¤W­¶¡@1¢x2¢x3¢x4¢x5¢x6¡@¦¸­¶

¼Æªº·§©À ¡]²Ä 4 ­¶¡^

±d©ú©÷

 


­º­¶ | ·j´M

¡D­ì¸ü©ó¼Æ¾Ç¶Ç¼½²Ä¤»¨÷²Ä¥|´Á¡B²Ä¤C¨÷²Ä¤@´Á
¡D§@ªÌ·í®É¥ô±Ð©ó¥x¤j¼Æ¾Ç¨t

¡EµùÄÀ
¡E¹ï¥~·j´MÃöÁä¦r
 
4.¹ê¼Æ¨t

¬O¤£¬O¥ô·N¦³­­½u¬qªºªø«×³£¬O¦³²z¼Æ¡H

Ãäªø¬°1ªº¥¿¤è§Îªº¹ï¨¤½uªºªø«×¬O$\sqrt{2}$ ¡C$\sqrt{2}$ ¬O¤£¬O¦³²z¼Æ¡H

¨ÒÃD¡G
¸ÕÃÒ $\sqrt{2}$ ¤£¬O¦³²z¼Æ¡C

ÃÒ©ú¡G
¥ÎÂkÂÕªkÃÒ©ú¡C

°²³]$\sqrt{2}$¬O¦³²z¼Æ¡C¦]¦¹ $\sqrt{2} =\frac{q}{p}$ ¡A¨ä¤¤p»Pq¬O¥¿¾ã¼Æ¡C§Ú­Ì¥i¥H§âp»Pqªº¤½¦]¼Æ¬ù±¼¡A©Ò¥H¤£§«°²³]p»Pqªº³Ì¤j¤½¦]¼Æ¬O1¡C

¦]¬° $\sqrt{2} =\frac{q}{p}$ ¡A¬G±o2= $\frac{q^2}{p^2}$ ¡C¦]¦¹q2¬O°¸¼Æ¡C¦pªGq¬O©_¼Æ¡A«hq2¤]¬O©_¼Æ¡]²z¥Ñ¡G­Yq=2n+1 ¡An¬O¾ã¼Æ¡A«hq2=(2n+1)2=2(2n2+2n)+1 ¬O©_¼Æ¡^¡C¦]¦¹q¬O°¸¼Æ¡Aq=2n¡An¬O¥¿¾ã¼Æ¡C

(2n)2=q2=2p2¡C¦]¦¹¡Ap2=2n2 ¡A±op2¬O°¸¼Æ¡A¬Gp¬O°¸¼Æ¡C

p»Pq³£¬O°¸¼Æ¡A«h¨ä³Ì¤j¤½¦]¼Æ¤£¥i¯à¬O1¡C»P³Ì¥ýªº°²³]¹H¤Ï¡C±oÃÒ$\sqrt{2}$¤£¬O¦³²z¼Æ¡C

±q¥H¤Wªº°Q½×¡A¥i¥Hµo²{¡GÁöµM¦³²z¼Æ¸Y±Kªº¤À§G¦b¼Æ¶b¤W¡A¦ý¬O¨Ã¤£¬O¼Æ¶b¤Wªº¨C¤@­ÓÂI³£¥i¥H¥Î¦³²z¼Æªí¥Ü¡C

ÅãµM¡A¦b¹ê»ÚÀ³¥Î¤Wªº¦³²z¼Æ¨t¬O¤£°÷¥Îªº¡C§Ú­Ì­n¥[¶i¤@¨Ç·sªº¼Æ¡A¦p $\sqrt{2}$¡A $\sqrt{3}$¡A $\sqrt{5}$¡A $\sqrt[3]{2}$¡A $\sqrt[5]{\sqrt[7]{2} +\sqrt[4]{3}}$¡A§â¦³²z¼ÆÂX¥R¦¨¹ê¼Æ¡]the real numbers¡^¡C¤£¬O¦³²z¼Æªº¹ê¼Æ´N¥s°µµL²z¼Æ¡]the irrational numbers¡^¡C

¦P¾Ç¥i¯à·|´£¥X¤@¨Ç°ÝÃD¡G

°ÝÃD1.¹ê¼Æ¨t¬O«ç¼Ë«Ø³y¥X¨Óªº¡H
°ÝÃD2.µL²z¼Æ¬O¤£¬O³£¥i¥H¥Î¶}¤è±o¨ìªº¡A¹³$\sqrt{2}$¡A$\sqrt[3]{2}$¡A $\sqrt[5]{\sqrt[7]{2} +\sqrt[4]{3}}$¡H
°ÝÃD3.¬°¤°»ò­n§â¹ê¼Æ°Ï¤À¦¨¦³²z¼Æ©MµL²z¼Æ¡HÃÒ©ú$\sqrt{2}$¤£¬O¦³²z¼Æ¨s³º¦³¤°»ò¥Î³B¡H
°ÝÃD4.¬O¤£¬O¼Æ¶b¤W©Ò¦³ªºÂI³£¥i¥H¥Î¹ê¼Æªí¥Ü¡H

¥H¤W¥|­Ó°ÝÃD¨ä¹ê³£¤£¬O«Ü®e©ö¦^µªªº¡C§Ú­Ì¸ÑÄÀ¦p¤U¡C

²Ä¤@­Ó°ÝÃD¡CÄY®æªº«Ø³y¹ê¼Æ¨t¬O¤Q¤E¥@¬ö¤C¤Q¦~¥N¤~§¹¦¨ªº¡A³o­nÂk¥\©ó C. Méary¡]1835 - 1911¡^¡A G. Cantor¡]1845 - 1918¡^¡A H. E. Heine¡A R. Dedekind¡]1831 - 1916¡^¡A K. Weierstrass¡]1815 - 1897¡^¡C¦P¾Ç¥i¯à·|»¡¡G¡u§Ú­Ì¥u­n³W©w¹ê¼Æ¨t¬O¼Æ¶b¤W©Ò¦³ªºÂI¡A³o¼Ë´N³y¥X¹ê¼Æ¨t¤F¡C¡v¥Î³o¤èªk©w¸q¥X¨Óªº¹ê¼Æ¨t²z½×¦Ü¤Ö¦³¨â­Ó¯ÊÂI¡G¤@¡B¤£ÄY®æ¡Aªí­±¤W§Ú­Ì¦ü¥G«Ü¼ô±x¼Æ¶b¤WªºÂI¡A¨ä¹ê¤£µM¡C¨Ò¦p¡A¼Æ¶b¤W³o­ÓÂI©M¨º­ÓÂI¨s³º¦³¤°»ò¦@¦Pªº¦a¤è©M¤£¦Pªº¦a¤è¡A¦p1¡A $\sqrt{2}$¡A £k¡A§Ú­Ì¨Ã¤£²M·¡¡C¤S¦p¡A¼Æ¶b¤W¬Y¨ÇÂI¶°¦X¡A¦p [0¡A1]¡B¡] $\frac{1}{3}$¡A $\frac{2}{3}$¡^¡B¡] $\frac{1}{9}$¡A $\frac{2}{9}$¡^$\cup$¡] $\frac{7}{9}$¡A $\frac{8}{9}$¡^¡B ¡K¡A¦³¤°»ò´X¦ó©Ê½è¨Ã¤£¬O¤@¥ØÁAµMªº¡C¤G¡B§Ú­Ì¤£®e©ö¥Ñ¦¹±o¨ì¹ê¼Æ¨tªº°ò¥»ªº©Ê½è¡A ¦p§¹³Æ©Ê¡]completeness¡^¡C¦]¦¹¤Q¤E¥@¬ö«Ø³y¹ê¼Æ¨tªº¤èªk¡A ¬O¥Î¾ã¼Æ©M¦³²z¼Æ°µ°ò¦¡A¹B¥Î¬Y¨Ç¬Û·íºë§®ªº¤âªk«Ø¥ßªº¡C¦³¿³½ìªº¦P¾Ç¥i¥H°Ñ¦Ò¥»¤åªºªþ¿ý¡A ¡u¦p¦ó«Ø³y¹ê¼Æ¨t¡H¡v

²Ä¤G­Ó°ÝÃDªºµª®×¬O§_©wªº¡C¨Ã¤£¬O©Ò¦³ªºµL²z¼Æ³£¬O¥Î¶}¤è±o¨ìªº¡C¹ê¼Æ¥i¥H¤À¦¨¨âºØ¡A ¤@ºØ¬O¥N¼Æ¼Æ¡]the algebraic numbers¡^¡A ¤@ºØ¬O¶W¶V¼Æ¡]the transcendental numbers¡^¡C

¤@­Ó¹ê¼Æ £\ ¬O¥N¼Æ¼Æ¡A¦pªG

\begin{displaymath}a_n\alpha^n+a_{n-1}\alpha^{n-1}+\cdots +a_1\alpha +a_0=0\end{displaymath}

¨ä¤¤ ai ¬O¾ã¼Æ¥B$a_n\neq 0$¡C

¤@­Ó¹ê¼Æ £\ ¬O¶W¶V¼Æ¡A¦pªG

\begin{displaymath}a_n\alpha^n+a_{n-1}\alpha^{n-1}+\cdots +a_1\alpha +a_0=0\end{displaymath}

¨ä¤¤ai¬O¾ã¼Æ¡A«h¥²©w¬Oa0=a1=¡K=an=0¡C

¶ê©P²v£k¬O¶W¶V¼Æ¡A³o¬O¤@­Ó¬Û·í§xÃøªº©w²z¡A³o­Ó©w²z¨ä¹ê¬O¥j§Æþ´X¦ó§@¹Ïªº¤T¤jÃøÃD¤§¤@ 3 ¡C$\sqrt{2}$, $\sqrt[3]{2}$¡A©Î¬O¥ô·N¦³²z¼Æ³£¬O¥N¼Æ¼Æ¡C

¦ý¬O¨Ã¤£¬O©Ò¦³ªº¥N¼Æ¼Æ³£¥i¥H¥Î¶}¤è±o¨ì¡C¨Ò¦p¡Ax5-4x+2=0 ªº®Ú³£¬O¥N¼Æ¼Æ¡A¦ý¬O«o¤£¯à¥Î¶}¤èªº¤èªk±o¨ì¡C­nÃÒ©ú³o¥ó¨Æ¡A ¥²¶·­É§U Galois ²z½×¡CGalois ²z½×¬O¤@ªù°ª²`ªº¼Æ¾Ç²z½×¡A¬O¤Q¤E¥@¬öªk°ê¤Ñ¤~¼Æ¾Ç®aÉvariste Galois¡]1811-1832¡^³Ð³yªº 4 ¡C

¥Î¶}¤è±o¨ìªºµL²z¼Æ¡A¦bµL²z¼ÆùØ­±¡]¬Æ¦Ü¥N¼Æ¼ÆùØ­±¡^©Ò¦ûªº¤ñ¨Ò¹ê¦b«D±`¤p¡C

²Ä¤T­Ó°ÝÃD¡A¬°¤°»ò­n§â¹ê¼Æ°Ï¤À¦¨¦³²z¼Æ©MµL²z¼Æ¡H³o¨ä¹ê¬O¦è¤è¼Æ¾Çµo®iªº¹Lµ{©Ò²£¥Íªº°ÝÃD¡C §Æþ¤H«D±`±j½Õ¾ã¼Æªº­«­n©Ê¡C©Ò¥H¦³²z¼Æ¤]¦ÛµMªºÅܦ¨³Ì°ò¥»ªº¼Æ¾Ç·§©À¡C¦]¦¹¡A ·í§Æþ¤H§ä¨ì¤@­ÓµL²z¼Æ®É¡A¥L­Ìªº«ä·Q¬É²£¥Í¤F¤@¦¸«D±`¼@¯Pªº²V¶Ã¡C¤Ï¹L¨Ó¬Ý¤¤°ê¼Æ¾Çªºµo®i¡A¹ï¤¤°ê¤H¦Ó¨¥¡A¼Æ´N¬O¾ã¼Æ¦Aªþ¤W¤p¼Æ¡A¤p¼ÆÂI«á­±ªº¼Æ¥i¥HµL½aµLºÉªºÂI¤U¥h¡C©Ò¥H¹ï©ó¥j¥Nªº¤¤°ê¼Æ¾Ç®a¡A$\sqrt{2}$¬O¤£¬O¦³²z¼Æ¡A¨Ã¤£¬O¤@­Ó¤£±o¤Fªº°ÝÃD¡C¥L­Ì·Q³£¨S·Q¹L³o°ÝÃD¡C

²Ä¥|­Ó°ÝÃDªºµª®×¨S¦³¤Hª¾¹D¡C¦]¦¹ Georg Cantor¡]1845-1918¡^¦b1872¦~´£¥X¤@­Ó¸Ñ¨Mªº¤èªk¡A§â¥¦·í§@¬O¹ïªº¡A¤£¥²¥hÃÒ©ú¡A³o´N¬O¥H¤Uªº

Cantor ¤½³]¡G©Ò¦³ªº¹ê¼Æ©M¼Æ¶b¤WªºÂI¦¨¤@¹ï¤@ªº¹ïÀ³¡C

¹³¦³²z¼Æ¤@¼Ë¡A¹ê¼Æ¤§¶¡¥i¥H§@¥[¡B´î¡B­¼¡B°£¡]¤£¹L0¤£¯à§@°£¼Æ¡^¡C¥ô·N¨â­Ó¹ê¼Æ¥i¥H¤ñ¸û¤j¤p¡C

§Ú­Ì¤¶²Ð¤@­Ó·sªº·§©À¡Gµ´¹ï­È¡C¦b¥H¤U¹ê¼Æ¶b¤¤¡AP ÂI¥Nªí 3¡AQ ÂI¥Nªí -3¡C



OP»POQ¦³¤°»ò¤£¦P©O¡HOPªº¤è¦V¬O¦V¥kªº¡A¦ÓOQªº¤è¦V¬O¦V¥ªªº¡C

OP»POQ¦³¤°»ò¦@¦PÂI©O¡H¥L­Ìªºªø«×³£¬O3¡C§Ú­Ì³W©w3ªºµ´¹ï­È¬O3¡A-3 ªºµ´¹ï­È¤]¬O3¡A°O°µ

\begin{displaymath}\vert 3\vert=3\, , \vert-3\vert=3\end{displaymath}

¤@¯ëªº»¡¡A¦pªGa¬O¥ô·N¹ê¼Æ¡A©w¸q

\begin{displaymath}\vert a\vert=
\left\{
\begin{array}{rl}
a&\mbox{, {\fontfamil...
...fontseries{m}\selectfont \char 74}}a< 0 \\
\end{array}\right.
\end{displaymath}

|a|¥s°µaªºµ´¹ï­È¡C

|a|«í¬°¥¿¼Æ©Î¹s¡C­YRÂI¬O¼Æ¶b¤W¥NªíaªºÂI¡A«h|a|¬OOR½u¬qªºªø«×¡C

µ´¹ï­È¦³¤U¦C­«­n©Ê½è¡G

1. $\vert ab\vert=\vert a\vert\cdot \vert b\vert$¡F­Y$a\neq 0$¡A $\vert\frac{b}{a} \vert$= $\frac{\vert b\vert}{\vert a\vert}$¡C
2. $-\vert a\vert\leq a\leq \vert a\vert$¡C
3.­Ya>0¡A«h|x|<a $\Leftrightarrow$-a<x<a¡A$\vert x\vert\geq a$ $\Leftrightarrow$$x\geq a$©Î$x\leq -a$¡C
4.¡]¤T¨¤¤£µ¥¦¡¡^

\begin{eqnarray*}
\vert a+b\vert&\leq&\vert a\vert+\vert b\vert\mbox{,} \\
\ver...
...t\mbox{{\fontfamily{cwM0}\fontseries{m}\selectfont \char 1}} \\
\end{eqnarray*}


5.­Ya¬°¥ô·N¹ê¼Æ¡A«h $\sqrt{a^2} =\vert a\vert$¡C

ÃÒ©ú¡G
1. $\vert ab\vert=\vert a\vert\cdot \vert b\vert$¡C

­Ya¡Ab¦³¤@¬°0¡A«h¥ª=¥k=0¡C¨ä¦¸¨Ìa>0©Îa<0¡A¥H¤Îb>0©Îb<0¡A¦@¥|ºØ±¡§Î¡A¤À§OÅçÃÒ¡C

¦P²z¥iÃÒ $\vert\frac{b}{a} \vert$= $\frac{\vert b\vert}{\vert a\vert}$¡A­Y$a\neq 0$¡C

2.ÃÒ©ú¥ç¤Àa>0¡Aa=0¡Aa<0¬°¤§¡C
3.³]|x|<a¡A«h¦] $-\vert x\vert \leq x \leq \vert x\vert$¡A¥H¤Î |x|<a¡A-a<-|x|¡A±o -a < x < a¡C

¤Ï¤§¡A­Y -a<x<a¡A«h­Y $x\geq 0$¡Aa>x=|x|¡A­Y x<0¡A¥Ñ -a<x ±o a>-x=|x|¡A¬G±o |x|<a¡C

4.¦]

\begin{displaymath}-\vert a\vert\leq a\leq \vert a\vert\end{displaymath}


\begin{displaymath}-\vert b\vert\leq b\leq \vert b\vert\end{displaymath}

¨â¦¡¬Û¥[¡A

\begin{displaymath}-(\vert a\vert+\vert b\vert)\leq a+b\leq(\vert a\vert+\vert b\vert)\end{displaymath}

¥Ñ©Ê½è3¡A

\begin{displaymath}
\vert a+b\vert\leq \vert a\vert+\vert b\vert \eqno{(1)}
\end{displaymath}

§âb¥Î-b¥N¤J(1)¦¡±o

\begin{displaymath}\vert a-b\vert\leq \vert a\vert+\vert b\vert\end{displaymath}

¦b(1)¦¡¤¤¡A¥Î(a-b)¤Îb¥N´Àa¤Îb¡A±o $\vert a-b\vert+\vert b\vert\geq \vert a\vert$§Y

\begin{displaymath}\vert a-b\vert\geq \vert a\vert-\vert b\vert\end{displaymath}

¦P²z¥i±o¡A $\vert b-a\vert\geq \vert b\vert-\vert a\vert$¡A¦X¨Ö¤W¨â¦¡¡A¥Ñ©Ê½è3

\begin{displaymath}\vert\vert a\vert-\vert b\vert\vert\leq \vert a-b\vert\end{displaymath}

5.«ö³W©w¡A­Yx>0¡A$\sqrt{x}$ªí¥¿ªº¥­¤è®Ú¡A¬G­Y$a\neq 0$¡A$\sqrt{a^2}$ªº¥¿¥­¤è®Ú¬°|a|¡C¬G­Ya¬°¹ê¼Æ«í¦³

\begin{displaymath}\sqrt{a^2} =\vert a\vert\end{displaymath}

   
 
²ßÃD6

1.¹ï©ó¥ô·Nn­Ó¹ê¼Æ a1,a2,¡K,an¡A¸ÕÃÒ

\begin{displaymath}
\vert a_1+a_2+ \cdots +a_n\vert \leq \vert a_1\vert + \vert a_2\vert + \cdots + \vert a_n\vert
\end{displaymath}

2.¸Õ¨D|x2-2x+3|¡A|(x-1)(2-x)|¡A|-1-x2|¡C
3.­Yx¬O¥ô·N¹ê¼Æ¡A¸ÕÃÒ

\begin{displaymath}\vert x-1\vert+\vert x-2\vert+\vert x-\sqrt{5} \vert\geq \sqrt{5} -1\mbox{{\fontfamily{cwM0}\fontseries{m}\selectfont \char 1}}\end{displaymath}

4.¸ÕÃÒ$\sqrt{3}$¤£¬O¦³²z¼Æ¡C
5.¸ÕÃÒ $\frac{1}{10} + \frac{1}{10^{2!}} + \frac{1}{10^{3!}} + \frac{1}{10^{4!}} + \cdots + \frac{1}{10^{n!}} + \cdots$¡A¤£¬O¦³²z¼Æ¡A¨ä¤¤ $n! =1 \cdot 2 \cdot 3 \cdots n$¡C ¡]³o­Ó¼Æ¨ä¹ê¬O¶W¶V¼Æ¡A¨äÃÒ©ú¤w¸g¶W¥X°ª¤¤½d³ò¡C¡^
6.¸ÕÃÒ $\sqrt[7]{\sqrt[3]{2} +\sqrt{3}}$ ¬O¥N¼Æ¼Æ¡C
7.­Y £\ º¡¨¬ $a_n\alpha^n + a_{n-1}\alpha^{n-1} + \cdots + a_1\alpha + a_0 =0$¡A¨ä¤¤ ai ¬O¦³²z¼Æ¡A¥B$a_n\neq 0$¡C¸ÕÃÒ £\ ¬O¥N¼Æ¼Æ¡C
8.¦pªG§Ú­Ì§â¥¿¦³²z¼Æ±Æ¦¨¥H¤U¦¸§Ç

\begin{displaymath}
\frac{1}{1} ,\frac{2}{1} ,\frac{1}{2} ,\frac{3}{1} ,\frac{2}...
...} ,\frac{2}{3} ,\frac{1}{4} ,
\frac{5}{1} ,\frac{4}{2} ,\cdots
\end{displaymath}

¸ÕÃÒ $\frac{q}{p}$ ¬O¦b²Ä $\frac{1}{2}$(p+q-1)(p+q-2)+q ¶µ¥X²{¡C
9.(1)­Y¦³²z¼Æ$\frac{q}{p}$(p¡Aq¬O¤¬½è¾ã¼Æ¡A$p\neq 0$)¬O¤èµ{¦¡anxn+ an-1xn-1+ ¡K+a0=0ªº®Ú¡A¨ä¤¤ai¬O¾ã¼Æ¡A$a_n\neq 0$¡C¸ÕÃÒp¥i¾ã°£an¡Aq¥i¾ã°£a0¡C

(2)¸ÕÃÒ $\sqrt{2} +\sqrt[3]{2}$»P $\sqrt{3} +\sqrt[3]{2}$³£¤£¬O¦³²z¼Æ¡C

10.(1)¸ÕÃÒ¥ô¦ó¨â­Ó¬Û²§ªº¦³²z¼Æ¤§¶¡¦Ü¤Ö¦³¤@­ÓµL²z¼Æ¡C¡]´£¥Ü¡G­Yr¬O¥¿¦³²z¼Æ¡A«h0 $<\frac{r}{2}\sqrt{2}$<r¡A¥B $\frac{r}{2}\sqrt{2}$¬OµL²z¼Æ¡C¡^

(2)¸ÕÃÒ¥ô¦ó¨â­Ó¬Û²§ªº¦³²z¼Æ¤§¶¡¦³µL½a¦h­ÓµL²z¼Æ¡C

11.(1)¸ÕÃÒ¥ô·Nªº¦³²z¼Æ»PµL²z¼Æ¤§¶¡¦³µL½a¦h­Ó¦³²z¼Æ¡A¤]¦³µL½a¦h­ÓµL²z¼Æ¡C¡]´£¥Ü¡G³]r<s¡Ar¬O¦³²z¼Æ¡As¬OµL²z¼Æ¡A§Ú­Ì¥u­n¦br»Ps¤§¶¡§ä­Ó¦³²z¼Æ´N°÷¤F¡C¥ÑCantor¤½³]¡A$\frac{1}{s-r}$¬O¬Y­Ó¦³­­½u¬qªºªø«×¡A¬G$\frac{1}{s-r}$<n¨ä¤¤n¬O¬Y­Ó¥¿¾ã¼Æ¡C¦]¦¹$\frac{1}{n}$<s-r¡Ar $<r+\frac{1}{n}$<s¡C¡^

(2)¸ÕÃÒ¥ô¤@¨â­Ó¬Û²§ªºµL²z¼Æ¤§¶¡¦³µL½a¦h­Ó¦³²z¼Æ¡A¤]¦³µL½a¦h­ÓµL²z¼Æ¡C¡]´£¥Ü¡G³]r<s¡Ar»Ps³£¬OµL²z¼Æ¡C¥ý§ä¤@­Ó¥¿¾ã¼Æn¨Ï±o$\frac{1}{n}$<s-r¡C¦]¦¹ns-nr>1¡A©Ò¥Hns»Pnr¤§¶¡¥²¦³¤@­Ó¾ã¼Æm¡C¬Gnr<m<ns¡A±or$<\frac{m}{n}$<s¡C¡^

12.¡]Archimedes©Ê½è¡^­Yx¡Ay¬O¥ô·N¨â­Ó¹ê¼Æ¡A¥Bx>0¸ÕÃÒ¡G¥²¥i§ä¨ì¤@­Ó¥¿¾ã¼Æn¨Ï±onx>y¡C

   

¤W­¶¡@1¢x2¢x3¢x4¢x5¢x6¡@¦¸­¶

¦^­¶­º
 
¡]­Y¦³«ü¥¿¡BºÃ°Ý¡K¡K¡A¥i¥H¦b¦¹ ¯d¨¥ ©Î ¼g«H µ¹§Ú­Ì¡C¡^
EpisteMath

EpisteMath (c) 2000 ¤¤¥¡¬ã¨s°|¼Æ¾Ç©Ò¡B¥x¤j¼Æ¾Ç¨t
¦Uºô­¶¤å³¹¤º®e¤§µÛ§@Åv¬°­ìµÛ§@¤H©Ò¦³


½s¿è¡G³¯¤å¬O ³Ì«á­×§ï¤é´Á¡G4/30/2002