ 4n Ãä§Îªº­±¿n¡A¬°¡G

\begin{displaymath}
S_{4n}=r\cdot\frac{2n\cdot l_{2n}}{2}=2n\cdot\frac{r\cdot l_{2n}}{2} .
\end{displaymath}

¥Ñ©ó $r\cdot l_{2n}$ «ê¦n¬O¥|Ãä§Î ABCD ªº­±¿n¡]¨£¹Ï¤G¡^¡A©Ò¥H¤W­zªº½×Â_¬O¥¿½Tªº¡A

¼BÀ²ºâ¥X

\begin{displaymath}
S_{96}=3.13+\frac{584}{62500} \; , \; S_{192}=3.14+\frac{64}{62500}
\end{displaymath}

¤SºÙ S192-S96=105/62500 ¬°®t¾­¡A¥¦ªº¨â­¿ 210/62500 ºÙ¬°¥¿96Ãä§Îªº¥~©·¥Ð¡A§Y

\begin{displaymath}2(S_{192}-S_{96})=\frac{210}{62500}\end{displaymath}


\begin{eqnarray*}
S_{96}+\frac{210}{62500}&=&3.13+\frac{584}{62500}+\frac{210}{62500}\\
&=&3.13+\frac{794}{62500}\\
&=&3.14+\frac{169}{62500}
\end{eqnarray*}


³o¼Ëªº­±¿n¤w¸g¡u¥X¶ê¤§ªí¡]¶W¥X¶ê­±¿n¡^¡v¤F¡AÅãµM¶ê¾­¡]­±¿n¡^S º¡¨¬¡G

\begin{eqnarray*}
& & 3.14+\frac{64}{62500} = S_{192}< S < S_{96}+\frac{210}{62...
...ow & S_{192}<S<S_{96}+2(S_{192}-S_{96})=S_{192}+(S_{192}-S_{96})
\end{eqnarray*}


³oùتº S192=3.14+64/62500=3.14+0.001024=3.141024¡A¬Û·í©ó¨D±oªº £k ­È¬° 3.141024¡C½Ðª`·N¡G¦b¥b®|¬°¤@³æ¦ìªøªº±¡§Î¤U¡A¶ê­±¿n©M¥b¶ê©Pªøªº«×¶q¬O¬Ûµ¥ªº¡]³£¬O £k¡^¡C¼BÀ²¦b¦¹³BÅãµM¤Þ¥Î¤F³o­Ó¨Æ¹ê¡C¦ý¥L¨Ã¨S¦³¯S§O«ü©ú¡C

¤­¡B¼BÀ²¨Ã¤£»{¬° S192 ¬O²×µ²¡A¥Lªí¥ÜÁÙ¥i¥H¹³³o¼Ë¤@ª½¡u³Î¡v¤U¥h¡C¡m¤E³¹ºâ³N¡nª`¤å©ú¥Õ¼gµÛ¡G¡u³Î¤§À±²Ó¡A©Ò¥¢À±¤Ö¡F³Î¤§¤S³Î¡A¥H¦Ü©ó¤£¥i³Î¡A«h»P¶ê©P¡AÅé¦ÓµL©Ò¥¢¨o¡C¡v³o¬qª`¤å¥R¤À»¡©ú¤F¼BÀ²¹ï·¥­­·§©À¡A¤w¸g¨ã¦³¤F¬Û·íµ{«×ªº»{ÃѤF¡C¹ï¤@¯ëªº¦ÛµM¼Æ n ¦Ó¨¥¡A

\begin{eqnarray*}
&& S_{2n}<S<S_n+2(S_{2n}-S_n)=S_{2n}+(S_{2n}-S_n) \\
& \Rightarrow & 0<S-S_{2n}<S_{2n}-S_n
\end{eqnarray*}


®Ú¾Ú¤T¨¤¾Çªº²z½×¡A«Ü®e©ö¨D±o

\begin{displaymath}
S_{2n}=\frac{1}{2}(2n\sin\frac{2\pi}{2n}) \; , \quad
S_n=\frac{1}{2}(n\sin\frac{2\pi}{n}),
\end{displaymath}

¦]

\begin{eqnarray*}
\lim_{n\rightarrow\infty}(S_{2n}-S_n) & = & \lim_{n\rightarrow...
...ot\frac{\sin\frac{2\pi}{n}}{\frac{2\pi}{n}} \\
& = & \pi-\pi=0
\end{eqnarray*}


¬G $\lim_{n\rightarrow\infty}S_{2n}=S$¡]³Î¤§¤S³Î¡A¥H¦Ü©ó¤£¥i³Î¡A«h»P¶ê©P¦XÅé¦ÓµL©Ò¥¢¨o¡C¡^

«á¨Ó¡C¼BÀ²ªGµMÄ~Äò³Î¨ì3072Ãä¡A±o¨ì $\pi=3.14159$ µù4 ¡C

3.14+169/62500 (=3.142704) ¸û¦è¤¸«eªü°ò¦Ì¼w¨Ï¥Î¥¿ 96 Ãä§Î¨D±oªº 23/7 (=3.1428) ®t±j¤H·N¤@ÂI¡A¦Ó 3.14159 «h¸û¦è¤¸150¦~¦«°Ç±K¤½»{ªº 3.141666 ­n¦n±o¤Ó¦h¤F¡C

¥Î¥¿¦hÃä§Î³vº¥¼W¥[Ãä¼Æªº¤èªk¨Ó­pºâ¶ê©P²v¡A¦b¦è¤¸«e200¦~¥ª¥k¡A¦­¬°ªü°ò¦Ì¼w¡]287¡H¡ã212 B.C.¡^²v¥ý±Ä¥Î¡C¦ýªü¤ó¦P®É±Ä¥Î¤º±µ©M¥~¤Á¨âºØ¤Jºâ µù5 ¡A¤£¦p¼BÀ²¶È¥Î¤º±µ¡A¤ñ¸û²«K¦h¤F¡C¥Ñ¦¹¥iª¾¡A

¡u³Î¶ê³N¡v¬O¤¤¤g¿W³Ðªº¡A¨M«D¦è¤è¶Ç¤Jªº¡C

   

¤W­¶¡@1¢x2¢x3¢x4¢x5¢x6¢x7¢x8¡@¦¸­¶

¦^­¶­º
 
¡]­Y¦³«ü¥¿¡BºÃ°Ý¡K¡K¡A¥i¥H¦b¦¹ ¯d¨¥ ©Î ¼g«H µ¹§Ú­Ì¡C¡^
EpisteMath

EpisteMath (c) 2000 ¤¤¥¡¬ã¨s°|¼Æ¾Ç©Ò¡B¥x¤j¼Æ¾Ç¨t
¦Uºô­¶¤å³¹¤º®e¤§µÛ§@Åv¬°­ìµÛ§@¤H©Ò¦³


½s¿è¡G§õ´ô¤Ñ ¢A ®Õ¹ï¡G³¯¤å¬O ³Ì«á­×§ï¤é´Á¡G5/31/2002