¤W­¶¡@1¢x2¢x3¢x4¢x5¢x6¡@¦¸­¶

¤H«ç¼Ë¨D±o­±¿n¡H ¡]²Ä 3 ­¶¡^

¶ÀªZ¶¯

 

­º­¶ | ·j´M

¡D­ì¸ü©ó¼Æ¾Ç¶Ç¼½²Ä¤G¨÷²Ä¤G´Á
¡D§@ªÌ·í®É¥ô±Ð©ó¥x¤j¼Æ¾Ç¨t

¡EµùÄÀ
¡E¹ï¥~·j´MÃöÁä¦r
 
¤T¡B¨D¿n°ÝÃDµo®i¤¤ªº«e¨â­Ó®É´Á

½×ªÌ±`±N¿n¤Àªºµo®i¤À¦¨¤T­Ó®É´Á¡G

(i) ½aºÉªk®É´Á¡G¥D­n¬O§Æþ¤å©ú»P¤Q¥|¥@¬ö¥H«eªº¤¤°ê¼Æ¾Ç¤å©ú¡C¥H¦h¨¤§Î¹Gªñ¸û½ÆÂøªº¤@¶ô­±¿n¡A¦bªÅ»Ø¤§¶¡¶ñ¶ë·sªº¤p¤T¨¤§Î©Î¤pªø¤è§Î¡A¼W¥[¦h¨¤§ÎªºÃä¼Æ¡C¤Hª«¥H¼BÀ²¡B¯ª¨R¤§¡BEudoxus¡BEuclid¤Î Archimedes ¬°¥Nªí¡C

(ii)µL­­¨D©Mªk®É´Á¡G¥D­n¬O¤åÃÀ´_¿³¥H«á¡A¤û¹y¬y¼Æ½×¥X²{¥H«e¡A©Ò§@ªº¤@¨Ç§V¤O¡A¥»½è¤W¤´µM¬O½aºÉªkªº©µÄò¡A¥Îªø¤è±øªºÁp¶°¥h¹Gªñ­ì¨Ó¹Ï§Î¡A¦ý¤£¦A¤@¨ý¶ñ¶ëªÅ»Ø¡Aªø¤è±ø¥»¨­ªºªø«×¼e«×³£Ä~Äò¦bÅÜ°Ê¡A¥H¨Ï»~®tÁÍ©ó 0¡AµL­­¨D©Mªº·§©À¥ß¨¬©ó Cavalieri ­ì«h¡]1635¦~¡^¡A¤Hª«¦ÛCavalieri¡B§øªQ­Z²M¶}©l¡A©|¦³³¥¿A¡B¿A¤f¤@¤§¡BJohn Wallis¡BFermat¡C

(iii)·L¤Àªk®É´Á¡G¦Û¤û¹y¡BµÜ¥¬¥§¯÷¥¿¦¡Á`µ²·í®Éªº·L¤À¾Ç°_¡A³B²z¨D¿n°ÝÃD¸ó¤J¤F·sªº¶¥¬q¡C

§Ú­Ì»{¬°¡G±q²Ä¤@®É´Á¨ì²Ä¤G®É´Á¡A·§©À¤W¬O¦³¤F­Y¤zµ{«×ªº¶i¨B¡C¨Æ¹ê¤W¡AµL­­¨D©Mªk­I«á¤wÄ­ÂäF·L¤Àªº·§©À¡A¦ý¦b¤èªk¤W¨D¿n°ÝÃDÁÙ°±¯d¦b­Ó®×³B²zªº¶¥¬q¡A¦]¦¹´N¤èªk½×ªºÆ[ÂI¨Ó¬Ý¡A²Ä¤@¡B²Ä¤G¨â­Ó®É´Á¤´¥i¦X¨Ö¬°¤@­Ó¶¥¬q¡A§Ú­ÌÁ|¤F¨D©ßª«½u­±°ìªº¨Ò¤l¡A¤À§O»¡©ú¨â­Ó®É´Áªº¥Nªí¤Hª« Archimedes »P Fermat «ç¼Ë­pºâ¨ä­±¿n¡C

¨Ò1.¡]¦è¤¸«e¨â¤T¦Ê¦~ Archimedes ªº¨Dªk¡^

³] A ¬°©ßª«½u $y=x^{\frac{1}{2}}$¡A»P¨âª½½u x=b¡Ay=0 ©Ò³ò¦¨ªº­±°ì¡A¨ä­±¿n¤´¥Î A ¥Nªí¡A¦Ò¼{¤@¨t¦Cªº­±¿n¡]¦p¹Ï3¡^¡G$\triangle OBR$ ¥|¨¤§Î OBRP1¡A ¤»¨¤§Î OBRP2P1P2'¡A¡K¡K¡C³oùØ P1M1¡A¥­¦æ©ó¤ô¥­¶b¡AM1 ¬O OR ¤¤ÂI¡A¦P¼Ë P2 M2¡AP2' M2'¡A¥­¦æ©ó¤ô¥­¶b¡AM2¡AM2' ¤À§O¬° P1R¡AOP1 ¤¤ÂI¡K¡K¡C§Ú­Ì¬Ý¨ì³o¤@¨t¦Cªº­±¿n³vº¥¹Gªñ©Ò¨Dªº©ßª«½u­±°ì A¡A¨ä¶¡ªÅ»Ø¤@¨B¨B¥Ñ¤p¤pªº¤T¨¤§Î¶ñ¶ë¡C



¹Ï¤T



¹Ï¤T¤§¤@

²{¦b§Ú­Ì¨Óºâºâ¤p¤T¨¤§Îªº­±¿n¡A¤ñ¦p»¡¨ú $\triangle P_1P_2R$¡AArchimedes ¦b¥Lªº¡mQuadrature of the Parabola¡n¤@®Ñ¤¤Æ[¹î¨ì©ßª«½u¹L p2 ÂIªº¤Á½u«ê¦n¥­¦æ©ó P1 R¡A©öª¾

\begin{displaymath}
\triangle P_1P_2R=\frac{1}{8}\triangle OP_1R
\end{displaymath}

[­Yª½±µ¥Î®y¼Ð­pºâ¡A¥ç±o¡G $R=(b,\sqrt{b})$, $M_1=(b/2,\sqrt{b}/2)$, $P_1= (b/4,\sqrt{b}/2)$, $M_2=(5b/8,3\sqrt{b}/4)$, P1M1=b/4, P2M2=b/16¡A¦Óª¾ $\triangle OP_1R = \sqrt{b}\cdot\frac{1}{2}\cdot\frac{b}{4}$, $\triangle P_1P_2R = \frac{1}{2}\cdot\frac{b}{16} \cdot \frac{\sqrt{b}}{2} = \triangle OP_1R/8$]¡A³o­ÓÃö«Y¦b³v¨B¹Gªñ®É¤´µM«O«ù¡A¦]¦¹ A ªº­pºâÅܦ¨¤F¨Dµ¥¤ñ¯Å¼Æªº°ÝÃD¡A±o

\begin{eqnarray*}
A&=&\triangle OBR+\triangle OP_1R+ 2\triangle P_1P_2R+\cdots \...
...frac{1}{8^3}b\sqrt{b}+\cdots \big\} \\
&=&\frac{2}{3}b\sqrt{b}
\end{eqnarray*}


ÁöµM­­©ó·í®É±ø¥ó¡AArchimedes ¹ï¤W­zµL­­¯Å¼Æ¨D©Mªº¹Lµ{¤£¤ÓÄY®æ¡A¦ý¥Lªº¦ô­p¬O¹ïªº¡C

¨Ò 2.¡]¤Q¤C¥@¬öªì Fermat ªº¨Dªk¡^ µù5

»P¨Ò 1 ¦P¼Ë¡AA ¬O¥Ñ©ßª«½u $y=x^{\frac{1}{2}}$ »P x=b, y=0 ³ò¦¨ªº­±°ì¡C¡]¦p¹Ï4¡^



¹Ï¥|

¥i¥H¬Ý¥X

\begin{displaymath}
R_1+R_2+R_3+R_4+\cdots
\end{displaymath}

¦b¹Gªñ©ó A¡A³o¸Ì e ¬O¤@­Ó±µªñ©ó 1 ¦ý¤p©ó 1 ªº¼Æ¡A·í e ¶V±µªñ 1 ®É¡AªÅ»Øªº³±¼v³¡¥÷·|¶V¨Ó¶V¤p¡]ŪªÌ¤£§«¨ú e=0.9¡A¦A¨ú e=0.99¡Aµe¹Ï¤ñ¸û¬Ý¬Ý¡^¡C²{¦b¥ý©T©w¨ú¦n e ­È¡A±o

\begin{eqnarray*}
\lefteqn{ R_1+R_2+R_3+R_4+ \cdots } \\
&=& (eb)^{\frac{1}{2}...
...c{1}{2}}] \\
&=&e^{\frac{1}{2}}\frac{(1+E)}{(1+E+E^2)}b\sqrt{b}
\end{eqnarray*}


µM«áÅý e ÁÍ©ó 1¡A³o®É E ¤]´NÁÍ©ó 1¡A¬G

\begin{displaymath}
R_1+R_2+R_3+\cdots \quad \mbox{{\fontfamily{cwM9}\fontseries...
...ntseries{m}\selectfont \char 107}} \quad \frac{2}{3}b\sqrt{b},
\end{displaymath}

¦¹§Y

\begin{displaymath}
A=\frac{2}{3} b \sqrt{b} \qquad \mbox{[{\fontfamily{cwM2}\fo...
...us0.1pt{\fontfamily{cwM1}\fontseries{m}\selectfont \char 95}]}
\end{displaymath}

²{¦b§Ú­Ì±N³o¨â­Ó®É´Áªº¨D¿n¤èªk°µ­Ó¤@¯ëªº»¡©ú¡G¹ï©ó¤@¶ô­±°ì A¡A¦pªGÃä¬É¦±½u¬O³sÄòªº¸Ü¡A ¨º»ò¨ú¤@¨Ç¥]§t©ó A ªº¤pªø¤è§Î©Î¤p¤T¨¤§Î R1, R2,cdots µ¥¡AÅý¥¦­Ì¤£¬Û­«Å|¦Ó³v¦¸¶ñº¡¾ã¶ô­±°ì A ªº¤º³¡¡G



¹Ï¤­

µM«á³]ªk¾A·í½Õ¾ã R1, R2, R3, cdots µ¥¡A©Îª½±µ¶ñ¥[·sªº¤pªø¤è§Î©Î¤T¨¤§Î¡A¥Øªº¦b¨ÏªÅ»Ø¡]³±¼v³¡¥÷¡^³vº¥ÁY¤p¦ÓÁÍ©ó¯Q¦³¡A¦Ó­pºâ

\begin{displaymath}
R_1+R_2+R_3\cdots
\end{displaymath}

ªº·¥­­­È¡A§@¬°©Ò¨Dªº­±¿n A¡C¯S®íªº±¡§Î¦p¸Ó­±°ì«ê¬°¤@±ø¨ç¼Æ¦±½u $y=f(x)\geq 0$ »P x=a¡Ax=b ¤Î y=0 ©Ò¬É©wªº½d³ò®É¡A¤W­z¦¡¤l¥¿¦nµ¹¥X¤F©Ò¿×ªº Riemann ¿n¤Àªº©w¸q¡A§Y

\begin{displaymath}
A=\int_a^b f(x)dx \; \equiv \; \lim\sum_{i=1}^n f(\bar x_i)\cdot(x_i-x_{i-1})
\end{displaymath}

¦¹¶¡ $\bar x_i$ ¬° f(x) ¦b°Ï¶¡ [xi-1,xi] ¤Wªº³Ì¤p­È¡A¦Ó $a=x_0<x_1\cdots <x_n=b$¡A¥B·¥­­ lim ¬O«ü¦b $\min\{ x_i-x_{i-1}\,\vert\,i=1,\cdots,n\}$ ÁÍ©ó 0 ®É¡Aªø±ø©M

\begin{displaymath}
\sum_{i=1}^n f(\bar x_i)\cdot(x_i-x_{i-1})
\end{displaymath}

ªº·¥­­­È¡C

ÁöµM³o¬O¤@­Ó¨}¦nªº¿n¤À©w¸q¡A¦ý­n¹ê»Ú¨D¥X $R_1+R_2+\cdots$ ¤§­È¡A³q±`«D±`§xÃø¡A¥u·í­±°ì A ¬Û·í¯S§O®É¡A¤~¥i±æ³]­p¤@­Ó¥i¦æªººâªk¡C¤W­z¨Ò¤l Archimedes »P Fermat ªº¨Dªk©Ò¥H¦¨¥\¡A¬O¦]¬°¦b©ßª«½uªº±¡§Î¤U¡Aªø±ø©M¥i¥H¤Æ¦¨µ¥¤ñ¯Å¼Æ¨Ó¨D¡C­YÃä¬É¬O¨ä¥L¦±½u®É¡Aªø±ø©M´N¤£¨£±o³o¯ë®e©ö­pºâ¡C

   

¤W­¶¡@1¢x2¢x3¢x4¢x5¢x6¡@¦¸­¶

¦^­¶­º
 
¡]­Y¦³«ü¥¿¡BºÃ°Ý¡K¡K¡A¥i¥H¦b¦¹ ¯d¨¥ ©Î ¼g«H µ¹§Ú­Ì¡C¡^
EpisteMath

EpisteMath (c) 2000 ¤¤¥¡¬ã¨s°|¼Æ¾Ç©Ò¡B¥x¤j¼Æ¾Ç¨t
¦Uºô­¶¤å³¹¤º®e¤§µÛ§@Åv¬°­ìµÛ§@¤H©Ò¦³


½s¿è¡G§õ´ô¤Ñ ¢A ®Õ¹ï¡G³¯¤å¬O ¢A ø¹Ï¡G±iÖq´f ³Ì«á­×§ï¤é´Á¡G4/26/2002