¤W­¶¡@1¢x2¢x3¢x4¢x5¢x6¡@¦¸­¶

¼Æªº·§©À ¡]²Ä 2 ­¶¡^

±d©ú©÷

 


­º­¶ | ·j´M

¡D­ì¸ü©ó¼Æ¾Ç¶Ç¼½²Ä¤»¨÷²Ä¥|´Á¡B²Ä¤C¨÷²Ä¤@´Á
¡D§@ªÌ·í®É¥ô±Ð©ó¥x¤j¼Æ¾Ç¨t

¡EµùÄÀ
¡E¹ï¥~·j´MÃöÁä¦r
 
2.¼Æ¾ÇÂk¯Çªk

   
 
2.1 ¤°»ò¬O¼Æ¾ÇÂk¯Çªk¡H¡]¤@¡^

¦Ò¼{¥H¤Uªº¨ÒÃD»P¡uÃÒ©ú¡v¡C

¨ÒÃD1 ¨DÃÒ $1^3+2^3+\cdots +n^3=\frac{n^2(n+1)^2}{4}$¡A¨ä¤¤ n¬O¥ô·N¥¿¾ã¼Æ¡C

ÃÒ©ú¡G ­Yn=1¡A¥ª¦¡=13= $\frac{1^2(1+1)^2}{4}$=¥k¦¡

­Yn=2¡A¥ª¦¡=13+23=9= $\frac{2^2(2+1)^2}{4}$=¥k¦¡

­Yn=3¡A¥ª¦¡=13+23+33=36= $\frac{3^2(3+1)^2}{4}$=¥k¦¡

­Yn=4¡A¥ª¦¡= 13+23+33+43=100= $\frac{4^2(4+1)^2}{4}$=¥k¦¡

­Yn=5¡A¥ª¦¡= 13+23+33+43+53=25= $\frac{5^2(5+1)^2}{4}$=¥k¦¡

¥H¦¹Ãþ±À¡A¥iª¾¹ï©ó¥ô·N¥¿¾ã¼Æ n¡A­ì¦¡³£¦¨¥ß¡C

¥H¤Wªº¡uÃÒ©ú¡v¦³¤°»ò¿ù»~©O?

§Ú­Ì·Q¤@·Q¡A¥H¤Wªº¡uÃÒ©ú¡v¨ä¹ê¥uÃÒ©ú n=1,2,3,4,5 ®É¡A­ì¦¡¦¨¥ß¡C¨º»ò $n\geq 6$ ®É¡A¦³¨S¦³ÃÒ©ú©O¡H

¦b $n\geq 6$¡A¥H¤Wªº¡uÃÒ©ú¡v¥u¥Î¡u¥H¦¹Ãþ±À¡v´N¤@µ§±a¹L¡C

¤°»ò¬O¥H¦¹Ãþ±À©O¡H¥H¦¹Ãþ±À¬Oªí¥Ü $n\geq 6$ ªºÃÒ©ú´X¥G©M n=1,2,3,4,5 ªºÃÒ©ú§¹¥þ¤@¼Ë¡C¥i¬O§Ú­Ì·Q¤@·Q¡A§Y«K§Ú­Ìª¾¹D 13 + 23 + ¡K +53 ªº¼Æ­È¡A§Ú­Ì¬O§_¯à°÷«Ü®e©öªº±À¥X 13 + 23 + ¡K +1003 ªº¼Æ­È©O¡H¦pªG¤£¯à¡An=100 ªºÃÒ©úÅãµM´N¤£¯à°÷¥Î¥H¦¹Ãþ±Àé²V¹L¥h¡C

¦³¨Ç¦P¾Ç¥i¯à·|»¡¡G§A¬JµM¤£¬Û«H§Ú¯à°÷ÃÒ©ú n=100¡A§Ú´NÃÒ©úµ¹§A¬Ý¡C§A¥u­nµ¹§Ú¤@¤p®Éªº®É¶¡¡A§Ú´N¥i¥H¨D¥X 13, 23, 33, ¡K, 1003¡A¦A¨D¨ä©M¡AµM«áÃÒ©ú³o­Ó¦¡¤l¡C

°ÝÃD´N¦b³oùØ¡G§A­n¥Î¤@¤p®Éªº®É¶¡ÃÒ©ú n=100 ªº±¡§Î¡A§A¨s³º­n¥Î¦h¤Ö®É¶¡¤~¯àÃÒ©ú n=103 ªº±¡§Î¡H¦¹¥~¡A¦b 103 ¤§«á¡AÁÙ¦³µL½aµLºÉªº¥¿¾ã¼Æµ¥µÛ§A¤@­Ó¤@­Ó¥hÅçÃÒ©O¡I

·M¤½·Q¥Î´X¥N¤l®]ªº¤O¶q§â¤@®y¤s·h¨«¡A¦]¬°¤@®y¤sªº½d³ò¬O¦³­­ªº¡C§Ú­Ì²{¦b°ÝÃDªº®Ö¤ß¡A¥¿¾ã¼Æ¡A¬OµL­­ªº¡C·M¤½²¾¤s¦¡ªº¤èªk¡AÅãµM¤£¯à¸Ñ¨M§Ú­Ìªº°ÝÃD¡C

·Q­Ó·sªº¤èªk§a¡C

°²³]§Ú­Ì¯à°÷ÃÒ©ú¡u­Y k ¬O¥ô·N¥¿¾ã¼Æ¡A¨Ã¥B n=k ®É­ì¦¡¦¨¥ß¡A«h n=k+1 ®É­ì¦¡¥ç¦¨¥ß¡v¡A¨º»ò§Ú­Ì´N¥i¥H»´¦Ó©öÁ|ªºÃÒ©ú³o­ÓùÚµ¥¦¡¤F¡C¬°¤°»ò©O¡H

¨Ò¦p¡A§A·QÃÒ©ú n=100 ®É­ì¦¡¦¨¥ß¡A¨Ì·Ó¤W­±ªº°²³]¡A§A¥u­nÃÒ©ú n=99 ®É­ì¦¡¦¨¥ß´N°÷¤F¡C

¨º»ò n=99 ®É­ì¦¡·|¤£·|¦¨¥ß©O¡H¦A¥Î¤@¦¸§Ú­Ìªº°²³]¡A§Ú­Ì¥u­nÃÒ©ú n=98 ®É­ì¦¡¦¨¥ß´N°÷¤F¡C

¨º»ò n=98 ®É­ì¦¡·|¤£·|¦¨¥ß©O¡H¦A¥Î¤@¦¸§Ú­Ìªº°²³]¡A§Ú­Ì¥u­nÃÒ©ú n=97 ®É­ì¦¡¦¨¥ß´N°÷¤F¡C

¥H¦¹Ãþ±À¡A§Ú­Ì¥u­n n=1 ®É­ì¦¡¦¨¥ß´N°÷¤F¡C

§ó¤@¯ëªº»¡¡A§Ú­Ì¤£­n§â n ­­¨î¬°100¡A²{¦bÅý n ¬O¥ô·N¥¿¾ã¼Æ¡C°²©w§Ú­Ì¯à°÷ÃÒ©ú§Ú­Ì³Ì¥ýªº°²³]¬O¦¨¥ßªº¡A¨º»ò¥u­n§Ú­Ì¯à°÷ÃÒ©ú n=1 ®É­ì¦¡¦¨¥ß¡A§Ú­Ì´N¥i¥H±À¥X n ¬O¥ô·N¥¿¾ã¼Æ®É­ì¦¡¥ç¦¨¥ß¡C

³o´N¬O¼Æ¾ÇÂk¯Çªk¡C

¼Æ¾ÇÂk¯Çªkªº­nÂI¬O¡G

¤@¡BÃÒ©ú n=1 ®É­ì¦¡¦¨¥ß¡C
¤G¡B­Y k ¬O¥ô·N¥¿¾ã¼Æ¡AÃÒ©ú¡u­Y n=k ®É­ì¦¡¦¨¥ß¡A«h n=k+1 ®É­ì¦¡¥ç¦¨¥ß¡v¡C

²{¦b§Ú­Ì§â¨ÒÃD1.ªº¥¿½TªºÃÒ©ú¼g¦b¤U­±¡C

ÃÒ©ú¡G
(1) ­Yn=1®É¡A¥ª¦¡=13=1= $\frac{1^2(1+1)^2}{4}$=¥k¦¡
(2) ³]k¬O¥ô·N¥¿¾ã¼Æ¡CÃÒ©ú:­Yn=k®É­ì¦¡¦¨¥ß¡A«hn=k+1®É­ì¦¡¥ç¦¨¥ß¡C

°²³]n=k®É¡A­ì¦¡¦¨¥ß¡A§Y13+23+¡K+k3= $\frac{k^2(k+1)^2}{4}$¡C

¦Ò¼{n=k+1ªº±¡§Î¡C

\begin{eqnarray*}
\mbox{{\fontfamily{cwM1}\fontseries{m}\selectfont \char 10}\hs...
...t \char 13}{\fontfamily{cwM0}\fontseries{m}\selectfont \char 1}}
\end{eqnarray*}


(3) ºî¦X(1)»P(2)¡A¥iª¾¡G¹ï©ó¥ô·N¥¿¾ã¼Æn¡A­ì¦¡¬Ò¦¨¥ß¡C

ª`·N:¤@¯ë¾Ç¥Í¦b¹B¥Î¼Æ¾ÇÂk¯Çªk®É¡A±`·|¥Ç¤U¦p¤Uªº¿ù»~¡A¦p

¤@¡B¦b²Ä(1)¨BÆJ®É¡A³\¦h¾Ç¥Í¥i¯à¥H¬° n=1 ®É¤Ó²³æ¤F¡A¤£¦n·N«ä¼g³o»ò²³æªºÃÒ©ú¡A¦]¦¹¥L¦b³o­Ó¨BÆJ¼g n=4 ©Î n=5 ®ÉªºÃÒ©ú¡C

½Ðª`·N¡A§A¦pªG³o¼Ë¼gªº¸Ü¡A§A¥uÃÒ©ú­ì¦¡¦b $n\geq 4$ ©Î $n\geq 5$ ®É¦¨¥ß¡A§A¨Ã¨S¦³ÃÒ©ú­ì¦¡¹ï©ó¥ô·N¥¿¾ã¼Æ n ³£¦¨¥ß¡C¡]¬°¤°»ò¡H¡^

ÁÙ¦³¨Ç¦P¾Ç¤ñ¸û«È®ð¡A¥L­Ì¤]¤£¦n·N«ä¥u¼g n=1 ®ÉªºÃÒ©ú¡A¥L­Ì¤j·§Ä±±o¼g±o¤Ó¤Ö¤£¤Ó¦n¡A©Ò¥H¥L­Ì¦b³o­Ó¨BÆJ¼g¤W n=1,2,3 ®ÉªºÃÒ©ú¡C³o¬O¹L¤À¤p¤ßªº¡C¤jÁx¤@ÂI¡A¥u­n¼g¤W n=1 ªºÃÒ©ú´N°÷¤F¡C

¤G¡B³Ì±`¨£ªº¡A¤]¬O³ÌÄY­«ªº¿ù»~¬O¥H¤UªºÃþ«¬¡G
(1) n=1®É­ì¦¡¦¨¥ß¡C
(2) n=k®É­ì¦¡¦¨¥ß¡A

§Y $1^3+2^3+\cdots +k^3=\frac{k^2(k+1)^2}{4}$

n=k+1 ®É¡A¥ª¦¡= $\cdots\cdots$

(3) $\cdots\cdots$

¥H¤Wªº¿ù»~ªº¼gªk¬O¦b²Ä(2)¨BÆJ¡C

¿ù»~ªº¦a¤è¬O¡A¨S¦³©ú¥Õªº«ü¥X¡un=k®É­ì¦¡¦¨¥ß¡v³o¥ó¨Æ¨s³º¬O§A¤w¸gÃÒ©ú¥X¨Óªº¡AÁÙ¬O§Aªº°²³]¡C

¨ÒÃD2 ­Y p>-1¡A¥B$p\neq 0$¡AÃÒ©ú (1+p)100 >1+100p¡C

·Qªk¡G ¦pªGp>0¡A¥Ñ¤G¶µ¦¡©w²z

\begin{displaymath}(1+p)^{100}=1+100p+\frac{100\cdot 99}{1\cdot 2} p^2 \\
+\fra...
...s +\frac{100\cdot 99\cdots 2}{1\cdot 2\cdots 99} p^{99}+p^{100}\end{displaymath}

¥i±o (1+p)100 >1+100p¡C°ÝÃD¦b¡A¦pªG -1<p<0 ®É¡A«ç»ò¿ì¡H

§Ú­Ì¤£§«§@­Ó¤jÁxªº²q´ú¡G¡u (1+p)n > 1+np¡v¬O§_ùÚ¦¨¥ß¡H

­n·Q¥Î¡u¼Æ¾ÇÂk¯Çªk¡vÃÒ©ú¡u (1+p)n > 1+np¡v¡A§Ú­Ì·QÃÒ©ú¡u­Y n=k ®É­ì¦¡¦¨¥ß¡A«h n=k+1 ®É­ì¦¡¥ç¦¨¥ß¡C¡v«Ü©¯¹Bªº¡A³o­Ó¨BÆJ¨Ã¤£§xÃø¡C

¦ý¬O n=1 ®É¡A¡u1+p>1+p¡v¨Ã¤£¦¨¥ß¡I

©¯¦n n=2 ®É¡A (1+p)2 =1+ 2p + p2 > 1 + 2p¡C

©Ò¥H§Ú­Ìªº²q´úÀ³¸Ó­×¥¿¬°¡G¡u­Y $n\geq 2$¡A¥B n ¬O¥¿¾ã¼Æ¡A«h (1+p)n > 1+np¡A¨ä¤¤ p>-1¡A$p\neq 0$¡C¡v

ÃÒ©ú¡G §Ú­Ì­nÃÒ©ú¡A(1+p)n>1+np¡A¨ä¤¤ $n\geq 2$¡An ¬O¥¿¾ã¼Æ¡C

¥Î¡u¼Æ¾ÇÂk¯Çªk¡vÃÒ©ú¡C

(1) n=2®É¡A¥ª¦¡=(1+p)2
=1+2p+p2
>1+2p
=¥k¦¡

(2) ÃÒ©ú¡G­Y n=k ®É¡A­ì¦¡¦¨¥ß¡A«h n=k+1 ®É­ì¦¡¥ç¦¨¥ß¡C

¥Ñ n=k ®É­ì¦¡¦¨¥ß¡A±o (1+p)k > 1+kp¡C

¦Ò¼{ n=k+1 ªº±¡§Î¡A ¥ª¦¡ =(1+p)k+1=(1+pk)(1+p) >(1+kp)(1+p)=1+(k+1)p+kp2 >1+(k+1)p = ¥k¦¡

(3) ºî¦X(1)»P(2)¡A¥iª¾­ì¦¡¹ï©ó $n\geq 2$ ªº¾ã¼Æ³£¦¨¥ß¡C

¦]¦¹ (1+p)100>1+100p¡A±oÃÒ¡C

¨ÒÃD3
­Y n ¬O¥ô·N¥¿¾ã¼Æ¡A¸ÕÃÒ

\begin{displaymath}
(\sqrt{3} +1)^{2n+1}-(\sqrt{3} -1)^{2n+1}
\end{displaymath}

¬O¥¿¾ã¼Æ¡A¨Ã¥B¥i³Q2n+1¾ã°£¡C

·Qªk¡G
Àˬd¡u­Y n=k ®É¦¨¥ß¡F«h n=k+1 ®É¦¨¥ß¡v¬O§_¿ì±o¨ì¡C

¥Ñ n=k ¦¨¥ß±o $(\sqrt{3} +1)^{2k+1} - (\sqrt{3} -1)^{2k+1} = 2^{2k+1}a$¡A ¨ä¤¤ a ¬O¬Y­Ó¥¿¾ã¼Æ¡C¦Ò¼{ n=k+1 ªº±¡§Î¡C

\begin{eqnarray*}
\lefteqn{ (\sqrt{3} +1)^{2(k+1)+1}-(\sqrt{3} -1)^{2(k+1)+1} } ...
... 8\cdot 2^{k+1}a-4\{ (\sqrt{3} +1)^{2k-1}-(\sqrt{3} -1)^{2k-1}\}
\end{eqnarray*}


²{¦b¦pªG§Ú­Ìª¾¹D¡u $(\sqrt{3} +1)^{2k-1} - (\sqrt{3} -1)^{2k-1}$ ¬O¤@­Ó¥i³Q 2k ¾ã°£ªº¥¿¾ã¼Æ¡v¡A¨º»ò n=k+1 ®É´N¦¨¥ß¤F¡I ¦ý¬O¡u $(\sqrt{3} +1)^{2k-1} - (\sqrt{3} -1)^{2k-1}$ ¡K¡v¥¿¦n¬O n=k-1 ªº±¡ªp¡C

©Ò¥H¦b²Ä(2)¨BÆJ¡A§Ú­Ì§ï§@¡u­Yn=k¡Ak+1®É¬Ò¦¨¥ß¡A«hn=k+2®É¥ç¦¨¥ß¡v¡C¬°¤F¶¶À³²Ä(2)¨BÆJªº­×¥¿¡A²Ä(1)¨BÆJ­n§ï¦¨¡un=1®É­ì±Ô­z¦¨¥ß¡An=2®É­ì±Ô­z¥ç¦¨¥ß¡C¡v

ÃÒ©ú¡G
§Ú­Ì¥Î¡u¼Æ¾ÇÂk¯Çªk¡vÃÒ©ú¡C
(1) n=1®É¡A $(\sqrt{3} +1)^3-(\sqrt{3} -1)^3 =20$ ¥i³Q 22 ¾ã°£¡C

n=2 ®É¡A $(\sqrt{3} +1)^5-(\sqrt{3} -1)^5 = 152$ ¥i³Q 23 ¾ã°£¡C

(2) ÃÒ©ú¡G­Y n=k¡Ak+1 ®É¦¨¥ß¡A«h n=k+2 ®É¥ç¦¨¥ß¡C

¥Ñ n=k ®É¦¨¥ß¡A±o

\begin{displaymath}(\sqrt{3} +1)^{2k+1}-(\sqrt{3} -1)^{2k+1}=2^{k+1}a\end{displaymath}

¥Ñn=k+1®É¦¨¥ß¡A±o

\begin{displaymath}(\sqrt{3} +1)^{2k+3}-(\sqrt{3} -1)^{2k+3}=2^{k+2}b\end{displaymath}

¨ä¤¤ a »P b ³£¬O¥¿¾ã¼Æ¡C

¦Ò¼{ n=k+2 ªº±¡§Î¡A

\begin{eqnarray*}
\lefteqn{ (\sqrt{3} +1)^{2k+5}-(\sqrt{3} -1)^{2k+5} } \\
&=&...
...t \char 98}{\fontfamily{cwM0}\fontseries{m}\selectfont \char 1}}
\end{eqnarray*}


(3) ºî¦X(1)»P(2)¡A¥iª¾ $(\sqrt{3} +1)^{2n+1} - (\sqrt{3} -1)^{2n+1}$ ¬O¤@­Ó¥i³Q 2n+1 ¾ã°£ªº¥¿¾ã¼Æ¡C

¡u¼Æ¾ÇÂk¯Çªk¡v¬O¤HÃþ«Ü¦­´N«D±`¼ô±xªº¤u¨ã¡C¦­¦b¥j§Æþ®É¥N¡AEuclid¡]¼Ú°ò¨½¼w¡A¬ù300B.C.¡^¦bÃÒ©ú¡u½è¼Æ¬OµL½a¦hªº¡v®É¡A¤w¸g´x´¤¤F¡u¼Æ¾ÇÂk¯Çªk¡vªº°ò¥»ºë¯«¡]¨£¤U¤@¤p¸`ªº¨ÒÃD1¡^¡C¥H«á³\¦h¼Æ¾Ç®a³£¤£¦Ûıªº§Q¥Î¡u¼Æ¾ÇÂk¯Çªk¡vÃÒ©ú¦UºØ°ÝÃD¡C²Ä¤@­Ó©ú½Tªº«ü¥X¡u¼Æ¾ÇÂk¯Çªk¡vªº§Î¦¨»P­ì²z¡A ¬Oªk°ê¼Æ¾Ç®a Blaise Pascal¡]¤Ú´µ¾¿ 1623-1662¡^ 1 ¡C

   
 
²ßÃD1

  1. ÃÒ©ú

    \begin{displaymath}
1^2+2^2+\cdots +n^2=\frac{n(n+1)(2n+1)}{6}
\end{displaymath}

  2. ¸Õ¥Î¡u¼Æ¾ÇÂk¯Çªk¡vÃÒ©úµ¥®t¯Å¼Æ¤½¦¡»Pµ¥¤ñ¯Å¼Æ¤½¦¡¡C

  3. ÃÒ©ú

    \begin{displaymath}
1\cdot 2\cdot 3 + 2\cdot 3\cdot 4 + \cdots + n (n+1)(n+2)
= \frac{1}{4} n(n+1)(n+2)(n+3)
\end{displaymath}

  4. ÃÒ©ú 520 >320+420¡C

  5. ÃÒ©ú 3n>n3 ¨ä¤¤ $n\geq 4$¡C
    ¡]´£¥Ü¡G§A¯à§_ÃÒ©ú $3^{\frac{1}{3}} > 1+\frac{1}{n}$ ­Y $n\geq 4$¡H¡^

  6. ÃÒ©ú¡u¤G¶µ¦¡©w²z¡v¡G

    \begin{eqnarray*}
(1+x)^n
&=& 1 + nx + \frac{n!}{2!(n-2)!} x^2 + \frac{n!}{3!(n...
...c{n!}{k!(n-k)!} x^k + \cdots + \frac{n!}{(n-1)!1!} x^{n-1} + x^n
\end{eqnarray*}


    ¨ä¤¤ x ¬O¥ô·N¼Æ¡An ¬O¥ô·N¥¿¾ã¼Æ¡A $n! =1 \cdot 2 \cdot 3 \cdots n$¡C

  7. ÃÒ©ú

    \begin{eqnarray*}
\lefteqn{ (1+x) (1+\frac{x}{2}) (1+\frac{x}{3}) \cdots (1+\fra...
...x+1)(x+2)}{3!} + \cdots
+ \frac{x(x+1)(x+2) \cdots (x+n-1)}{n!}
\end{eqnarray*}


    ¨ä¤¤ x ¬O¥ô·N¼Æ¡An ¬O¥ô·N¥¿¾ã¼Æ¡C

  8. ³] -1<xi<0¡Ai=1,2,¡K,n¡AÃÒ©ú

    \begin{displaymath}
(1+x_1) (1+x_2) \cdots (1+x_n) > 1 + x_1 +\cdots + x_n
\end{displaymath}

    ¡]°Q½×¡G­Y $x_i\geq 0$¡A§A¯à§_¤£¥Î¡u¼Æ¾ÇÂk¯Çªk¡v¡AÃÒ©ú $(1+x_1)(1+x_2) \cdots (1+x_n) \geq 1 + x_1 +x_2 + \cdots +x_n$¡H¡^

  9. ­Y$x_i\geq 0$¡Ai=1,2,¡K,n¡C ¥O $S_n = x_1+x_2+ \cdots + x_n$¡CÃÒ©ú

    \begin{displaymath}
(1+x_1) (1+x_2) \cdots (1+x_n)
\leq 1+ S_n + \frac{S_n^2}{2!} + \cdots + \frac{S_n^n}{n!}
\end{displaymath}

  10. ÃÒ©ú xn-nx+(n-1)¥i³Q(x-1)2¾ã°£¡A¨ä¤¤$n\geq 2$¡C

  11. ÃÒ©ú $(3+\sqrt{5} )^n + (3-\sqrt{5} )^n$ ¬O¤@­Ó¥i³Q 2n ¾ã°£ªº¥¿¾ã¼Æ¡A¨ä¤¤ n ¬O¥ô·N¥¿¾ã¼Æ¡C

  12. ¥O x0=1¡A $x_n = x_0 + x_1 + \cdots + x_{n-1}$¡An=1,2,¡K¡CÃÒ©ú xn=2n-1¡C

  13. ¥O $(\sqrt{3} +\sqrt{2})^{2n-1} = x_n\sqrt{2} + y_n\sqrt{3} + z_n + u_n\sqrt{6}$¡C¨ä¤¤ n ¬O¥ô·N¾ã¼Æ¡Axn,yn,zn,un ¬O¾ã¼Æ¡C¨DÃÒ zn = un = 0¡C
    ¡]´£¥Ü¡G§A­n§@¨âºØ¡u¼Æ¾ÇÂk¯Çªk¡v¡A¤@ºØ±q n=1 ¶}©l¡A±À¨ì n=2,3,4,¡K¡A¥t¤@ºØ±q n=-1 ¶}©l¡A±À¨ì n= -2, -3, -4,¡K¡C¡^

  14. ¥O $x_1=\alpha$, $x_{n+1}=(2\alpha -1) x_n + 1 -\alpha$¡An=2,3,¡K¡C¨DÃÒ

    \begin{displaymath}
x_n=\frac{1+(2\alpha -1)^n}{2}
\end{displaymath}

  15. ÃÒ©ú 6n5 + 15n4 + 10n3 -n ¬O30ªº­¿¼Æ¡C

   
 
*2.2 §ó¦hªº¨Ò¤l

¥»¤p¸`ªºÃÒ©ú¡A§Ú­Ì±`±`¬Ù²¤¡u¼Æ¾ÇÂk¯Çªk¡vªº²Ä¤T¨BÆJ¡A¥u¼g¥XÃÒ©úªº­nÂI¡C

¨ÒÃD1
ÃÒ©ú½è¼Æ¬OµL½a¦hªº¡C

ÃÒ©ú¡G
§Ú­Ì¥u­nÃÒ©ú¡u¹ï©ó¥ô·N¥¿¾ã¼Æ n¡A§Ú­Ì³£¥i§ä¨ì n ­Ó¬Û²§ªº¥¿½è¼Æ¡v´N°÷¤F¡C²{¦b¥Î¡u¼Æ¾ÇÂk¯Çªk¡vÃÒ©ú¡C

(1) ­Yn=1¡A2´N¬O¤@­Ó¥¿½è¼Æ¡C
(2) °²³]n=k®É¡A§Ú­Ì¥i¥H§ä¨ìk­Ó¬Û²§ªº¥¿½è¼Æp1¡Ap2 ¡K¡Apk¡C

³] $L=p_1p_2\cdots p_k+1$¡A«h $L\geq 3$¡C³]p¬OLªº¬Y¤@­Ó¥¿ªº½è¦]¼Æ¡C¦]¬°p¾ã°£ $p_1 p_2 \cdots p_k +1$¡A©Ò¥H $p \neq p_1, p_2, \cdots, p_k$¡]§_«h p ·|¾ã°£ 1¡A¥Ù¬Þ¡^¡C¦]¦¹ p1,p2,¡K,pk,pk+1 =p ¬O (k+1) ­Ó¬Û²§ªº¥¿½è¼Æ¡C

(3) ºî¦X(1)»P(2)¡A¥iª¾§Ú­Ì¥Ã»·¯à§ä¨ì n ­Ó¬Û²§ªº¥¿½è¼Æ¡C

°Q½×¡G
¥H¤W¨ÒÃD¬O Euclid ¦b¡m´X¦ó­ì¥»¡n¡]Elements¡^ùØ­±´£¥Xªº¤@­Ó©w²z¡C Euclid ªºÃÒ©ú»P¥H¤WÃÒ©ú¦bªí­±¤Wµy¦³¤£¦P¡A½Ð°Ñ¬Ý¥»¨t¦C¤å³¹¡u¾ã¼Æªº¦]¤l¤À¸Ñ¡v¡C

¨ÒÃD2
³] n ¬O¥ô·N¥¿¾ã¼Æ¡A¨DÃÒ¥²¥i§ä¥¿¾ã¼Æk¡A¨Ï±o $(\sqrt{2} -1)^n$=$\sqrt{k}$$-\sqrt{k-1}$¡C

·Qªk¡G
$(\sqrt{2} -1)^n$ ¥²¥i¼g¦¨ $u_n + v_n \sqrt{2}$ ªº§Î¦¡¡A¨ä¤¤ un,vn ³£¬O¾ã¼Æ¡C¤S¦] $\vert\sqrt{2} -1\vert<1$¡A¬G un »P vn ¤£¥i¯à¦P®É¬O¥¿¾ã¼Æ¡C¦pªG xn,yn ¬O¥¿¾ã¼Æ¡A¨º»ò $x_n - y_n \sqrt{2} = \sqrt{k} - \sqrt{k-1}$ ªº¥R¤À±ø¥ó¬O xn2 - 2yn2 =1¡C¦P²z¦pªG xn,yn ¬O¥¿¾ã¼Æ¡A ¨º»ò $x_n\sqrt{2} - y_n = \sqrt{k} - \sqrt{k-1}$ ªº¥R¤À±ø¥ó¬O 2xn2 - yn2 =l¡C

ÃÒ©ú¡G
²Ä¤@³¡¥÷¡AÃÒ©ú $(\sqrt{2} -1)^{2n}=x_{2n}-y_{2n}\sqrt{2}$¡A¨ä¤¤ x2n¡Ay2n ³£¬O¥¿¾ã¼Æ¡C¨Ã¥B x2n2-2y2n2=1¡C
(1) n=1¡A $(\sqrt{2} -1)^2$=3$-2\sqrt{2}$¡A¥B32-$2\cdot 2^2$=1¡C
(2) ³] $(\sqrt{2} -1)^{2k}$=x2k $-y_{2k}\sqrt{2}$¡A¨ä¤¤x2k¡Ay2k³£¬O¥¿¾ã¼Æ¡A ¥Bx2k2 -2y2k2=1¡C²{¦b

\begin{eqnarray*}
(\sqrt{2} -1)^{2k+2} &=& (\sqrt{2} -1)^2(\sqrt{2} -1)^{2k}\\
...
...\sqrt{2} )\\
&=&(3x_{2k}+4y_{2k}) -(2x_{2k}+ 3y_{2k})\sqrt{2}
\end{eqnarray*}


¨ä¤¤ 3x2k + 4y2k¡A 2x2k + 3y2k ³£¬O¥¿¾ã¼Æ¡A¥B (3x2k +4y2k)2 -2(2x2k+3y2k)2 =x2k2 -2y2k2=1¡C

²Ä¤G³¡¤À¡AÃÒ©ú $(\sqrt{2} -1)^{2n-1}$= $x_{2n-1}\sqrt{2}$-y2n-1¡A¨ä¤¤x2n-1¡Ay2n-1³£¬O¥¿¾ã¼Æ¡A¨Ã¥B2x2n-12-y2n-12=1¡C

½Ð¦P¾Ç¦Û¤v°µ°µ¬Ý§a¡C

°Q½×¡G
§Ú­Ì¤w¸gÃÒ©ú¤F $(\sqrt{2} -1)^n = \sqrt{k} -\sqrt{k-1}$¡A ¦ý¬O k ¨s³º¬O¦h¤Ö©O¡H
°²³]

\begin{displaymath}
(\sqrt{2} -1)^n=\sqrt{k} -\sqrt{k-1} \eqno{(1)}
\end{displaymath}

«h

\begin{displaymath}
(\frac{1}{\sqrt{2} -1} )^n=\frac{1}{\sqrt{k} -\sqrt{k-1}}
\end{displaymath}

¬G

\begin{displaymath}
(\sqrt{2} +1)^n=\sqrt{k} +\sqrt{k-1} \eqno{(2)}
\end{displaymath}

(1)+(2)¡G

\begin{eqnarray*}
\sqrt{k} &=& \frac{1}{2}\{ (\sqrt{2} +1)^n+(\sqrt{2} -1)^n\} \...
...frac{1}{4} \{ 2\sum_{m=0}^n
\pmatrix{
2n \cr
2m \cr
}
2^m+2 \}
\end{eqnarray*}


©Ò¥H¡A°ª¤T¦P¾Ç¤£§«¥Î¥H¤Uªº´£¥Ü¨ÓÃÒ©ú¥»ÃD¡G

ÃÒ©ú $\frac{1}{4} \{ 2\sum_{m=0}^n
\pmatrix{
2n \cr
2m \cr }
2^m+2\}$ ¬O¥¿¾ã¼Æ¡A¥B $(\sqrt{2} -1)^n = \sqrt{k} -\sqrt{k-1}$

¨ÒÃD3 ¤wª¾ x1,x2,¡K,xn,¡K ³£¬O¥¿¼Æ¡A¨Ã¥B $x_1=\sqrt{2}$¡A xn+12 = xn + 2¡C¨DÃÒ
xn <2¡A¥B $x_1 < x_2 < x_3 < \cdots < x_n < x_{n+1} < \cdots$¡C

ÃÒ©ú¡G±ýÃÒxn<2¡Axn<xn+1¡C
(1) n=1¡A $x_1=\sqrt{2}<2$¡A

$x_1=\sqrt{2}<\sqrt{2+\sqrt{2}} =x_2$¡C

(2) ³]xk<2¡A¥Bxk<xk+1¡C

xk+12=xk+2<2+2=4¡A¬Gxk+1<2¡C

xk+22-xk+12=xk+1+2-xk+12=-(xk+1+1)(xk+1-2)>0¡A¬G xk+1 < xk+2¡C

¨ÒÃD4 ¤wª¾¤@²Õ¼Æ¦C$\frac{1}{1}$¡A$\frac{3}{2}$¡A$\frac{7}{5}$¡A¡K¡A $\frac{p_n}{q_n}$¡A $\frac{p_{n+1}}{q_{n+1}}$¡A¡K¡A¨ä¤¤pn+1=pn+2qn¡Aqn+1=pn+qn¡CÃÒ©úpn»Pqn¤¬½è¡C

ÃÒ©ú¡G
(1) n=1®É¡Ap1=1»Pq1=1¤¬½è¡C
(2) °²³]pk»Pqk¤¬½è¡C

­Yr¬O¤@­Ó¾ã°£pk+1»Pqk+1ªº¥¿¾ã¼Æ¡A«hr¾ã°£pk+1-qk+1=(pk+2qk)-(pk+qk)=qk¡C¬Gr¤]¾ã°£qk+1-qk=pk¡C

¬Gr¬Opk»Pqkªº¤½¦]¼Æ¡C¦ý¬O¤wª¾pk»Pqk¤¬½è¡C¬Gr=1¡A§Ypk+1»Pqk+1¤¬½è¡C

°Q½×¡G
½Ð¦P¾Ç¦Û¤vÃÒ©ú

\begin{eqnarray*}
&&\frac{1}{1} <\frac{7}{5} <\frac{p_5}{q_5} < \cdots < \frac{p...
...ac{p_{2n+2}}{q_{2n+2}}<
\frac{p_{2n}}{q_{2n}}<\cdots<\frac{3}{2}
\end{eqnarray*}


¨ÒÃD5
¤wª¾ $\cos\alpha + \cos\beta + \cos\gamma = \sin\alpha + \sin\beta + \sin\gamma =0$¡AÃÒ©ú

\begin{displaymath}
\cos n\alpha + \cos n\beta + \cos n\gamma
= \sin n\alpha + \sin n\beta + \sin n\gamma = 0 \; ,
\end{displaymath}

¨ä¤¤ n ¬O¤£³Q 3 ¾ã°£ªº¥¿¾ã¼Æ¡C¡]°ª¤@¦P¾Ç¤£¥²°µ³o­ÓÃD¥Ø¡C¡^

ÃÒ©ú¡G
¥O

\begin{eqnarray*}
Z_1 &=& \cos\alpha + i\sin\alpha \\
Z_2 &=& \cos\beta + i\sin\beta \\
Z_3 &=& \cos\gamma + i\sin\gamma
\end{eqnarray*}


¥Ñ de Moivre ©w²z¡A¥i±o

\begin{eqnarray*}
&&( \cos n\alpha +\cos n\beta +\cos n\gamma) +i(\sin n\alpha +...
...n\beta) +(\cos n\gamma +i\sin n\gamma)\\
&=&Z_1^n +Z_2^n +Z_3^n
\end{eqnarray*}


¨ä¤¤ n ¬O¥ô·N¾ã¼Æ¡C

¥Ñ¤wª¾±ø¥óª¾¡A Z1 + Z2 + Z3 =0¡A¥B $\frac{1}{Z_1} + \frac{1}{Z_2} + \frac{1}{Z_3} =0$¡A¬G

\begin{displaymath}Z_1Z_2 +Z_2Z_3 +Z_3Z_1=Z_1Z_2Z_3(\frac{1}{Z_1} +\frac{1}{Z_2} +\frac{1}{Z_3})=0\end{displaymath}

¥i¨£ Z1, Z2, Z3 ¬O¤T¦¸¤èµ{¦¡ X3-A=0 ªº¤T­Ó®Ú¡A¨ä¤¤ A = Z1Z2Z3¡C

²{¦b§Ú­Ì­n¥Î¡u¼Æ¾ÇÂk¯Çªk¡vÃÒ©ú©Òµ¹«íµ¥¦¡¡C

(1) n=1¡A³o¬O¤wµ¹±ø¥ó¡C

n=2¡A Z12 + Z22 + Z32 = (Z1+Z2+Z3)2 - 2(Z1Z2 +Z2Z3 +Z3Z1)=0¡A¬G

\begin{displaymath}
\cos 2\alpha +\cos 2\beta +\cos 2\gamma
= \sin 2\alpha +\sin 2\beta + \sin 2\gamma = 0
\end{displaymath}

(2) °²³] n=3k-2¡A3k-1 ®É¬Ò¦¨¥ß¡A±o

Z13k-2+Z23k-2+Z33k-2=Z13k-1+Z23k-1+Z33k-1=0

¦]¬°Z13=A¡A¬GZ13k+1=AZ13k-2;¦P²zZ23k+1=AZ23k-2¡AZ33k+1=AZ33k-2¡C ©Ò¥H

Z13k+1+Z23k+1+Z33k+1=A(Z13k-2+Z23k-2+Z33k-2)=0

±o

\begin{eqnarray*}
&&\cos (3k+1)\alpha+\cos (3k+1)\beta+\cos (3k+1)\gamma\\
&=&\sin (3k+1)\alpha+\sin (3k+1)\beta+\sin (3k+1)\gamma=0
\end{eqnarray*}


¦P²z

Z13k+2+Z23k+2+Z33k+2=A(Z13k-1+Z23k-1+Z33k-1)=0

¬G

\begin{eqnarray*}
&&\cos (3k+2)\alpha+\cos (3k+2)\beta+\cos (3k+2)\gamma\\
&=&\sin (3k+2)\alpha+\sin (3k+2)\beta+
\sin (3k+2)\gamma=0
\end{eqnarray*}


°Q½×¡G
­Y

\begin{eqnarray*}
&& \cos\alpha_1+ \cos\alpha_2+ \cdots+ \cos\alpha_{101} \\ &=&...
...0\alpha_1 +\sin 50\alpha_2 +\cdots +\sin 50\alpha_{101} \\ &=&0
\end{eqnarray*}


½Ð¦P¾Ç¦Û¤vÃÒ©ú

\begin{eqnarray*}
&&\cos n\alpha_1 +\cos n\alpha_2 +\cdots +\cos n\alpha_{101} ...
...=&
\sin n\alpha_1 +\sin n\alpha_2 +\cdots +\sin n\alpha_{101}=0
\end{eqnarray*}


¨ä¤¤ n ¬O¤£³Q101¾ã°£ªº¾ã¼Æ¡C

¨ÒÃD6
ÃÒ©ú¥­­±¤W n ±øª½½u±N³o¥­­±¦Ü¦h¤À³Î¦¨ $1+ \frac{n(n+1)}{2}$ ­Ó°Ï°ì¡C

ÃÒ©ú¡G
¥O n ±øª½½u
(1) n=1¡A¥­­±³Q¤À³Î¦¨2=1+ $\frac{1\cdot 2}{2}$­Ó°Ï°ì
(2) °²³]k±øª½½u¦Ü¦h¤À³Î¦¨1+ $\frac{k(k+1)}{2}$­Ó°Ï°ì¡C

¦Ò¼{k+1±øª½½uL1¡AL2¡A¡K¡ALk+1

¦pªG¤£¦Ò¼{Lk+1¡A«hL1¡AL2¡A¡K¡ALk¦Ü¦h¤À³Î¥X1+ $\frac{k(k+1}{2}$­Ó°Ï°ì¡C

Lk+1»PL1¡AL2¡A¡K¡ALkªº¥æÂI¦Ü¦h¦³k­Ó¡C¥Ñ©óLk+1»P³o¨Ç·sªº¥æÂI¦Ü¦h¼W¥[¤Fk+1­Ó°Ï°ì¡C¡]¬°¤°»ò?¡^

¦]¦¹k+1±øª½½u¦Ü¦h¤À³Î¥X1+ $\frac{k(k+1)}{2}$+k+1=1+ $\frac{(k+1)[(k+1)+1]}{2}$­Ó¥­­±°Ï°ì¡C

   
 
²ßÃD2

1.­Ya»Pb³£¬O¾ã¼Æ¡A $(a+b\sqrt{2})^n$¥i¥H¼g¦¨an+$b_n\sqrt{2}$ªº§Î¦¡¡A¨ä¤¤an»Pbn³£¬O¾ã¼Æ¡An¬O¥¿¾ã¼Æ¡CÃÒ©ú:¦pªGa¬O³Ì¾aªñ$b\sqrt{2}$ªº¾ã¼Æ¡A«h¹ï©ó¨C¤@­Ó¥¿¾ã¼Æn¡Aan¬O³Ì¾aªñ$b_n\sqrt{2}$ªº¾ã¼Æ¡C

   
 
2.3 ¤°»ò¬O¡u¼Æ¾ÇÂk¯Çªk¡v?¡]¤G¡^

¦^¨ì¥»¸`ªº²Ä2.1¤p¸`ªº¨ÒÃD1¡C§Ú­Ì­nÃÒ©ú13+23+¡K+n3= $\frac{n^2(n+1)^2}{4}$¡C¨º®É­Ô§Ú­Ìµo²{¤@ºØ¤èªk:¥u­n¯à°÷ÃÒ©ú¡u­Yn=k®É¦¨¥ß¡A«hn=k+1®É¤]¦¨¥ß¡v¡A°ÝÃD´X¥G´Nªï¤b¦Ó¸Ñ¤F¡C

¦P¾Ç¥i¯à·|»¡:¡u§Ú¤£¯à°÷·Q¨ì³oºØ¤èªk¡C³oºØ¤èªk¦n¹³¬O±q¤Ñ¤W±¼¤U¨Óªº¡C¥­±`ªº¤H¬O·Q¤£¨ì³oºØ¤èªkªº¡C¡v

¨º»ò´NÅý§Ú­Ì¦A·Q­Ó·s¤èªk§a¡C¦P¾ÇÀ³¸Ó¤£·|¤Ï¹ï¨Ï¥Î¡uÂkÂÕÃÒªk¡v§a¡C

°²³]³o­Ó±Ô­z¬O¿ùªº¡C¨Ò¦p¡A¦bn=199®É¡A13+23+¡K+1993$\neq$ $\frac{199^2\cdot 200^2}{4}$¡C«Ü¥i¯à¡A¤£¥u¦bn=199®É¬O¿ùªº¡AÁÙ¦³«Ü¦h¥¿¾ã¼Æ¨Ï³o­Ó±Ô­z¤£¦¨¥ß¡C§Ú­Ì¨ú¥X¡u³o­Ó±Ô­z¤£¦¨¥ß¡vªº³Ì¤p¥¿¾ã¼Æ¡A¥O¨ä¬°k¡C¤]´N¬O»¡¡A

\begin{displaymath}1^3+2^3+\cdots +k^3\neq\frac{k^2(k+1)^2}{4}\end{displaymath}


\begin{displaymath}1^3+2^3+\cdots +n^3=\frac{n^2(n+1)^2}{4}\,\mbox{, {\fontfamil...
... k-1\mbox{{\fontfamily{cwM0}\fontseries{m}\selectfont \char 1}}\end{displaymath}

½Ðª`·N¡A$k\neq 1$¡A¦]¬°n=1®É³o­Ó±Ô­zÅãµM¦¨¥ß¡C

§Ú­Ì²{¦b­n¾É¥X¤@­Ó¥Ù¬Þ¡C

¦]¬°

\begin{displaymath}
1^3+2^3+\cdots +k^3\neq\frac{k^2(k+1)^2}{4} \eqno{(1)}
\end{displaymath}


\begin{displaymath}
1^3+2^3+\cdots +(k-1)^3=\frac{(k-1)^2k^2}{4} \eqno{(2)}
\end{displaymath}

¥Ñ (1)-(2)¡A

\begin{displaymath}
k^3\neq\frac{k^2(k+1)^2}{4} -\frac{(k-1)^2k^2}{4} \eqno{(3)}
\end{displaymath}

¦ý¬O

\begin{eqnarray*}
\frac{k^2(k+1)^2}{4} -\frac{(k-1)^2k^2}{4}
&=& \frac{k^2\{ (k+1)^2-(k-1)^2 \}}{4} \\
&=& \frac{k^2\cdot 4k}{4}$=$k^3
\end{eqnarray*}


(3)¦¡ÅãµM¬O­Ó¥Ù¬Þ¡CÃÒ©ú§¹²¦¡C

¥H¤Wªº¤èªk¥i¥HÁ`µ²¦p¤U:

¤@¡B °²³]³o­Ó±Ô­z¤£¥¿½T¡A§Ú­Ì´N¥i¥H§ä¨ì¤@¨Ç¤Ï¨Ò¡]counterexamples¡A¤]´N¬O³o­Ó±Ô­z¿ù»~ªº±¡ªp¡^¡C
¤G¡B ¦b³o¨Ç¤Ï¨Ò¤¤¡A§Ú­Ì¥i¥H§ä¨ì¤@­Ó³Ì¤p¤Ï¨Ò¡]minimal counterexample¡^¡A¤]´N¬O¡A§ä¨ì¤@­Ó¥¿¾ã¼Æk¡A¨Ï±on=k®É³o­Ó±Ô­z¤£¦¨¥ß,n<k®É³o­Ó±Ô­z¤@©w¦¨¥ß¡C
¤T¡B ³]ªk¾É¥X¥Ù¬Þ¡C¨Ò¦p¡AÃÒ©ú¡u­Y n=k-1 ¦¨¥ß¡A«h n=k ¥ç¦¨¥ß¡v¡]­Y$k\geq 2$¡^¡A ©Î¬OÃÒ©ú¡u­Y n=k-2¡Ak-1 ¦¨¥ß¡A«h n=k ¦¨¥ß¡v¡]­Y $k\geq 3$¡^¡A©Î¬OÃÒ©ú¡u­Y n=1,2,¡K¡Ak-1 ¦¨¥ß¡A«h n=k ¦¨¥ß¡v¡]­Y $k\geq 2$¡^¡C

§Ú¦pªG»¡¡A³oºØ¡u³Ì¤p¤Ï¨Ò¡vªº¤èªk©M²Ä2.1¤p¸`©Ò¥Îªº¡u¼Æ¾ÇÂk¯Çªk¡v¨ä¹ê¬O¦P¼Ëªººë¯«¡A¦P¾ÇÀ³¸Ó·|¦P·N¤F§a¡C

¦P¾Ç¤£§«¦A¶i¤@¨B·Q·Q³oºØ¡u³Ì¤p¤Ï¨Ò¡vªº¤èªk¡C³oºØ¤èªk¨ä¹ê¬O§Q¥Î¤F¦ÛµM¼Æ¤@­Ó«ÜÅã©ú¡]¤£¹L¤]«Ü­«­n¡^ªº©Ê½è¡A§Y¡G¦ÛµM¼Æªº¥ô·N¤l¶°¦X¡A¦pªG«DªÅ¡A¤@©w¦³¤@­Ó³Ì¤pªº¤¸¯À¡C

³o­Ó©Ê½èªí¥Ü¦ÛµM¼Æªº¤j¤pÃö«Y¬O¨}§Çªº¡]well-ordered¡^¡C¤@¯ë¨Ó»¡¡A¤@­Ó¶°¦X¦pªG¨ã¦³¤j¤pÃö«Y¡A¨Ò¦p¾ã¼Æ¡B¦³²z¼Æ©Î¹ê¼Æ¡A³oºØ¤j¤pÃö«Y¥²¬O¨}§Çªº¡A¦pªG¥ô¦ó¤@­Ó«DªÅªº¤l¶°¦X¤@©w³£¦³¤@­Ó³Ì¤pªº¤¸¯À¡C¾ã¼Æ¡B¦³²z¼Æ¡B¹ê¼Æ³£¤£¬O¨}§Çªº¡C¦P¾Ç¯à¤£¯à¦b N x N ¤W­±©w¸q¥X¤@ºØ¨}§Çªº¤j¤pÃö«Y?¨ä¤¤ N ¥Nªí¦ÛµM¼Æ§Î¦¨ªº¶°¦X¡C

¦³¤H¥i¯à·|²q´ú¡A¤@­Ó¶°¦X¦pªG¬O¨}§Çªº¡A§Ú­Ì¤j·§´N¥i¥H§Q¥Î¡u³Ì¤p¤Ï¨Ò¡vªº¤èªk©Î¡u¼Æ¾ÇÂk¯Çªk¡v¡Hµª®×¡G§¹¥þ¥¿½T¡C³oºØ¨Ò¤l¦b¤ñ¸û°ªµ¥ªº¼Æ¾Ç±`±`¥X²{¡A¤£¹L§Ú­Ì¤£·Ç³Æ¦b¦¹Ä~Äò°l¨s¤U¥h¡C

¨ÒÃD¡G
ÃÒ©ú¥ô¦ó¤j©ó 1 ªº¾ã¼Æ³£¥i¼g¦¨¦³­­­Ó½è¦]¼Æªº­¼¿n¡C

ÃÒ©ú¡G
°²³]¥H¤W±Ô­z¤£¥¿½T¡C³] n ¬O³Ì¤pªº¤£¯à¼g¦¨¦³­­­Ó½è¦]¼Æªº­¼¿nªº¾ã¼Æ¡C

n¤£¬O½è¼Æ¡A§_«h»P°²³]¹H¤Ï¡C

¬G n=mk¡A¨ä¤¤m¡A$k\geq 2$¡C¦]¦¹m¡Ak<n¡C

©Ò¥Hm»Pk¤À§O³£¥i¼g¦¨¦³­­­Ó½è¦]¼Æªº­¼¿n¡C¦]¦¹n¤]¥i¥H¼g¦¨¦³­­­Ó½è¦]¼Æªº­¼¿n¡C¥Ù¬Þ¡C

   
 
2.4 ¼Æ¾ÇÂk¯Çªkªº»~¥Î

¹B¥Î¼Æ¾ÇÂk¯Çªk®É¡A­nª`·NÀ³¸ÓÀˬd:(1)n=1®É¬O§_¦¨¥ß¡A(2)­Yn=k®É¦¨¥ß¡An=k+1¬O§_¦¨¥ß¡C¤GªÌ¯Ê¤@¤£¥i¡C¦P®É¦b²Ä(2)¨BÆJªºk¡A¬O¥ô·N¤@­Ó¦ÛµM¼Æ¡A¦Ó¤£¬O¬Y¨Ç¯S©wªº¼Æ¡C

¨ÒÃD1
ÃÒ©ú n2-n+41 ¬O½è¼Æ¡C

¡uÃÒ©ú¡v
¥O f(n)=n2-n+41¡C

n=1¡Af(1)=41¡C
n=2¡Af(2)=43¡C
n=3¡Af(3)=47¡C
n=4¡Af(4)=53¡C
n=5¡Af(5)=61¡C
n=6¡Af(6)=71¡C

¥H¤UÃþ±À¡Af(n)«í¬°½è¼Æ¡C

¦ý¬O½Ð¬Ý $f(41) = 41 \cdot 40+41= 41^2$¡A $f(42) =42 \cdot 41+41= 41 \cdot 43$¡A³£¤£¬O½è¼Æ¡C

¿ù¦b¨ºùØ¡H¿ù¦b¨S¦³ÅçÃÒ²Ä(2)¨BÆJ¡C

¨ÒÃD2
¨DÃÒ¤@¥­­±¤Wªº¥ô·NnÂI¡A¬Ò¦b¤@ª½½u¤W¡C

¡uÃÒ©ú¡v
²{¦bÅý§Ú­Ì¥ÎÂk¯Çªk¨Ó¡uÃÒ©ú¡v¤@¤U¤W­±ªº±Ô­z¡A¦b

n=1®É¡A³o±Ô­z·íµM¦¨¥ß¡C
n=2®É¡A³o±Ô­z¤]·íµM¦¨¥ß¡A
$\cdots\cdots$

¦bn=k®É¡A³o±Ô­z»¡¡G¥­­±¤W¥ô¦ókÂI¬Ò¦b¤@ª½½u¤W¡A°²¦p³o¬O¹ïªº¡A§Ú­Ì·QÃÒ©ú¥­­±¤W¥ô¦ók+1­ÓÂI¡A¬Ò¦b¤@ª½½u¤W¡C

³] p1,¡K,pk+1 ¬°³o k+1 ­ÓÂI¡A¦] p1,¡K pk ¬° k ­ÓÂI¡A¬G¥¦­Ì¥²¦b¦P¤@ª½½u¤W¡F¤S¦] p2,p3,¡K,pk+1 ¬O k ­ÓÂI¡A©Ò¥H¥¦­Ì¤]¦b¦P¤@ª½½u¤W¡C¦ý¬O¥ô·N¤GÂI«K¨M©w¤@ª½½u¡A©Ò¥H p1,p2,¡K,pk+1 ¥²¶·¦b¦P¤@ª½½u¤W¡A¦]¦¹§Q¥ÎÂk¯Çªk¡A§Ú­ÌÃÒ©ú¤F¥­­±¤W¥ô·N n ÂI¡A¬Ò¦b¤@ª½½u¤W¡C

¦ý¬O¡G§Ú­Ìª¾¨ì¥ô¨ú¤TÂI¡A«K¥i¯à¤£¦b¤@ª½½u¤W¡A¨º»ò¡A¤W­±ªº¡uÃÒ©ú¡v¿ù¦b¨º¸Ì¡H

¦bk=2®É¡A§Ú­Ìªº¡uÃÒ©ú¡vµo¥Í°ÝÃD¡C¦bk=2Âà¨ìk=3®É¡Ap1¡Ap2©TµM¨M©w¤@ª½½u¡Ap2¡Ap3¤]¨M©w¤@ª½½u¡A¦ý¥¦­Ì¤£¤@©w¬°¦P¤@ª½½u¡C¦]¦¹p1¡Ap2¡Ap3¤£¤@©w¦b¤@ª½½u¤W¡I

§Ú­ÌÀ³¸Ó§âÃD¥Ø§ï¦¨¡G­Y¥ô·N¤TÂI¬Ò¦b¤@ª½½u¤W¡A«h¥ô·NnÂI¥²¦b¤@ª½½u¤W¡C

   
 
²ßÃD3

1.¦³¤H¥Î¤UªkÃÒ©ú¥þ¥@¬Éªº¤H©Ê§O³£¤@¼Ë¡A³]¤@¶°¦XMn¥]§tn­Ó¤H¡A«h·QÃÒ©úMn¤¤ªº¤H©Ê§O³£¤@¼Ë¡C·ín=1®É¡AMn¤¤¥u¦³¤@­Ó¤H¡A·íµM¨ä©Ê§O¬O°ß¤@ªº¡C²{¦b°²©w©RÃD·ín=k®É¦¨¥ß¡A¦b°²©wMk+1¬O¥]§tk+1­Ó¤Hªº¶°¦X¡C¦bMk+1¤¤¿ï©w¨â­Ó¤Hx©My«h $M_{k+1}\setminus\{ x\}$©M $M_{k+1}\setminus\{ y\}$³£¬O¥u¥]§tk­Ó¤Hªº¶°¦X¡A©Ò¥H¨ä¤¤ªº¤H©Ê§O³£¤@¼Ë¡A¦]¦Óx¡Ay©M $M_{k+1}\setminus\{ x,y\}$¤¤¥ô¦ó¤Hªº©Ê§O³£¬Û¦P¡A¬GMk+1¤¤½Ñ¦ìªº©Ê§O¥²¥þ¬Û¦P¡C½Ð«ü¥¿³oÃÒ©ú¿ù¦b¨º¸Ì¡H
2.¦³¤H¥Î¤UªkÃÒ©ú¥ô¦ó¨â­Ó¦ÛµM¼Æ³£¬Ûµ¥¡C¥O $\mbox{max}\{ a,b\}$ªí¥Üa»Pb¤§¤¤¸û¤jªÌ¡C¹ï $\mbox{max}\{ a,b\}$ °µ¼Æ¾ÇÂk¯Çªk¡A§Ú­Ì·QÃÒ©úa=b¡C­Y $\mbox{max}\{ a,b\}=1$«h1$\leq$a¡Ab$\leq$1¡A¬Ga=b¡C°²³] $\mbox{max}\{ a,b\}$=k¡A«ha=b¡C¦Ò¼{ $\mbox{max}\{ a,b\}$=k+1ªº±¡§Î¡C¤µ $\mbox{max}\{ a-1,b-1\}$= $\mbox{max}\{ a,b\}$-1=k¡A¬Ga-1=b-1¡A±oa=b¡C½Ð«ü¥X¿ù¦b¨º¸Ì¡H

   
 
2.5 ¦p¦ó´M§äµª®×¡H

¦P¾Ç¥i¯à·|°Ý¡G¡u²{¦b§Ú­Ì¤w¸g¾Ç·|¼Æ¾ÇÂk¯Çªk¡C¥i¬O§A¦pªG¤£§i¶D§Ú­Ì13+23+¡K+n3ªº©M¬O $\frac{n^2(n+1)^2}{4}$¡A§Ú­Ì®Ú¥»´N¨D¤£¥X13+23+¡K+n3¡C§A¯à¤£¯à§i¶D§Ú­Ì¦p¦ó´M§äµª®×¡H¡v

¦p¦ó´M§äµª®×¡H­º¥ý¡A§A­n¥ý¸ÕÅç´X­Ó¯S®í¨Ò¤l¡F¦b³o¨Ç¯S¨Ò´M§ä¥¦­Ì¦@¦P¤§³B¡A¸Õ¸Õ¬Ý¯à¤£¯àÂk¯Ç¥X¤@¯ëªºµ²½×¥X¨Ó¡C¦P¾Ç¥i¥H°Ñ¦Ò G. Polya¡A¡mHow to solve it?¡n³o¬O¤@¥»«Ü­È±o¬Ýªº½Ò¥~Ūª«¡A¦³±i¾Ð¹Øªº¤¤¤å½Ò¥»¡Aªø¾ô¥Xª©ªÀ¥Xª©¡C

§Ú­Ì¦b³o¤@¸`¡A­n¤¶²Ð¦³¨t²Îªº¨D©M¤èªk¡C

¨ÒÃD1
¨D $S_n=1^2+2^2+\cdots +n^2$¡C

¸Ñªk1
¥Ñ (k+1)3-k3=3k2+3k+1¡A±o

\begin{displaymath}
\begin{array}{rrcl}
&2^3-1^3&=&3\cdot 1^2+3\cdot 1+1 \\
&3^...
...1^2+2^2+\cdots +n^2) \\
&&&+3(1+2+\cdots +n)+n \\
\end{array}\end{displaymath}


\begin{displaymath}
\begin{array}{rcl}
\mbox{{\fontfamily{cwM1}\fontseries{m}\se...
...family{cwM0}\fontseries{m}\selectfont \char 1}} \\
\end{array}\end{displaymath}

¸Ñªk2
¥Ñ¡u®t©M¤À²z½×¡v¥iª¾ Sn = an3 + bn2 + cn + d¡A¨ä¤¤ a,b,c,d ¬O¦³²z¼Æ¡C

²{¦b¥u­n¨D¥X a,b,c,d ´N¥i¥H¡C

\begin{displaymath}
\begin{array}{rcl}
1&=S_1=&a+b+c+d \\
5&=S_2=&8a+4b+2c+d \\
14&=S_3=&27a+9b+3c+d \\
30&=S_4=&64a+16b+4c+d \\
\end{array}\end{displaymath}

±o $a=\frac{1}{3}$¡A$b=\frac{1}{2}$¡A$c=\frac{1}{6}$¡Ad=0¡C

°Q½×¡G
1.¦b¸Ñªk1¤¤¡A¤]¥i¥H¥Ñ¤½¦¡ (k+1)3 -(k-1)3 = 6 k+2 ¨D±o¡C

2.¸Ñªk2¬O©Ò¿×¡u¥¼©w«Y¼Æªk¡v¡A§Ú­Ì¥u­n¨D¥X¨º¨Ç¥¼ª¾ªº«Y¼Æ a,b,c,d §Y¥i¡C

¨ÒÃD2
¨D $S_n=1^3+2^3+\cdots +n^3$¡C

¸Ñªk¡G
¥Ñ (k+1)4-(k-1)4=8k3+8k¡A±o

\begin{displaymath}
\begin{array}{rrcl}
&2^4-0&=&8\cdot 1^3+8\cdot 1 \\
&3^4-1^...
...4-1^4&=&8(1^3+2^3+\cdots +n^3)+8(1+2+\cdots +n) \\
\end{array}\end{displaymath}


\begin{displaymath}
\begin{array}{rcl}
\mbox{{\fontfamily{cwM1}\fontseries{m}\se...
...family{cwM0}\fontseries{m}\selectfont \char 1}} \\
\end{array}\end{displaymath}

°Q½×¡G
½Ð¥Î Sn = an4 + bn3 + cn2 + dn + e¡A¨D a,b,c,d,e¡C

¨ÒÃD3
¨D $S_n=1+2+4+8+\cdots +2^{n-1}$¡C

¸Ñªk¡G

\begin{displaymath}
\begin{array}{rcl}
1+S_n&=&1+1+2+4+8+\cdots +2^{n-1} \\
&=&...
...&8+8+\cdots +2^{n-1} \\
&=&2^{n-1}+2^{n-1}=2^n \\
\end{array}\end{displaymath}

¬G Sn=2n-1¡C

°Q½×¡G
Sn-2Sn=1-2n¡A¦P¾Ç¯à¤£¯à»¡©ú­ì¦]¡H

   
 
²ßÃD4

1.±N´`Àô¤p¼Æ0.317317317¡K¤Æ¦¨¤À¼Æ¡C
2.¨D2+$2\cdot 3$+$2\cdot 3^2$+$2\cdot 3^3$+¡K+$2\cdot 3^n$¤§©M¡C
3.¨D$1\cdot 2^2$+$2\cdot 3^2$+$3\cdot 4^2$+¡K+(n-1)n2¤§©M¡C¡]´£¥Ü¡G¤@¯ë¶µ(k-1)k2=k3-k2¡C¡^
4.¨D $1\cdot 2\cdot 3$+ $2\cdot 3\cdot 4$+¡K+n(n+1)(n+2)¤§©M¡C
5.¨D $\frac{1}{1\cdot 2\cdot 3}$+ $\frac{1}{2\cdot 3\cdot 4}$+¡K+ $\frac{1}{n(n+1)(n+2)}$¤§©M¡C
6.¨D $\cos\frac{\pi}{17}\cos\frac{2\pi}{17}\cos\frac{4\pi}{17}\cos\frac{8\pi}{17}$¤§­È¡C¡]´£¥Ü¡G¦Ò¼{ $\sin\frac{\pi}{17}\cos\frac{\pi}{17}\cos\frac{2\pi}{17}\cos\frac{4\pi}{17}\cos\frac{8\pi}{17}$¡C¡^

   
 
2.6 ¤£¥²¥Î¼Æ¾ÇÂk¯Çªkªº¨Ò¤l

¦P¾Ç­Ì°µ§¹¤F¥H¤W¤­¸`ªº¨ÒÃD»P²ßÃD¡A·|¤£·|¡uÂk¯Ç¡v¥X¦p¤Uªº¤f³Z¡G¡u¬Ý¨ì§t¦³nªº«íµ¥¦¡©Î¤£µ¥¦¡ÃÒ©úÃD¡A¥Î¼Æ¾ÇÂk¯Çªk¡v¡H

¦pªG§A³o»ò°g«H¼Æ¾ÇÂk¯Çªk¡A¨º»ò½Ð¬Ý¥H¤Uªº¨Ò¤l¡C§A¥Î¼Æ¾ÇÂk¯ÇªkÃÒ©ú¡A§Ú¥Î§Oªº¤èªkÃÒ©ú¡A§Ú­Ì¤ñÁɤ@¤U¡A¤ñ¤ñ¬Ý½Ö°µªº§Ö¡A°µªº¥©¡C

¨ÒÃD1
ÃÒ©ú $\frac{1}{\sqrt{1}} +\frac{1}{\sqrt{2}} +\cdots +\frac{1}{\sqrt{n}}\geq\sqrt{n}$¡C

ÃÒ©ú¡G
¥Î°f±ÀªkÃÒ©ú¡C

$\frac{1}{\sqrt{1}} +\frac{1}{\sqrt{2}} +\cdots +\frac{1}{\sqrt{n}}\geq\sqrt{n}$

$\Leftrightarrow$ $\frac{1}{\sqrt{n}}$ + $\frac{1}{\sqrt{2n}}$+ $\frac{1}{\sqrt{3n}}$+¡K+ $\frac{1}{\sqrt{n(n-1)}}$+ $\frac{1}{\sqrt{n^2}}$$\geq$1¡C

¦ý¬O $\frac{1}{\sqrt{n}}\geq\frac{1}{\sqrt{n^2}}$¡A $\frac{1}{\sqrt{2n}}\geq\frac{1}{\sqrt{n^2}}$¡A $\frac{1}{\sqrt{3n}}\geq\frac{1}{\sqrt{n^2}}$¡A¡K¡A $\frac{1}{\sqrt{n(n-1)}}\geq\frac{1}{\sqrt{n^2}}$

¬G $\frac{1}{\sqrt{n}}$ + $\frac{1}{\sqrt{2n}}$+¡K+ $\frac{1}{\sqrt{n(n-1)}}$+ $\frac{1}{\sqrt{n^2}}$$\geq$ $\frac{n}{\sqrt{n^2}}$=1¡C±oÃÒ

¨ÒÃD2
¸ÕÃÒ $n^n<(1\cdot 2\cdots n)^2<(\frac{n+1}{2})^{2n}$¡A¨ä¤¤$n\geq 3$¡C

ÃÒ©ú¡G
¦]¬°

\begin{displaymath}
\begin{array}{rcl}
1\cdot n&\geq&n \\
2\cdot (n-1)&\geq&n \...
...-1)(n-k)\geq n \\
&\vdots& \\
n\cdot 1&\geq&n \\
\end{array}\end{displaymath}

¬G±o $(1\cdot 2\cdots n)^2>n^n$

¥t¤@¤è­±¡A¦]¬°

\begin{eqnarray*}
&&(\frac{n+1}{2} )^2-k(n-k+1)\\
&=&\{\frac{k+(n-k+1)}{2}\}^2-k(n-k+1)\\
&=&\{\frac{k-(n-k+1)}{2}\}^2
\geq 0
\end{eqnarray*}


±o

\begin{displaymath}
\begin{array}{rcl}
1\cdot n&\leq&(\frac{n+1}{2} )^2 \\
2\cd...
...
&\vdots& \\
n\cdot 1&\leq&(\frac{n+1}{2} )^2 \\
\end{array}\end{displaymath}

¬G±o $(1\cdot 2\cdots n)^2<(\frac{n+1}{2} )^{2n}$

¨ÒÃD3
¸ÕÃÒ

\begin{displaymath}
\frac{1}{2\sqrt{n}} < \frac{1}{2}\cdot\frac{3}{4}\cdots\frac{2n-1}{2n}
< \frac{1}{\sqrt{2n+1}}
\end{displaymath}

ÃÒ©ú¡G

\begin{eqnarray*}
&&(\frac{1}{2}\cdot\frac{3}{4}\cdots\frac{2n-1}{2n} )^2\cdot (...
...t\frac{2n+1}{2n} )\\
&\leq&\frac{3}{4}\cdot 1\cdot 1\cdots 1 <1
\end{eqnarray*}


¬G±o

\begin{displaymath}(\frac{1}{2}\cdot\frac{3}{4}\cdots\frac{2n-1}{2n} )^2\cdot (2n+1)<1\end{displaymath}

±o

\begin{displaymath}\frac{1}{2}\cdot\frac{3}{4}\cdots\frac{2n-1}{2n} <\frac{1}{\sqrt{2n+1}}\end{displaymath}

¥t¤@¤è­±¡A

\begin{eqnarray*}
&&4n\cdot (\frac{1}{2}\cdot\frac{3}{4}\cdots\frac{2n-1}{2n} )^...
...ts(\frac{2n-1}{2n-2}\cdot\frac{2n-1}{2n})\\
&>&1\cdot1\cdots1=1
\end{eqnarray*}


¬G±o

\begin{displaymath}4n\cdot (\frac{1}{2}\cdot\frac{3}{4}\cdots\frac{2n-1}{2n} )^2>1\end{displaymath}

±o

\begin{displaymath}\frac{1}{2\sqrt{n}} <\frac{1}{2}\cdot\frac{3}{4}\cdots\frac{2n-1}{2n}\end{displaymath}

¨ÒÃD4
¸ÕÃÒ

\begin{displaymath}
2(\sqrt{n+1} -\sqrt{n}) < \frac{1}{\sqrt{n}} < 2(\sqrt{n}-\sqrt{n-1})
\end{displaymath}

ÃÒ©ú¡G

\begin{eqnarray*}
2(\sqrt{n+1} -\sqrt{n} )
&=&\frac{2(\sqrt{n+1} -\sqrt{n} )(\sq...
...} +\sqrt{n-1}} >\frac{2}{\sqrt{n} +\sqrt{n}} =\frac{1}{\sqrt{n}}
\end{eqnarray*}


[°Q½×¡G] ¹L¥÷°g«H¼Æ¾ÇÂk¯Çªkªº¦P¾ÇµL½×¦p¦ó³£À³¸Ó¥Î¼Æ¾ÇÂk¯Çªk¨Ó¸Ñ¸Ñ³o­ÓÃD¥Ø¡C¦P¾Ç¥i¥H§Q¥Î³o­ÓÃD¥Ø¡AÃÒ©ú $[\sum_{n=1}^{10000}\frac{1}{\sqrt{n}} ]=198$¡A¨ä¤¤ Gauss ²Å¸¹ [x] ªí¥Ü¥¿¹ê¼Æ x ªº¾ã¼Æ³¡¤À¡C

   

¤W­¶¡@1¢x2¢x3¢x4¢x5¢x6¡@¦¸­¶

¦^­¶­º
 
¡]­Y¦³«ü¥¿¡BºÃ°Ý¡K¡K¡A¥i¥H¦b¦¹ ¯d¨¥ ©Î ¼g«H µ¹§Ú­Ì¡C¡^
EpisteMath

EpisteMath (c) 2000 ¤¤¥¡¬ã¨s°|¼Æ¾Ç©Ò¡B¥x¤j¼Æ¾Ç¨t
¦Uºô­¶¤å³¹¤º®e¤§µÛ§@Åv¬°­ìµÛ§@¤H©Ò¦³


½s¿è¡G³¯¤å¬O ³Ì«á­×§ï¤é´Á¡G4/30/2002