¤W­¶¡@1¢x2¢x3¡@¦¸­¶

§¹¥þ¼Æ»P²ö¥P¥§½è¼Æ ¡]²Ä 2 ­¶¡^

±iÂíµØ

 

­º­¶ | ·j´M

¡D­ì¸ü©ó¬ì¾Ç¤ë¥Z²Ä¤G¨÷²Ä¤T´Á
¡D§@ªÌ·í®É¥ô±Ð©ó¤¤¥¡¼Æ¾Ç¨t

¡EµùÄÀ
¡E¹ï¥~·j´MÃöÁä¦r
 
²ö¥P¥§ (Mersenne) ½è¼Æ

´M§ä°¸§¹¥þ¼Æªº¤u§@¡A¨ì¦¹Åܦ¨¡A¨M©w 2n -1 ¬O§_¬°½è¼Æªº¤u§@¡C´M¨D¨ã¦³¯S§O«¬¦¡ Mp = 2p -1 ªº½è¼Æ¡A³Ì¦­¥Hªk°ê¼Æ¾Ç®a¡]Marin Mersenne, 1588¡ã1648¡^ºâ¥X³Ì¦h¡A¬G§Ú­Ì¥Î¥L¦W¦rºÙ©I¦¹µ¥½è¼Æ¡A¥s²ö¥P¥§½è¼Æ¡C

«e­±§Ú­Ì´¿¸g»¡¹L 23 (24 -1) ¨Ã¤£¬O§¹¥þ¼Æ¡C

²{¦b¥i¥H¹B¥Î²Ä¤G©w²z»¡©ú¡A¦]¬° 24 -1 = 15 ¤£¬O²ö¥P¥§½è¼Æ¡A©Ò¥H 23(24 -1) ¤£¬O°¸§¹¥þ¼Æ¡C

\begin{displaymath}
\begin{array}{l}
M_2 = 2^2 -1 = 3 \mbox{ {\fontfamily{cwM1}\...
...ontfamily{cwM1}\fontseries{m}\selectfont \char 98}}
\end{array}\end{displaymath}

Æ[¹î¤W­±ªº¨Ò¤l¡A¥i¥H¬Ý¥X¤@­Ó¥i¯àªº³q©Ê¡A©Î³\¡up ¬°¦X¦¨¼Æ®É Mp ¬°¦X¦¨¼Æ¡Ap ¬°½è¼Æ®É Mp ¬°½è¼Æ¡C¡v¦ý¬O·í§Ú­Ì¸Õ¹Ï¥hÃÒ©ú³o­Ó±Ô­z®É¡Aµo²{¥u¦³¤W¥b³¡¤~¹ï¡C

©w²z 1
­Y p ¬°¦X¦¨¼Æ¡A«h Mp ¬°¦X¦¨¼Æ¡C ¡]­Y Mp ¬°½è¼Æ¡A«h p ¬°½è¼Æ¡C¡^

ÃÒ¡G p ¬°¦X¦¨¼Æ¡A©Ò¥H¦s¦b¤G­Ó¾ã¼Æ a,b¡A ¨Ï±o p = ab , 1 < a , b < p ,

\begin{eqnarray*}
M_p &=& 2^p -1 = 2^{ab} -1 \\
&=& (2^a -1 )[(2^a)^{b-1} + (2^a)^{b-2} + \cdots + (2^a) +1 ]
\end{eqnarray*}


¦]¬° $2^a -1 \geq 2^2 -1 =3 $¡A¤S

\begin{eqnarray*}
\lefteqn{ (2^a)^{b-1} + (2^a)^{b-2} + \cdots + (2^a) + 1 } \\
&\geq& (2^a)^{2-1}+1 = 2^a +1 >1
\end{eqnarray*}


©Ò¥H Mp ¥i¥H¤À¸Ñ¬°¨â­Ó¤j©ó 1 ªº¾ã¼Æªº¿n¡A¥²©w¬°¦X¦¨¼Æ¡C

¦pªG Mp ¬O½è¼Æ¡A¦Ó p ¤£¬O½è¼Æ¡C

·í p=1 ®É¡AMp =1 ¤£¬O½è¼Æ¡C

·í p ¬°¦X¦¨¼Æ®É¡AMp ¥ç¬°¦X¦¨¼Æ¡C

¨âªÌ§¡©M¤wª¾ Mp ¬°½è¼Æ¥Ù¬Þ¡A©Ò¥H p ¬°½è¼Æ¡C

§Q¥Î³o­Ó©w²z¡A·í§Ú­Ì­n´M§ä²ö¥P¥§½è¼Æ®É¡A¥i¥H¤£¥²­pºâ p ¬°¦X¦¨¼Æ®Éªº±¡§Î¡C ¦ý¬O«Ü¤£©¯ªº¬O¡A³o­Ó©w²zªº°f©RÃD¤£¦¨¥ß¡A¥ô§A¦p¦ó¤]ÃÒ¤£¥X¨Ó¡A¨Æ¹ê¤W¡A

\begin{displaymath}
\begin{array}{l}
M_2 =3, \; M_3 = 7, \; M_5 = 31, \; M_7 = 127,  [3]
M_{11} = 2047 = 23 \times 89
\end{array}\end{displaymath}

M11 ¬O²Ä¤@­Ó©M§Ú­Ì·o³Jªº³Ã¥ë¡A©ó¬O§Ú­Ìªº¹êÅç¤u§@¡A ¤£±o¤£Ä~Äò°µ¤U¥h¡A

\begin{displaymath}
M_{13} = 8191, \; M_{17} = 13,1071, \; M_{19} = 52,4287
\end{displaymath}

©_©Çªº¬O¡A±o¨ìªº¤T­Ó¤S¥þ¬O½è¼Æ¡C³o¨Ç¼Æ¥Øªº¦ì¼Æ¶V¨Ó¶V¦h¡A ÅçÃÒ¤u§@¤]´NÅã±o¤£®e©ö¡C ¦bªìµ¥¼Æ½×ùئ³¨â­Ó©w²z¥i¥HÀ°§U§Ú­ÌÀˬd¤@­Ó¼Æ¬O¤£¬O½è¼Æ¡C

©w²z2
¤j©ó 1 ªº¾ã¼Æ¥²©w¦³½è¦]¼Æ¡C

©w²z3
¦pªG¾ã¼Æ A ¦³¦X¦¨¼Æ¡A¥²©w¦³¤p©ó©Îµ¥©ó $ \sqrt{A}$ ªº½è¦]¼Æ¡C

©w²z 2 ´£¨Ñ§Ú­ÌÀˬd¤@­Ó¼Æ¬O§_½è¼Æªº¤èªk¡G ¥Î¤p©ó A ªº¤@¤Á½è¼Æ¥h¸ÕÅç¡A¦pªG³o¨Ç¼Æ³£¤£¬O A ªº¦]¼Æ¡A¨º»ò A ´N¬O½è¼Æ¤F¡C ©w²z 3 §ó¤è«K¡A§Ú­Ì¥u­n¥Î¤p©ó $ \sqrt{A}$ ªº¤@¤Á½è¼Æ¥h¸ÕÅç¡A´N¯à¨M©w A ¬O¤£¬O½è¼Æ¡C¦ý¬O¡A§Y¨Ï¨Ï¥Î³oºØ¤èªk¡A­nºâ¥X M19 ¬O½è¼Æ¡A¤w¸g¤Q¤À¤£®e©ö¡A©ó¬O¤S¦³¤U­±ªº©w²z¡C

©w²z4
­Y p ¬°½è¼Æ¡A«h Mp ªº½è¦]¼Æ¥²§e ap+1 ªº«¬¦¡¡A¨ä¤¤ a ¬°¥¿¾ã¼Æ¡C

ÃÒ¡G ³] 2p -1 ¦³¤@½è¦]¼Æ x=ap+b¡A¨ä¤¤ 0<b<p¡]b ¤£¥i¯à =0¡^
¦] $2^p \equiv 1 \pmod{x}$
¬G

\begin{eqnarray*}
2^{x-1} & \equiv & 2^{ap+b-1} \equiv (2^p)^a \cdot 2^{b-1} \\
& \equiv & 2^{b-1} \pmod{x}
\end{eqnarray*}


®Ú¾Ú¶Oº¿©w²z 2 $2^{x-1} \equiv 1 \pmod{x}$¡A©Ò¥H $2^{b-1} \equiv 1 \pmod{x}$
°²³] b-1>0¡A¦]½è¼Æ p>b>b-1>0¡A©Ò¥H p ©M b-1 ¤¬½è¡C
¦s¦b¨â­Ó¥¿¾ã¼Æ £\ ©M £] ¨Ï±o¡A

\begin{displaymath}
\alpha p = \beta (b-1) +1 \quad \mbox{{\fontfamily{cwM1}\fontseries{m}\selectfont \char 67}} \quad a(b-1) = \beta p+1
\end{displaymath}

·í $\alpha p = \beta(b-1) +1$ ®É¡A

\begin{displaymath}
2^{\alpha p} \equiv 2^{\beta(b-1)+1} \equiv (2^{b-1})^\beta \cdot 2 \equiv 2 \pmod{x}
\end{displaymath}

¦ý

\begin{displaymath}
2^{\alpha p} \equiv (2^p)^\alpha \equiv 1 \pmod{x} \;
\Longr...
...us0.1pt{\fontfamily{cwM7}\fontseries{m}\selectfont \char 101}}
\end{displaymath}

¦P¼Ë¦a¡A·í $a(b-1) = \beta p + 1$ ®É¤]¥Ù¬Þ¡C ¦]¦¹ b-1=0¡A§Y b=1 ¥»©w²z±oÃÒ¡C

§Q¥Î³o­Ó©w²z¡AÀËÅç¤u§@¤S´î»´¤£¤Ö¡C¦ý¬O²ö¥P¥§½è¼Æ¬O§e´X¦ó¯Å¼Æ¼W¤j¡A·í p ¶V¤j¡A Mp ´N¶VÃøÀËÅç¡C¤×©Ô¦b1750¦~ºâ¥X M19 ªº¦¸¤@²ö¥P¥§½è¼Æ M31¡A ¦­´Áªº´M§ä¤u§@´Nºâ§i¤@¬q¸¨¡C1876¦~ªk°ê¼Æ¾Ç®a¬¥§J¥q (Lucas) ¥Îµ§ºâ¥X¤@­Ó³Ì¤j¬ö¿ý M127¡A ³o­Ó¼Æ¤j¹F39¦ì¼Æ¡A¬O¤HÃþ¥Î¯Èµ§ºâ¥Xªº12­Ó²ö¥P¥§¼Æ¤¤¤§³Ì¤jªÌ¡C ²{¦b±N³o¤Q¤G­Ó½è¼Æ¦C¦p¤U¡G 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127¡C

¦A¤U¥hªº¼Æ¶V¨Ó¶V¤j¡A¤£¬O¤HÃþ¦³­­ªººë¤O©Ò¯à¾á·í±o¤Fªº¡C¤×¨ä²ö¥P¥§½è¼Æªº±K«×(density) ¶V¨Ó¶V¤p¡A­n§ä¨ì½T¹ê¤£®e©ö¡C±ßªñ¹q¤l­pºâ¾÷³Ð³y¡A­pºâ¯à¤O³v¤é§ï¨}¡A¨Ï±o³o¶µ¤u§@±o¥HÄ~Äò¤U¥h¡C ³Ì·sªº¸ê®ÆÅã¥Ü¡A¨ì¥Ø«e¬°¤î¡A§Ú­Ì§ä¨ì23­Ó²ö¥P¥§¼Æ¡A³Ì¤jªº¤@­Ó¬O M11213¡A©~µM°ª¹F3375¦ì¡C

   

¤W­¶¡@1¢x2¢x3¡@¦¸­¶

¦^­¶­º
 
¡]­Y¦³«ü¥¿¡BºÃ°Ý¡K¡K¡A¥i¥H¦b¦¹ ¯d¨¥ ©Î ¼g«H µ¹§Ú­Ì¡C¡^
EpisteMath

EpisteMath (c) 2000 ¤¤¥¡¬ã¨s°|¼Æ¾Ç©Ò¡B¥x¤j¼Æ¾Ç¨t
¦Uºô­¶¤å³¹¤º®e¤§µÛ§@Åv¬°­ìµÛ§@¤H©Ò¦³


½s¿è¡G±d©ú°a ³Ì«á­×§ï¤é´Á¡G2/17/2002