¤w¦b²Ä¤@­¶¡@1¢x2¢x3¡@¦¸­¶

 


­º­¶ | ·j´M

¡D­ì¸ü©ó¬ì¾Ç¤ë¥Z²Ä¤G¨÷²Ä¤T´Á
¡D§@ªÌ·í®É¥ô±Ð©ó¤¤¥¡¼Æ¾Ç¨t

¡EµùÄÀ
 

§¹¥þ¼Æ»P²ö¥P¥§½è¼Æ

±iÂíµØ

 
 


§¹¥þ¼Æ¤Î¼Æªº­Ó©Ê

¦³¤@¦ì¼Æ¾Ç¦Ñ®v°Ý¥t¤@¦ì­µ¼Ö¦Ñ®v¡G¡u­µ¼ÖùØ¥u¦³¤C­Ó­µ¡A§A¬°¤°»ò­nªá¤@¥Íªº®É¶¡¥h¬ã¨s©O¡H¡v­µ¼Ö¦Ñ®v¿ðºÃ¤F¤@¤U¡A¤Ï°Ý¹D¡G¡u¼Æ¾ÇùØÀY¤]¥u¦³¤Q­Ó¼Æ¦r¡A§A¤S¬°¦ó¬ã¨s¤@½ú¤l¤£²M·¡©O¡H¡v·íµM§Ú­Ìª¾¹D¡A­µ¼Ö°£¤F¤C­µ¥~¡AÁÙ¦³°ª§C¸`«µµ¥°ÝÃD¡F¼Æ¾Ç°£¤F¼Æ¦r¥H¥~¡AÁÙ¦³§ó©â¶Hªº²Å¸¹¡AÅ޿誺¬[ºc¡C¦ý¬O¨º¦ì­µ¼Ö¦Ñ®vªº¸Ü¡A¨Ã¤£§¹¥þ¿ù»~¡C§Ú°ê¥j¥N¥Îºâ½L­pºâ¼Æ¦r¡AÁo©úªº¼Æ¾Ç®a»s³y¥X¦UºØ¤£¦PªºÅ]¤è°}¡A¤µ¤Ñ¡A¹q¤l­pºâ¾÷§Ö³tºâµÛ¦UºØ¥¨¤jÁcÂøªº¼Æ¦r¡C¤Z¦¹ºØºØ¡A³£¨¬¥Hªí¥Ü¡A¤Q­Óªü©Ô§B¼Æ¦r©Ò±Æ¥X¨ÓªºªF¦è¦h»ò­«­n¡A¤H­Ì¹ï¥¦¥Rº¡¿³½ì¡C©ó¬O³\¦h¦³¥Îªº¡A©Î³o¦³½ìªº¨Æª«¡A¹EÀ³¹B¦Ó¥Í¡C§¹¥þ¼Æ (Perfect Number) ´N¬O¤@­Ó¥j¦Ñ¦Ó´I¦³½ì¨ýªº²z½×¡A¥H¤U§Ú´N°w¹ï³o­ÓÃD¥Ø¡A¤Î¦³Ãöªº°ÝÃD°µ¤@µf°Q½×¡C

¼Æ¦r©M¤H¤@¼Ë¡A¤]¨ã¦³¦UºØ¤£¦Pªº­Ó©Ê¡C¤H¦³°ª¸G¡BªÎ½G¡B¬üÁà©M¦nÃa¤§¤À¡C¼Æ¦r¤]Ãþ¦ü¦a³Q½á¤©³\©Ê®æ¡C®Ú¾Ú²¦¤ó (Pythagoras) ¤@¬£ªº»¡ªk¡A1 ¬O¸Uª«¥»·½¡A1 ¥Í 2¡A2 ¥Í 3¡AÃþ±À¥i¥H±o¨ìµL½a¦h¼Æ¥Ø¡F4 ¥Nªí¤Hªº¤ßÆF¡A¬O¤@­Ó³Ì§¹º¡ªº¼Æ¡F¥¦­Ì¤S§â¾ã¼Æ¤À¦¨©_¼Æ©M°¸¼Æ¨âÃþ¡A©ö¸g¤W´N¦³³±¼Æ©M¶§¼Æªº¬Û¦ü»¡ªk¡C¦¹¥~¡AÁÙ¦³¥­¤è¼Æ¡B¥ß¤è¼Æ¡B¤T¨¤¼Æ¡B½è¼Æ¡B¦X¦¨¼Æ¡B§¹¥þ¼Æ©M¤¬§¹¼Æµ¥¤£¦Pªº¦Wµü¡C

G.H. Hardy¡]1887¡ã1947¡^´¿¸g¼g¤F¤@«h¬G¨Æ¡A´y­z¦L«×¼Æ¾Ç®a Ramanujan¡]1887¡ã1920¡^¡A»¡©ú¥L¯à¥Î¦UºØ´X¥G¿ì¤£¨ìªº¤èªk¡A°O¦í¦UºØ¼Æ¥Øªº¯S©Ê¡C¦³¤@¦¸¡ARamanujan ¥Í¯f¤F¡ALittlewood ¨ì Putney ¦a¤è¥h¬Ý¥L¡A§¤ªº­pµ{¨®¸¹½X¬O1729¡A¥Lı±o³o¬O¤@­ÓÃø°O¦íªº¼Æ¥Ø¡A¨ì¤F¥L¨º¸Ì¡A´N§â³o¥ó¨Æ§i¶D¥L¡A¥L°¨¤W¤Ï»é»¡¡G¡u¨º¸Ìªº¸Ü¡A1729¬O¤@­Ó«Ü¦³½ìªº¼Æ¦r¡A¥¦¬O¯à¥Î¨âºØ¤èªkªí¥Ü¬°¨â­Ó¼Æªº¥ß¤è©Mªº³Ì¤p¼Æ¥Ø¡C¡v³o­Ó¬G¨Æ§â¼Æ¦rªº­Ó©Ê»¡±o³Ì³z¹ý 1 ¡C

§¹¥þ¼Æ³o­Ó¦Wµü«Ü¦­´N¬°¤H©Ò¼ô±x¡A¦Ó¥B¯S§O°¾¦n¡CSt. Augustine ´¿»¡¡G¡u¤W«Ò¦b¤»¤Ñùسгy¤F¦t©z¸Uª«¡A¦]¬°¤»¬O¤@­Ó§¹¥þ¼Æ¡C¡v²{¦b¥@¬É¦U°êªº¾ä¨î¡A³£±Ä¥Î¤@¬P´Á¤C¤Ñ¡A´N¬O­n¤u§@¤»¤Ñ¡A¥ð®§¤@¤Ñ¡C

¨º»ò§A©Î³\­n°Ý¡A§¹¥þ¼Æ¬O¤°»ò©O¡H§¹¥þ¼Æ¬O«ü¤@­Ó¦ÛµM¼Æ¥Bº¡¨¬¥H¤Uªº©Ê½è¡A§Y¤p©ó¥¦ªº¤@¤Á¦]¼Æ©Mµ¥©ó³o­Ó¼Æ¥»¨­¡C

²Ä¤@­Ó§¹¥þ¼Æ¬O

6 = 1+2+3

¨ä¦¸§Ú­Ì±o¨ì

28 = 1+2+4+7+14

¦A¤U¥hªº§¹¥þ¼Æ¬O

496 = 1+2+4+8+16+31+62+124+248

¦pªG¦³¤H·Q¥Î¹êÅ窺¤èªk,¦AÄ~Äò§ä¤U¥h¡A¥²©w¤£¯à±o¨ì«Ü¦nªº®ÄªG¡C²¦¤ó¾Ç¬£ªº¼Æ¾Ç®a Nichomachus¡]BC 100¡^¡Aªá¤F¤£¤Ö¤ß¦å¡A¨ì«á¨Ó¬ã¨s¥X¡uÁöµMµ½©M¬ü¨Ã¤£±`¦b¡A¦ý©|©ö´M¨D¡F¦Ü©óÁà©M´c¡A«o¤ñ¤ñ¬Ò¬O¡C¡v¨Æ¹ê¤W¡A¦A¤U­±¨â­Ó§¹¥þ¼Æ¬O 8128 ©M 33550336¡A¤£¨£±o®e©ö´M¨D¡C³o¨Ã¤£¬O»¡¡A¤@¤Á¤w¸gµ´±æ¡C¸ÕµÛ¹B¥ÎÆ[¹îªk´M¨D³W«ß©Ê¡A¤]³\¥i¥H±o¨ì¤@¨Ç¦³¥ÎªºªF¦è¡C

\begin{displaymath}
\begin{array}{l}
6 = 2 \times 3 = 2^1(2^{1+1} -1) \ [3]
2...
...+1} -1) \ [3]
496 = 16 \times 31 = 2^4(2^{4+1} -1)
\end{array}\end{displaymath}

Æ[¹î¤W­±¤T­Ó¦¡¤l¡A¥i¥Hµo²{¤@­Ó³q©Ê¡A©Î³\¨ã¦³ 2n(2n+1-1) «¬¦¡ªº¼Æ¬O§¹¥þ¼Æ¡C¦ý¬O·í n=3 ®É

23 (23+1 -1) = 23 * 15 = 120

³o­Ó¼Æ¨Ã¤£¬O§¹¥þ¼Æ¡C¦]¦¹¡A§Ú­Ì§ó¶i¤@¨B­nª`·N 2n+1 -1 ªº©Ê½è¡A·í n=1,2,4 ®É 2n+1 -1 ¬O½è¼Æ¡An=3 ®É 2n+1-1 ¬O¦X¦¨¼Æ¡AÃöÁä´N¦b³oùؤF¡C¼Ú°ò¨½±o¡]Euclid, 365?¡ã275?B.C¡^¦b¥Lªº¡m­ì¥»¡n(Element) ¤¤¡AÃÒ©ú¤F³o­Ó²q´ú¡C

§¹¥þ¼Æ²Ä¤@©w²z¡G
­Y 2n+1 -1 ¬O½è¼Æ¡A«h 2n(2n+1 -1) ¬O§¹¥þ¼Æ¡C

ÃÒ¡G ¥O P ªí¥Ü½è¼Æ 2n+1 -1 «h 2n p ªº¦]¼Æ¡]¤p©ó 2n p ¥»¨­ªº¡^¦³

\begin{displaymath}1,2,2^2, \cdots , 2^n , 2p , \cdots , 2^{n-1} p \end{displaymath}

¥¦­Ìªº©M

\begin{displaymath}
S = (1+2+ \cdots \cdots + 2^n) + p(1+2+\cdots \cdots + 2^{n-1})
\end{displaymath}

´X¦ó¯Å¼Æ

\begin{displaymath}1+2+2^2 + \cdots \cdots + 2^n = 2^{n+1} -1 \end{displaymath}

¦]¦¹±o

\begin{eqnarray*}
S &=& (2^{n+1} -1) + p(2^n -1) = p + p(2^n -1) \\
&=& 2^n p
\end{eqnarray*}


¦¹¼Æ¬°§¹¥þ¼Æ±oÃÒ¡C

¥Ñ²Ä¤@©w²z±o¨ìªº§¹¥þ¼Æ³£¬O°¸¼Æ¡C¬O¤£¬O¦³©_§¹¥þ¼Æ¡A³o­Ó°ÝÃD¨S¦³¤Hª¾¹D¡A¤U­±§Ú­ÌÁÙ·|½Í¨ì¡A¦Ü©ó¬O§_ÁÙ¦³¨ä¥¦ªº°¸§¹¥þ¼Æ¡A¤×©Ô¡]Euler, 1707¡ã1783¡^µ¹§Ú­Ì¤@­Ó§¹º¡ªºµª®×¡C

§¹¥þ¼Æ²Ä¤G©w²z¡G
°¸§¹¥þ¼Æ¥²©w§e 2n(2n+1 -1 ) ªº«¬¦¡¡A¨ä¤¤ 2n+1 -1 ¬°½è¼Æ¡C

ÃÒ¡G ¥O°¸§¹¥þ¼Æ $ \alpha = 2^n p $ ¡A¨ä¤¤ n ¬°¦ÛµM¼Æ¡Ap ¬°©_¼Æ¡C£\ ªº¤@¤Á¦]¼Æ©M¡]¥]¬A £\ ¥»¨­¡^¬°

\begin{eqnarray*}
S &=& (2^n \mbox{{\fontfamily{cwM1}\fontseries{m}\selectfont \...
...ontseries{m}\selectfont \char 184}}) \\
&=& (2^{n+1} -1 )(d+p)
\end{eqnarray*}


¨ä¤¤ d ªí¥Ü p ªº¤@¤Á¯u¦]¼Æ©M¡]¤£¥]¬A p ¥»¨­¡^¡C

¦]¬° $\alpha $ ¬O§¹¥þ¼Æ¡A¦]¦¹

\begin{displaymath}
\begin{array}{l}
\alpha = S - \alpha \qquad \mbox{{\fontfami...
...2 \alpha \\
(2^{n+1} -1)(d+p) = 2\alpha = 2^{n+1}p
\end{array}\end{displaymath}

¤Æ²±o¨ì p = (2n+1 -1 )d

¨ä¤¤ 2n+1 -1 >1¡A¦Ó¥B d ¬O p ªº¦]¼Æ¡A¥ç¬°¯u¦]¼Æ¡C

d ¤S¬O p ªº¤@¤Á¯u¦]¼Æªº©M¡A¥i¨£ p ¬°½è¼Æ¡A d=1 ¡C

\begin{displaymath}
P = (2^{n+1} -1 )d = 2^{n+1} -1 \mbox{ {\fontfamily{cwM1}\fo...
...\char 98}{\fontfamily{cwM0}\fontseries{m}\selectfont \char 1}}
\end{displaymath}

©Ò¥H°¸§¹¥þ¼Æ $\alpha = 2^n ( 2^{n+1} -1)$¡A¨ä¤¤ 2n+1 -1 ¬°½è¼Æ¡C

 
¹ï¥~·j´MÃöÁä¦r¡G
¡DPythagoras
¡D½è¼Æ
¡DHardy
¡DRamanujan
¡DEuclid
¡DEuler
¡DMersenne

¤w¦b²Ä¤@­¶¡@1¢x2¢x3¡@¦¸­¶

¦^­¶­º
 
¡]­Y¦³«ü¥¿¡BºÃ°Ý¡K¡K¡A¥i¥H¦b¦¹ ¯d¨¥ ©Î ¼g«H µ¹§Ú­Ì¡C¡^
EpisteMath

EpisteMath (c) 2000 ¤¤¥¡¬ã¨s°|¼Æ¾Ç©Ò¡B¥x¤j¼Æ¾Ç¨t
¦Uºô­¶¤å³¹¤º®e¤§µÛ§@Åv¬°­ìµÛ§@¤H©Ò¦³


½s¿è¡G±d©ú°a ³Ì«á­×§ï¤é´Á¡G2/17/2002