¤W­¶¡@1¢x2¢x3¢x4¢x5¢x6¢x7¢x8¢x9¢x10¡@¦¸­¶

§Aª¾¹D¶W¶V¼Æ¶Ü¡H ¡]²Ä 2 ­¶¡^

ªLÁo·½

 

­º­¶ | ·j´M

¡D­ì¸ü©ó¼Æ¾Ç¶Ç¼½²Ä¤G¨÷²Ä¤@´Á
¡D§@ªÌ·í®É¥ô±Ð©ó²M¤j¼Æ¾Ç¨t

¡EµùÄÀ
¡E¹ï¥~·j´MÃöÁä¦r
 
¤A

¦b¼Æ¾Ç¥v¤W²Ä¤@­Ó¤Þ°_§Ú­Ìª`·N¡A©M¶W¶V©Ê¦³Ãöªº¨ÆÂݬO¦b1737¦~¡A ·ç¤h¤H Euler ÃÒ©úªº¤@­Ó©w²z¡G

©w²z¡G
e¡A¦ÛµM¹ï¼Æªº©³¡A¬O¤@µL²z¼Æ¡C

ÃÒ©ú¡G
¥Ñ¹ï¼Æªº©w¸q¥H¤ÀªR¤èªk¥i¾É¥X¡G

\begin{displaymath}
e= \lim_{n \rightarrow \infty}
(1+\frac{1}{n})^n=\sum_{k=0}^{\infty} \frac{1}{k!}
\end{displaymath}

¤µ´N e ¤§µL½a¯Å¼Æªíªk¡A±N e ¼g¦¨¡u³¡¤À©M¡vSn ¤Î¡u§À¤Ú¯Å¼Æ¡vrn ªº©M¡A §Y

\begin{displaymath}
e=s_n +r_n,\quad n=1,2,\cdots
\end{displaymath}

¨ä¤¤

\begin{displaymath}
s_n=\sum_{k=0}^n \frac{1}{k!},\quad r_n=\sum_{k=n+1}^{\infty}\frac{1}{k!}
\end{displaymath}

¥Ñ©ó

\begin{eqnarray*}
r_n&=& \frac{1}{(n+1)!}(1+\frac{1}{n+2}+\frac{1}{(n+2)(n+3)}+ ...
...minus0.1pt{\fontfamily{cwM2}\fontseries{m}\selectfont \char 13}}
\end{eqnarray*}


·í n=1 ®É¡Ae=s1+r1¡As1=2¡A $r_1 < \frac{e-1}{2}$ ¬G±o

\begin{displaymath}
e < 2+ \frac{e-1}{2}
\end{displaymath}

¥Ñ¦¹¦¡¥i¸Ñ¥X e<3¡]¨Æ¹ê¤W $e=2.718\cdots$¡^¡A¦]¦¹

\begin{displaymath}
0 < r_n<\frac{2}{(n+1)!},\quad n=1,2, \cdots
\end{displaymath}

¥O an=n!sn¡Abn=n!rn «h an ¬°¥¿¾ã¼Æ¡A¦Ó

\begin{displaymath}
0<b_n<\frac{2}{n+1}\leq1,\quad n=1,2, \cdots
\end{displaymath}

¥Ñµ¥¦¡ n!e=an+bn¡A¥k¦¡«D¬°¾ã¼Æ¡A¬G n!e «D¾ã¼Æ¡A ©úÅã¦a ne ¤]¤£¥i¯à¬O¾ã¼Æ¤F¡A¦¹¤@¨Æ¹ê¹ï©Ò¦³¥¿¾ã¼Æ n ³£¦¨¥ß¡A¦]¦¹ e ¤£¬O¦³²z¼Æ¡AÃÒ©ú§¹²¦¡C

Euler ¤£¶È¬O¤@¦ì·Qªk«Ü¦h¡A¤]«Ü·|ºâªº¼Æ¾Ç®a¡A¥LÁÙ¬O¤@­Óµ½©ó³Ð³y²Å¸¹ªº¤H¡FÄ´¦p»¡ $e,\pi$ ¤Î $\log$ ³£¬O¥Ñ¥L­º³Ð¡A¤@ª½³q¦æ¦Ü¤µªº¡C¥L©Ò§¹¦¨ªº¤u§@¤¤¡A³Ì¬°¤H©Ò¼Ö¹D¡A¦Ó¥B¤]¬O¬y¶Ç³Ì¼sªº¡A ¬O¤U¦C©Ò¿×ªº Euler «íµ¥¦¡¡G

\begin{displaymath}
e^{i \pi}+1=0
\end{displaymath}

¦¹¦¡­È±o§Ú­Ìª`·N¤@¤U¡A¥¦¥]§t¤­­Ó¼Æ¡A§Y $e,\pi,i,1,0$¡A¥H¤Î¨â­Ó²Å¸¹ +,=¡A ³o¤­­Ó¼Æ¬O¼Æ¾Ç¤¤³Ì­«ªº¤­­Ó¼Æ¡A¦Ó³o¨â­Ó²Å¸¹¤]¬Oºâ³N¤¤³Ì°ò¥»ªº²Å¸¹¡C ¦b¼Æ¾Ç¤¤¡A¹³³o»òº}«G¦Ó¨å¶®ªº¦¡¤l¡A®£©È«ÜÃø§ä¨ì¤F¡C ¦b¥H«áªº³¹¸`ùرN·|¥Î¤W¥¦¡A¦Óµo²{¥¦¬O«Ü­«­nªº¤@­Ó¦¡¤l¡C

Euler ¥»¤H¹ï $e,\pi$ ¤Î $\log_a{b}=\frac{\log b}{\log a}$¡] $a,b \in \mathbf{Q}$¡Aa,b > 1¡^ ³o¨Ç¼Æ¤§¬ã¨s¤£¿ò¾l¤O¡A1750¦~¥L´£¥X¦p¤U²q´ú¡G

Euler ²q´ú
$e,\pi$ ¤Î $\log_a{b}$ §¡¬°¶W¶V¼Æ µù1

   

¤W­¶¡@1¢x2¢x3¢x4¢x5¢x6¢x7¢x8¢x9¢x10¡@¦¸­¶

¦^­¶­º
 
¡]­Y¦³«ü¥¿¡BºÃ°Ý¡K¡K¡A¥i¥H¦b¦¹ ¯d¨¥ ©Î ¼g«H µ¹§Ú­Ì¡C¡^
EpisteMath

EpisteMath (c) 2000 ¤¤¥¡¬ã¨s°|¼Æ¾Ç©Ò¡B¥x¤j¼Æ¾Ç¨t
¦Uºô­¶¤å³¹¤º®e¤§µÛ§@Åv¬°­ìµÛ§@¤H©Ò¦³


½s¿è¡G¦¶¦w±j ³Ì«á­×§ï¤é´Á¡G4/26/2002