¤W­¶¡@1¢x2¢x3¢x4¢x5¢x6¡@¤w¦b³Ì«á¤@­¶

¼Æªº·§©À ¡]²Ä 6 ­¶¡^

±d©ú©÷

 


­º­¶ | ·j´M

¡D­ì¸ü©ó¼Æ¾Ç¶Ç¼½²Ä¤»¨÷²Ä¥|´Á¡B²Ä¤C¨÷²Ä¤@´Á
¡D§@ªÌ·í®É¥ô±Ð©ó¥x¤j¼Æ¾Ç¨t

¡EµùÄÀ
¡E¹ï¥~·j´MÃöÁä¦r
 
*ªþ¿ý¡G¦p¦ó«Ø³y¹ê¼Æ¨t

¥»¸`ªº¥Øªº¬O­nº¡¨¬¬Y¨Ç¦n©_¤ß¯S§O±j¯Pªº¦P¾Ç¡C§Ú­Ì±N¦b¥»¸`´y­z«Ø³y¹ê¼Æ¨tªº¤âªk¡C¦P¾Ç­nª`·Nªº¬O«Ø³y¹ê¼Æ¨tªººë¯«¡A¦Ó¤£¬OªKªK¸`¸`ªºÃÒ©ú¡C

¨Æ¹ê¤W§Ú­Ì¦­´NÁA¸Ñ¤°»ò¬O¹ê¼Æ¡I»·¦b¤Q¤C¥@¬öRené Descartes¡]²Ã¥dº¸¡A1596 - 1650¡^¦­´N¤jÁxªº§â¹ê¼Æ©M¼Æ¶b¤WªºÂI§@¤@¹ï¤@ªº¹ïÀ³¡C2³o­Ó¼Æ¡A§â¼Æ¶b¤WªºÂI¤À¦¨¨âÃþ¡A¤@ºØ¬O{x¡Gx<2¡Ax¬O¹ê¼Æ} ¡A¥t¤@ºØ¬O{ x¡Gx>2¡Ax¬O¹ê¼Æ} ¡C°²¨Ï¦³¤@­Ó¤Hªº¥k²´½M¤F¡A¥L¥Ã»·¥u¦V¥ªÃä¬Ý¡]«n¥_´Â®É¥Nªº½T¦³³o»ò¤@­Ó¬Ó«Ò¡A©Ò¥H¥L¦³¤@­Ó¦m¤l¥u¤ÆùÛ¥bÃäÁy¡^¡C¨º»ò2³o­Ó¼Æ´N¨M©w¤F¤@­Ó¹ê¼Æªº¤l¶°¦X{x¡Gx<2¡Ax¬O¹ê¼Æ} ¡C¤Ï¹L¨Ó»¡¡A¤l¶°¦X{x¡Gx<2¡Ax¬O¹ê¼Æ} ¤]¨M©w¤@­Ó¹ê¼Æ¡A¨º´N¬O2¡A¦]¬°2­è¦n¬O¡u²Ä¤@­Ó¡v¤ñ³o­Ó¤l¶°¦XùØ­±¥ô¦ó¼Æ³£¤jªº¼Æ¡C

©Ò¥H¡A§Ú­Ì¤£§«§â2¬Ý¦¨{ x¡Gx<2¡Ax¬O¹ê¼Æ} ¡A§â$\sqrt{2}$¬Ý¦¨{x¡G$x<\sqrt{2}$¡Ax¬O¹ê¼Æ} ¡C¥O¤HÅå©_ªº¤£¬O³o¥ó¨Æ¡A¦Ó¬O¡G§Ú­ÌÁÙ¥i¥H§â2¬Ý¦¨{x¡Gx<2¡Ax¬O¦³²z¼Æ} ¡A§â$\sqrt{2}$¬Ý¦¨{x¡G$x<\sqrt{2}$¡Ax¬O¦³²z¼Æ} !

·íµM2³o­Ó¼Æ¨M©w¤F¦³²z¼Æ¡]¡I¡^ªº¤@­Ó¤l¶°¦X{x¡Gx<2¡Ax¬O¦³²z¼Æ} ¡C ¤Ï¹L¨Ó»¡¡A¥t¡u²Ä¤@­Ó¡v¤ñ{x¡Gx<2¡Ax¬O¦³²z¼Æ} ùØ­±¥ô·N¼Æ³£¤jªº¹ê¼Æ¡] ¥i¯à¬O¤]¥i¯à¤£¬O¦³²z¼Æ¡^¬°£\¡A§Ú­Ì­nÃÒ©ú$\alpha =2$¡CÅãµM¡A$\alpha\leq 2$¡C ¦pªG$\alpha <2$¡A¥Ñ²ßÃD6²Ä11ÃD¡A¥²¥i§ä¨ì¤@­Ó¦³²z¼Æa¨Ï±o£\<a<2¦]¦¹ $a \in \{x¡Gx<2¡Ax \mbox{{\fontfamily{cwM1}\fontseries{m}\selectfont \ch...
...pt plus0.2pt minus0.1pt{\fontfamily{cwM1}\fontseries{m}\selectfont \char 98}}\}$¡A ¦]¦¹£\¤£¥i¯à¤ñ{x¡Gx<2¡Ax¬O¦³²z¼Æ} ùØ­±ªº¥ô·N¼Æ³£¤j¡C¥Ù¬Þ¡C

¦P¾Ç¦Û¤v¸Õ¸ÕÃÒ©ú¡G¡u²Ä¤@­Ó¡v¤ñ{x¡G$x<\sqrt{2}$¡Ax¬O¦³²z¼Æ} ùØ­±ªº¥ô·N¼Æ³£¤jªº¹ê¼Æ´N¬O$\sqrt{2}$¡C

³o­Ó¨Æ¹ê»¡©ú¡G§Ú­Ì¥i¥H¥Î¦³²z¼Æ¥h®·®»¨C¤@­Ó¹ê¼Æ¡A¤]´N¬O§â¹ê¼Æ£\°µ{x¡G$x<\alpha$¡Ax¬O¦³²z¼Æ} ¡C

²{¦b§Ú­Ì°²¸Ë§Ú­Ì¥u»{±o¦³²z¼Æ¡A¤£»{±oµL²z¼Æ¡A¦]¦¹¶°¦X{x¡G$x<\alpha$¡Ax¬O¦³²z¼Æ} ¹ï§Ú­Ì¤£¤@©w¦³·N¸q¡A¦]¬°¦pªG£\¤£¬O¦³²z¼Æ¡A¥H¤Wªº¶°¦X¹ê¦b¥O¤HÃø¥HÁA¸Ñ¡C©Ò¥H¡A§Ú­Ì­n­«·s¨ÓÁA¸Ñ³o­Ó¶°¦X¡C³o­Ó¶°¦X¦³¤°»ò©Ê½è©O¡H

1.³o­Ó¶°¦X¤£¬OªÅ¶°¦X¡A¤]¤£¬O¥þ³¡¦³²z¼Æ¡C
2.¦pªGa¦b³o­Ó¶°¦X¡Ab<a¡Ab¬O¦³²z¼Æ¡A«hb¤]¦b³o­Ó¶°¦X¡C
3.³o­Ó¶°¦X¨S¦³³Ì¤jªº¤¸¯À¡C

¦pªG§â¥H¤W¤TºØ©Ê½è¦b¼Æ¶b¤Wªí²{¥X¨Ó¡A§Ú­Ì±o¨ìÃþ¦ü¥H¤Uªº¹Ï§Î¡G



¨ä¤¤¨C¤@­ÓÂI³£¬O¦³²z¼Æ¡C

©¯¹Bªº¬O¡A¥H¤W¤TºØ©Ê½è­è¦n¨M©w¥X¤@­Ó¦³²z¼Æªº¤l¶°¦X{x¡G$x<\alpha$¡Ax¬O¦³²z¼Æ} ¡A¨ä¤¤£\¬O¬Y­Ó¹ê¼Æ¡C¡]ÃÒ©ú¡H¡^¦]¦¹§Ú­Ì¥i¥H°µ¥H¤Uªº©w¸q¡C

©w¸q¡G¤@­ÓDedekind ¤Á³Î A¡]Dedekind cut¡^ 6 ©Î²ºÙ¤Á³Î¡A¬O¤@­Ó¦³²z¼Æªº¤l¶°¦X¡A¨ã³Æ¥H¤U©Ê½è¡A

1. $A\neq \emptyset$¡A$A\neq$¦³²z¼Æ¥þ³¡¡C
2.­Y$a\in A$¡Ab<a¡Ab¬O¦³²z¼Æ¡A«h$b \in A$¡C
3.­Y$a\in A$¡A«h¥²¦s¦b¤@­Ó¼Æ£\¡A£\$\in$A¡Aa<£\¡C

©w¸q¡G©Ò¿×ªº¹ê¼Æ´N¬O¬Y¤@­Ó¤Á³Î¡C

¬°¤°»ò­n§â¹ê¼ÆÁ¿±o³o»ò¥j¥j©Ç©Çªº¡H¦]¬°§Ú­Ì°²¸Ë§Ú­Ì¤£»{±oµL²z¼Æ¡A¥u»{±o¦³²z¼Æ¡A §Ú­Ì¥u¦nÅX¨Ï¦³²z¼Æ§Q¥Î§Ú­Ì·t¦a¸Ì¦­¤w¼ôª¾ªº¹ê¼Æªº©Ê½è¥h®·®»¹ê¼Æ¡C

¦³¤F¤Á³Îªº©w¸q¡A§Ú­Ì´N¥i¥H©w¸q¥[ªk©M­¼ªk¡A¨Ã³W©w¨ä¤¤ªº¤j¤pÃö«Y¡C¤À­z¦p¤U¡G

(1) ­YA»PB³£¬O¤Á³Î¡A«h$A\subseteq B$¡AA=B¡A©Î$A\supseteq B$¡C
(2) ©w¸qA<B¡A¦pªG$A\subseteq B$¡C
(3) ­YA»PB¬O¨â­Ó¤Á³Î¡A©w¸qA+B={a+b¡Ga$\in$A¡Ab$\in$B} ¡C«Ü®e©öÀˬdA+B¬O¤@­Ó¤Á³Î¡C
(4) ©w¸q0*={x¡Gx<0¡Ax¬O¦³²z¼Æ} ¡C¥i¥HÃÒ©ú¡G

\begin{displaymath}A+0^{*}=0^{*}+A=A\quad\mbox{[{\fontfamily{cwM0}\fontseries{m}...
...us0.1pt{\fontfamily{cwM7}\fontseries{m}\selectfont \char 214}]}\end{displaymath}

¹ï©ó¤Á³ÎA¡A¥²¦s¦b¤@­Ó¤Á³Î-A¡A¨Ï±o

\begin{displaymath}A+(-A)=(-A)+A=0^{*}\quad\mbox{[{\fontfamily{cwM0}\fontseries{...
...us0.1pt{\fontfamily{cwM7}\fontseries{m}\selectfont \char 214}]}\end{displaymath}


\begin{displaymath}A+B=B+A\quad\mbox{[{\fontfamily{cwM0}\fontseries{m}\selectfon...
...nus0.1pt{\fontfamily{cwM5}\fontseries{m}\selectfont \char 13}]}\end{displaymath}


\begin{displaymath}(A+B)+C=A+(B+C)\quad\mbox{[{\fontfamily{cwM0}\fontseries{m}\s...
...nus0.1pt{\fontfamily{cwM5}\fontseries{m}\selectfont \char 13}]}\end{displaymath}


\begin{displaymath}A>B\Rightarrow A+C>B+C\quad\mbox{[{\fontfamily{cwM0}\fontseri...
...nus0.1pt{\fontfamily{cwM0}\fontseries{m}\selectfont \char 91}]}\end{displaymath}


\begin{displaymath}A>0^{*}\Leftrightarrow -A<0^{*}\mbox{{\fontfamily{cwM0}\fontseries{m}\selectfont \char 1}}\end{displaymath}

(5) ­YA>0*¡AB>0*¡A©w¸q$A\cdot B$={x¡Gx¬O¦³²z¼Æ¡A¥Bx<rs¹ï©ó¬Y­Ór$\in$A¡As$\in$B} ¡C

©w¸q

\begin{displaymath}A\cdot 0^{*}=0^{*}\cdot A=0^{*}\end{displaymath}


\begin{displaymath}
A\cdot B=
\left\{
\begin{array}{rl}
(-A)\cdot (-B)&\mbox{, {...
...wM0}\fontseries{m}\selectfont \char 1}} \\
\end{array}\right.
\end{displaymath}

(6) ©w¸q¤F¨â­Ó¤Á³Îªº­¼ªk¤§«á¡A¤S©w¸q1*={x¡Gx<1¡Ax¬O¦³²z¼Æ} ¡C¥i¥HÅçÃÒ¡G

\begin{displaymath}A\cdot 1^{*}=1^{*}\cdot A=A\quad\mbox{[{\fontfamily{cwM3}\fon...
...us0.1pt{\fontfamily{cwM7}\fontseries{m}\selectfont \char 214}]}\end{displaymath}

¹ï©ó¥ô·N¤Á³ÎA¡A$A\neq 0^{*}$¡A¥²¦s¦b¤@­Ó¤Á³Î$\frac{1}{A}$¡A¨Ï±o

\begin{displaymath}A\cdot\frac{1}{A} =\frac{1}{A}\cdot A=1^{*}\mbox{{\fontfamily...
...us0.1pt{\fontfamily{cwM7}\fontseries{m}\selectfont \char 214}]}\end{displaymath}


\begin{displaymath}A\cdot B=B\cdot A\quad\mbox{[{\fontfamily{cwM3}\fontseries{m}...
...nus0.1pt{\fontfamily{cwM5}\fontseries{m}\selectfont \char 13}]}\end{displaymath}


\begin{displaymath}(A\cdot B)\cdot C=A\cdot (B\cdot C)\quad\mbox{[{\fontfamily{c...
...nus0.1pt{\fontfamily{cwM5}\fontseries{m}\selectfont \char 13}]}\end{displaymath}


\begin{displaymath}A\cdot (B+C)=A\cdot B+A\cdot C\quad\mbox{[{\fontfamily{cwM0}\...
...nus0.1pt{\fontfamily{cwM5}\fontseries{m}\selectfont \char 13}]}\end{displaymath}


\begin{displaymath}A>B,C>0\Rightarrow AC>BC\end{displaymath}

(7) ¹ï©ó¥ô·N¦³²z¼Ær©w¸qr*={x¡Gx<r¡Ax¬O¦³²z¼Æ} ¡C¥i¥HÅçÃÒ¡G¤£¦Pªº¦³²z¼Ær»Ps¡A¹ïÀ³¨ì¤£¦Pªº¤Á³Îr*»Ps*¡C

\begin{eqnarray*}
r^{*}+s^{*}=(r+s)^{*}\mbox{,} \\
r^{*}s^{*}=(rs)^{*}\mbox{,} ...
...s\mbox{{\fontfamily{cwM0}\fontseries{m}\selectfont \char 1}} \\
\end{eqnarray*}


¦]¦¹§Ú­Ì¥i¥H§â©Ò¦³ªº¤Á³Î¡]¤]´N¬O©Ò¦³ªº¹ê¼Æ¡^¬Ý¦¨¦³²z¼ÆªºÂX±i¡C³o´N¬O§Ú­Ìªº¹ê¼Æ¨t¡C³o¼Ë±o¨ìªº¹ê¼Æ¨tªº½T¤ñ¦³²z¼Æ¦h¡A¨Ò¦p¦P¾Ç¥i¥HÃÒ©ú¥H¤U¨â­Ó¤Á³Î³£¤£¯à¼g¦¨r*ªº«¬¦¡¡Ar¬O¦³²z¼Æ¡G

\begin{displaymath}\{ x:x\leq 0,x\mbox{{\fontfamily{cwM1}\fontseries{m}\selectfo...
...\fontfamily{cwM1}\fontseries{m}\selectfont \char 98}}\}\mbox{,}\end{displaymath}


\begin{displaymath}\bigcup_{n=1}^{\infty}\{ x:x\mbox{{\fontfamily{cwM1}\fontseri...
...}}\}\mbox{{\fontfamily{cwM0}\fontseries{m}\selectfont \char 1}}\end{displaymath}

¹ê¼Æ¨t¤ñ°_¦³²z¼Æ¨s³º¦³¤°»òÀuÂI¡H§Ú­Ì­nºCºC»¡°_¡C

­Y S ¬O¤@­Ó¹ê¼Æªº¤l¶°¦X¡A£\ ¬O¤@­Ó¹ê¼Æ¡A£\ ¥s°µ S ªº³Ì¤j¤¸¯À¡]the maximal element¡^¡A¦pªG $\alpha \in S$¡A¨Ã¥B $\alpha \geq x$¡A¹ï©ó¥ô·N $x \in S$¡C

­YS¬O¤@­Ó¹ê¼Æªº¤l¶°¦X¡A£\ ¬O¤@­Ó¹ê¼Æ¡A£\ ¥s°µ S ªº¤W¬É¡]an upper bound¡^¡A¦pªG $\alpha \geq x$¡A¹ï©ó¥ô·N $x \in S$¡C

­YS¬O¤@­Ó¹ê¼Æªº¤l¶°¦X¡A£]¬O¤@­Ó¹ê¼Æ¡A£]¥s°µSªº³Ì¤p¤W¬É¡]the least upper bound¡A©Îthe superemum¡^¡A¦pªG£]¬OSªº¤W¬É¡A¨Ã¥B $\beta\leq\alpha$¡A¹ï©óSªº¥ô·N¤W¬É£\¡C

Á|­Ó¨Ò¤l S={x$\leq$2:x¬O¹ê¼Æ} ªº³Ì¤j¤¸¯À¬O2¡C2,3,$\frac{5}{2}$,40,100,¡K ³£¬O S ªº¤W¬É¡A2¬O S ªº³Ì¤p¤W¬É¡CT={x<2:x¬O¹ê¼Æ} ¨S¦³³Ì¤j¤¸¯À¡A2,3,$\frac{5}{2}$,40,100,¡K ¤´µM¬OT ªº¤W¬É¡A2¬O T ªº³Ì¤p¤W¬É¡Cµ²½×¬O­n¯S§O¤p¤ß¥h°Ï¤À³Ì¤j¤¸¯À»P³Ì¤p¤W¬É¡C

¦P¾Ç¥i¯à·Q°_¨Ó¤F¡A¦b¥»¸`ªº²Ä¤@¬q¡A§Ú­Ì¨Ï¥Î¤@­Ó«D±`²Â©å¦P®É¤]¤£ºë½Tªº¦WºÙ¡G¡u²Ä¤@­Ó¡v¤ñ {x:x<2¡Ax¬O¦³²z¼Æ} ùØ­±¥ô·N¼Æ³£¤jªº¹ê¼Æ¡A¨ä¹ê¤j´N¬O³o­Ó¶°¦Xªº³Ì¤p¤W¬É¡C

¹ê¼Æ©M¦³²z¼Æªº°Ï§O¬O¡G¦b¦³²z¼ÆùØ­±¡A¤@­Ó¶°¦X¥i¯à¦³¤W¬É¡A¦Ó¨S¦³³Ì¤p¤W¬É¡F¦b¹ê¼ÆùØ­±¡A¤@­Ó¶°¦X¦pªG¦³¤W¬É¡A¤@©w¦³³Ì¤p¤W¬É¡C½Ð¬Ý¤U­±¨Ò¤l¡C

¨ÒÃD¡G¥OS={x:x>0¡Ax2<2¡Ax¬O¦³²z¼Æ} ¡C¸ÕÃÒ

(1)Sªº³Ì¤p¤W¬É¬°$\sqrt{2}$¡C

(2)¦pªG¦³²z¼Æ r ¬O S ªº¤W¬É¡A«h¥²¥i§ä¨ì¤@­Ó¦³²z¼Æ s¡A¨Ï±o s<r¡C

(3)¦pªG $t\in S$¡A«h¥²¥i§ä¨ì $u \in S$¡A¨Ï±o t<u¡C

ÃÒ©ú¡G(1)±q²¤¡C

(2)¥O $s = \frac{2r+2}{r+2}$¡C©Î¬O§Q¥Î(1)±o $\sqrt{2} < r$¡AµM«á¦b $\sqrt{2}$ »P r ¤§¶¡¨ú¤@­Ó¦³²z¼Æ s¡C

(3)¥O $u = \frac{2t+2}{t+2}$¡C©Î¬O§Q¥Î(1)±o $t<\sqrt{2}$¡AµM«á¦b t »P $\sqrt{2}$ ¤§¶¡¨ú¤@­Ó¦³²z¼Æ u¡C

°Q½×¡G¥iª¾¦b¦³²z¼ÆùØ­±¡A§Ú­Ì¤£¥i¯à§ä¨ìSªº³Ì¤p¤W¬É¡A¦]¬°¥¦¬O¸ú¦bµL²z¼Æ¸ÌÃä¡C

§Ú­Ì§â¹ê¼Æ¨tªº³o­Ó©Ê½è¼g¦b¤U­±¡A³o­Ó©Ê½è©M¹ê¼Æ¨tªº§¹³Æ©Ê¡]the completeness¡^§¹¥þ¬O¦P¤@¦^¨Æ¡G

³Ì¤p¤W¬É©w²z¡G¹ê¼Æªº¥ô¦ó¤@­Ó¤£¬OªÅ¶°¦Xªº¤l¶°¦X¡A¦pªG¦³¤@­Ó¤W¬É¡A«h¥²¦³³Ì¤p¤W¬É¡C¡]ÃÒ©ú±q²¤¡^

¥H¤Wªº°Q½×À³¸Ó¨¬°÷À°§U¦P¾ÇÁA¸Ñ«Ø³y¹ê¼Æ¨tªº¤j­P¹Lµ{¡C­nª¾¹D§ó¸Ô²Óªº±¡§Î¡C¦P¾Ç¥i¥H°Ñ¦Ò¥H¤U¨â¥»®Ñ¡G

·¨ºû­õ¡A¡m¦ó¿×¹ê¼Æ¡H¡n¡u°Ó°È¦L®ÑÀ]¡v¥Xª©
E.Landau¡A¡mFoundation of Analysis¡n

«á°O¡G¥»¤åªì½Z§¹¦¨«á¡A´¿¸g±i°ê¨k¥ý¥Í´£¨Ñ¤£¤Ö­×¥¿¸É¥R·N¨£¡A ¯S§O¬O²Ä2.2¸`¨ÒÃD2ªº°Q½×»P²Ä2.6¸`¬O¥L«Øij¼W²Kªº¡CÂÔ¦¹­PÁ¡C

   

¤W­¶¡@1¢x2¢x3¢x4¢x5¢x6¡@¤w¦b³Ì«á¤@­¶

¦^­¶­º
 
¡]­Y¦³«ü¥¿¡BºÃ°Ý¡K¡K¡A¥i¥H¦b¦¹ ¯d¨¥ ©Î ¼g«H µ¹§Ú­Ì¡C¡^
EpisteMath

EpisteMath (c) 2000 ¤¤¥¡¬ã¨s°|¼Æ¾Ç©Ò¡B¥x¤j¼Æ¾Ç¨t
¦Uºô­¶¤å³¹¤º®e¤§µÛ§@Åv¬°­ìµÛ§@¤H©Ò¦³


½s¿è¡G³¯¤å¬O ³Ì«á­×§ï¤é´Á¡G4/30/2002