¤W­¶¡@1¢x2¢x3¢x4¢x5¢x6¢x7¢x8¢x9¢x10¢x11¢x12¢x13¡@¦¸­¶

¦ÛµM¬Éªº·Ó§¯Ãè
³Å¤ó¤ÀªRªk²¤¶
¡]²Ä 8 ­¶¡^

ªL§µ«H

 


­º­¶ | ·j´M

¡D­ì¸ü©ó¬ì¾Ç¤ë¥Z²Ä¤@¨÷²Ä¤G´Á
¡E¹ï¥~·j´MÃöÁä¦r
 
³Å¤ó¤ÀªR

±q­pºâan¤Îbn¥Xµo¡A¼Æ¾Ç®aµo²{³\¦h°ÝÃD¡A³o¨Ç°ÝÃD¨ë¿E¤F¤Q¤E¥@¬ö¼Æ¾Ç³\¦h³¡ªùªºµo®i(½Ð°Ñ¬Ý±ä«G¦N¤å)¡C³oùاڭ̲¤¶³Ì±K¤Á¬ÛÃöªº¨â­Ó³¡ªù:ªx¨ç¤ÀªR»P¦V¶qªÅ¶¡¡C

§Ú­Ìª¾¹D¡A¿n¤À¬O¨D­±¿n¡A¨D¨ç¼Æ¦±½u¨ìX¶b¶¡©Ò³ò¦¨ªº­±¿n¡C¦pªG¨ç¼Æ­È·U¤j¡A¿n¤Àªº­È«K¸ò·U¤j¡C´«¥y¸Ü»¡¡A¿n¤À­ÈÀH¨ç¼Æªº¤j¤p¦ÓÅܤơA¥ç§Y¥¦¬O¨ç¼Æªº¡u¨ç¼Æ¡v(³q±`ªº¨ç¼Æ¡A¦ÛÅܼƬO¼Æ¡A¦ý¦b³oùØ¡A¦ÛÅܼƤ£¬O¤@­Ó¤@­Ó¼Æ¡A¦Ó¬O¨ç¼Æ¥»¨­¡A©Ò¥H»¡¬O¨ç¼Æªº¡u¨ç¼Æ¡v)³oªù¾Ç°Ý¡A¥s°µªx¨ç¤ÀªR (Functional Analysis)¡A¦b³Å¤ó¯Å¼ÆùØ¡Aan¤Îbn³£ÀHf(x)¦ÓÅÜ¡A³£¬O¨ç¼Æªº¨ç¼Æ¡A§Ú­Ì«K¥iÅé·|¨ì¡A¥¦©Mªx¨ç¤ÀªR¤@©w¦³±K¤ÁÃö«Y¡C

¦A¶i¤@¨B°Q½×¡A§Ú­Ìµo²{³oºØ¿n¤Àªº¡u¨ç¼Æ¡v¡A¬O½u©Êªº¹Bºâ¡C¥ç§Y¥¦º¡¨¬¤U¦C¨â­Ó±ø¥ó:

\begin{eqnarray*}
\int kF(x)dx &=& k(\int F(x)dx) \\
\int (F(x)+G(x))dx &=& \int F(x)dx + \int G(x)dx
\end{eqnarray*}


©Ò¥H¡A¦b³Å¤ó«Y¼Æ¤¤¡A¦pªGf(x)ªº«Y¼Æ¬Oan¤Îbn¡A¨º»ò±Nf(x)­¼¤W±`¼Æk­¿¡A«hkf(x)«Y¼Æ¬°:

\begin{displaymath}\frac{1}{\pi}\int_0^{2\pi} kf(x)\sin nxdx=k(\frac{1}{\pi}\int_0^{2\pi} f(x)\sin nxdx)=ka_n\end{displaymath}

¥ç§Y¬Okan¤Îkbn¡C³oºØ¥¿¤ñ©Ê½è¡A§Ú­Ì¨ì³B¥i¨£¡C¨Ò¦p¤Ó¶§±×·Ó¹q½u±ì¡A¹q½u±ì·Uªø¡A¼v¤l¤]¥²·Uªø;¦p¹Ï¤­©Ò¥Ü:³oºØ§ë¼v(Projection)¡A«K¬O¥¿¤ñÃö«Y¡A¦b¼Æ¾Ç¤W«D±`­«­n¡C¤@³¡¸ÑªR´X¦ó¾Ç¬O«Ø°ò¦b®y¼Ð¤W¡A¦Ó®y¼Ð«K»Ý°ò©ó§ë¼vªº¤èªk¡A¤~¯à¨D±o¤@ÂI(©Î¤@­Ó¦ì¸m¦V¶q)¦b¦U®y¼Ð¶b¤Wªº¤À¦V¶q;¦p¹Ï¤»©Ò¥Ü:

\begin{displaymath}\overrightarrow{r}=x\widehat{i}+y\widehat{j}\end{displaymath}

x¦³¦p¤Ó¶§¦b¥¿¤WªÅ««ª½·Ó®g¦V¶q $\overrightarrow{OP}$¡A©Ò§Î¦¨©ó¦a­±(X¶b)¤Wªº¼v¤l¡C



¹Ï¤­



¹Ï¤»

ª`·N¨ì¤F¶Ü?§â¤@­Ó¨ç¼Æ®i¦¨³Å¤ó¯Å¼Æ¡A©M§â¤@ÂI¼g¦¨®y¼Ð(©Î¤À¦V¶q)§¹¥þÃþ¦ü¡A¥u¤£¹L³Å¤ó¯Å¼Æªº¡u¤À¦V¶q¡v(©Î¡u®y¼Ð¡v)¦³µL½a¦h­Ó(§Ya0,a1,a2,$\cdots\cdots$,b1,b2,$\cdots\cdots$)¦Ó¦b¥­­±¥d¤ó®y¼Ð¤W ¡A¤À¦V¶q¥u¦³¨â­Ó(§Yx¤Îy)¡C¦Ü©ó$\sin nx$¤Î$\cos nx$¡A«K¬Û·í©ó®y¼Ðªº³æ¦ì¦V¶q $\widehat{i}$ ¤Î $\widehat{j}$¡C

©Ò¥H®i¦¨³Å¤ó¯Å¼Æ¡Aµ¥©ó¨D¤@­Ó¦V¶q¦b¦U®y¼Ð¶bªº¤À¦V¶q¡C³o¼Ë¡A§Ú­Ì¥i¥H¤F¸Ñ¶}ÀY©Ò»¡ªº:³Å¤ó¤ÀªR»P¦V¶qªÅ¶¡¦³±K¤ÁÃö«Y¡C

ÁÙ¦³¡A«e­±§Ú­Ì»¡¹L¡A³Å¤ó·Ó§¯Ãè¡A¥i¥H§âÅ|¥[¦b¤@°_ªº¨ç¼Æ¤À¶}¡C«ç»ò¤À¶}©O?ŪªÌ²{¦b¥i¥H²q¨ì¡A©Ò¿×¤À¶}¡A«K¬O®i¦¨³Å¤ó¯Å¼Æ¡A¨D³Å¤ó«Y¼Æ¡C(¦¹¬Û·í©ó±N¤@¦V¶q¤À¸Ñ¡A¨D¨ä¤À¦V¶q¡C°ª¤TªºÅªªÌ·í¤wª¾¹D¡A¦V¶qªº¥[ªk¥¿º¡¨¬Å|¥[­ì²z¡C)³o®É¤À¸Ñ«á¡A©Ò¦³¤À¦V¶q³£¬O³Ì²³æº}«Gªº¥¿©¶¨ç¼Æ $\sin nx$ ©Î¾l©¶¨ç¼Æ $\cos nx$ ªº­¿¼Æ¡C³oºØ±N¤@­Ó½ÆÂøªº¶g´Á¨ç¼Æ¤À¥X²³æªº³¡¥÷($\sin$ ¤Î $\cos$)¡A¯S§O¥s°µ¿Ó©M¤ÀªR (Harmonic Analysis)¡A¦bÁn¾Ç¤W¡A¦b­µ¼Ö¤W¡A³£¦³¥Î³~¡C

   

¤W­¶¡@1¢x2¢x3¢x4¢x5¢x6¢x7¢x8¢x9¢x10¢x11¢x12¢x13¡@¦¸­¶

¦^­¶­º
 
¡]­Y¦³«ü¥¿¡BºÃ°Ý¡K¡K¡A¥i¥H¦b¦¹ ¯d¨¥ ©Î ¼g«H µ¹§Ú­Ì¡C¡^
EpisteMath

EpisteMath (c) 2000 ¤¤¥¡¬ã¨s°|¼Æ¾Ç©Ò¡B¥x¤j¼Æ¾Ç¨t
¦Uºô­¶¤å³¹¤º®e¤§µÛ§@Åv¬°­ìµÛ§@¤H©Ò¦³


½s¿è¡G³¯¤å¬O ¢A ø¹Ï¡G²¥ßªY ³Ì«á­×§ï¤é´Á¡G6/17/2002