¤W­¶¡@1¢x2¢x3¢x4¢x5¢x6¢x7¢x8¢x9¢x10¡@¦¸­¶

§Aª¾¹D¶W¶V¼Æ¶Ü¡H ¡]²Ä 8 ­¶¡^

ªLÁo·½

 

­º­¶ | ·j´M

¡D­ì¸ü©ó¼Æ¾Ç¶Ç¼½²Ä¤G¨÷²Ä¤@´Á
¡D§@ªÌ·í®É¥ô±Ð©ó²M¤j¼Æ¾Ç¨t

¡EµùÄÀ
¡E¹ï¥~·j´MÃöÁä¦r
 
¨¯

Weierstrass ¬O¤ÀªRªº»ó¯ª»P­«¦Ú¤§¤@¡A³\¦h¶W¶V©Ê²z½×¸g¥Lªº¤âÅܱo§ó§¹¬ü¡A§ó©ö©ó¬°¤H©ÒÁA¸Ñ¡A§óÅã¥X¨ä­«ÂI¤§©Ò¦b¡A¤ñ¦p§Ú­Ì¤µ¤é¦b¤@¯ë±Ð¬ì®Ñ¤W©Ò¬Ý¨ìªº¦³Ãö e ©M £k ªº¶W¶V©ÊªºÃÒ©ú¦³¨Ç´N¬O Weierstrass ªº³Ç§@¡C°£¦¹¤§¥~¡A¥L¤]¦³¤U¦C¿W³Ðªº¦¨ªG¡]µoªí©ó1855¦~¡^¡G

©w²z¡G ³] $\alpha_1, \alpha_2$,¡K,$\alpha_n$ ¬°¬Û²§¥N¼Æ¼Æ¡A«h $e^{\alpha_1},e^{\alpha_2}$,¡K,$e^{\alpha_n}$ ¦bÅé A ¤W¬O½u©ÊµLÃöªº¡C

¦¹©w²z²[»\¤F³\¦h¥H«eªºµ²ªG©ó¤@Äl¡G

(1) ¨ú $\alpha_1=0$, $\alpha_2=\alpha$¡A «h $e^{\alpha_1}=e^0$, $e^{\alpha_2}=e^{\alpha}$ ¥Ñ¦¹©w²z§Y±o 1 »P $e^\alpha$ ¦bÅé A ¤W½u©ÊµLÃö¡A¤]´N¬O»¡ $e^\alpha$ ¬O¶W¶V¼Æ¡A¦¹§Y©°¸`(1)¡C¯S§O¦a¡A¨ú $\alpha=1$ «h±o Hermite ©w²z¡C

(2) ³] $\beta \neq 0,1$ ¬°¥N¼Æ¼Æ¡A $\alpha =\log{\beta}$¡C ­Y £\ ¬°¥N¼Æ¼Æ¡A«h¨ú $\alpha_1=0$, $\alpha_2=\alpha$¡A¥Ñ¦¹©w²z¥iª¾ $\beta=e^{\alpha}\in \mathbf{A}$ ³o¬O¥Ù¬Þ¡A¬G±o©°¸`(1)¡C

(3) ³] £k ¬°¥N¼Æ¼Æ¡A«h¨ú $\alpha_1=0$, $\alpha_2=\pi i$ ¥Ñ¦¹©w²z¥iª¾ $e^{\pi i} \not\in \mathbf{A}$ ¦ý¦³ Euler ùÚµ¥¦¡ $e^{i\pi}=-1$ ³o¬O¥Ù¬Þ¡A¬G±o Lindemann ©w²z¡C

   

¤W­¶¡@1¢x2¢x3¢x4¢x5¢x6¢x7¢x8¢x9¢x10¡@¦¸­¶

¦^­¶­º
 
¡]­Y¦³«ü¥¿¡BºÃ°Ý¡K¡K¡A¥i¥H¦b¦¹ ¯d¨¥ ©Î ¼g«H µ¹§Ú­Ì¡C¡^
EpisteMath

EpisteMath (c) 2000 ¤¤¥¡¬ã¨s°|¼Æ¾Ç©Ò¡B¥x¤j¼Æ¾Ç¨t
¦Uºô­¶¤å³¹¤º®e¤§µÛ§@Åv¬°­ìµÛ§@¤H©Ò¦³


½s¿è¡G¦¶¦w±j ³Ì«á­×§ï¤é´Á¡G4/26/2002