¤W­¶¡@1¢x2¢x3¢x4¢x5¢x6¡@¦¸­¶

¯Å¼Æ¨D©Mªk ¡]²Ä 5 ­¶¡^

§E¤å­ë

 

­º­¶ | ·j´M

¡D­ì¸ü©ó¼Æ¾Ç¶Ç¼½²Ä¤Q¤­¨÷²Ä¥|´Á
¡D§@ªÌ·í®É¥ô¾©ó¤¤¥¡¬ã¨s°|¼Æ¾Ç©Ò¬ã¨s­û¡A­É½Õ¦Ü¤¤¥¿¤j¾ÇÀ³¼Æ©Ò
¡E¹ï¥~·j´MÃöÁä¦r
 
5. Ãö©ó $\Gamma''(S)/\Gamma(S)$

§â¿n¤À¦¡

\begin{displaymath}\frac{\Gamma'(1+\delta)}{\Gamma(1+\delta)}+\gamma=\int_0^\infty\frac{(1-e^\delta t)dt}{e^t-1}\end{displaymath}

¹ï £_ ·L¤À¡A«h±o¥X

\begin{displaymath}\frac{\Gamma''(1+\delta)}{\Gamma(1+\delta)}-\left[\frac{\Gamm...
...+\delta)}\right]^2
=\int_0^\infty\frac{te^{-\delta t}dt}{e^t-1}\end{displaymath}

¥Î¨Ó¨D¥X $\Gamma'(1+\delta)/\Gamma(1+\delta)(\delta=q/p)$ ªº¤èªk¤w¤£¦A¾A¥Î¡A¸g¥Ñ u = e-t/p ªºÅܼÆÅÜ´««á¡A·|¦³ $\log u$ ¥X²{¦b¿n¤ÀùØ¡A¬G°£¤F¤@¨Ç¯S§O¼Æ­È¥~¡A³oÃþ¼Æ­È¨Ã¤£©ö¨D¥X¡A¬°¤è«K°_¨£¡A©w

\begin{displaymath}
F(\delta) = \frac{d}{d\delta}
\left[\frac{\Gamma'(\delta)}{...
...lta)} -
\left[\frac{\Gamma'(\delta)}{\Gamma(\delta)}\right]^2
\end{displaymath}

¥Ñµ¥¦¡

\begin{displaymath}\Gamma(s)\Gamma(1-s)=\frac{\pi}{\sin{\pi s}}\end{displaymath}

¨âÃä¨ú¹ï¼Æ¥B¹ï s ³sÄò·L¤À¨â¦¸¡A«h±o

\begin{displaymath}F(s)+F(1-s)=\pi^2\csc^2{\pi s}\end{displaymath}

¯S§O¬O

\begin{displaymath}
\begin{eqalign}
& F(\frac{1}{2})=\frac{\pi^2}{2} \\
& F(\frac{1}{3})+F(\frac{2}{3})=\frac{4\pi^2}{3}
\end{eqalign}\end{displaymath}

¬G

\begin{displaymath}\sum_{n=0}^\infty\frac{1}{(2n+1)^2}=\frac{1}{4}F(\frac{1}{2})=\frac{\pi^2}{8}\end{displaymath}

¨ÒÃD2:
¨D¯Å¼Æ $\sum_{n=0}^\infty\frac{1}{(3n+1)^2(3n+2)^2}$ ªº©M¡C

¸Ñµª:

\begin{eqnarray*}
&&\sum_{n=0}^\infty\frac{1}{(3n+1)^2(3n+2)^2}\\
&=&\frac{1}{9...
...c{\pi}{\sqrt{3}})\\
&=&\frac{4\pi^2}{27}-\frac{2\pi}{3\sqrt{3}}
\end{eqnarray*}


   

¤W­¶¡@1¢x2¢x3¢x4¢x5¢x6¡@¦¸­¶

¦^­¶­º
 
¡]­Y¦³«ü¥¿¡BºÃ°Ý¡K¡K¡A¥i¥H¦b¦¹ ¯d¨¥ ©Î ¼g«H µ¹§Ú­Ì¡C¡^
EpisteMath

EpisteMath (c) 2000 ¤¤¥¡¬ã¨s°|¼Æ¾Ç©Ò¡B¥x¤j¼Æ¾Ç¨t
¦Uºô­¶¤å³¹¤º®e¤§µÛ§@Åv¬°­ìµÛ§@¤H©Ò¦³


½s¿è¡G¥Û²ú§g ¢A ®Õ¹ï¡G±d©ú°a ³Ì«á­×§ï¤é´Á¡G4/26/2002