|
¬O«e¥Íª`©w«Ã½t²ö¿ù¹L
Ä@¤Ñ¤U¦³±¡¤H²×¦¨²²ÄÝ ¦pªG¤ë¤U¦Ñ¤H¬O¼Æ¾Ç®a......
¬Û²§¥Nªí¨t (systems of distinct representatives¡A²ºÙ SDR) ¬O1930¦~¥Nªº°ÝÃD¡A§ÚÌ¥i¥H§â¥¦¸ÑÄÀ¬°©eû·|¿ï¬£¥Nªíªº°ÝÃD¡A¤]¥i¥H±N¥¦¬Ý¦¨¤ë¤U¦Ñ¤H²o¬õ½uªº°ÝÃD¡C¬°¤F²³æ¡A§ÚÌ¥ý¥Î¶°¦Xªº»¡ªk´yz¡Gµ¹©w¶°¦X±Ú¡A
¡A
§Æ±æ¦b¨C¤@¶°¦X Ai ¤¤¿ï¥X¤@Ó¤¸¯À ai¡A¨Ï±o ai, ,an ¬O¬Û²§ªº n Ó¤¸¯À¡F³o®É§Ú̺Ù
¬O A ªº¤@Ó¬Û²§¥Nªí¨t¡C
¦b©eû·|¿ï¬£¥Nªíªº°ÝÃD¤¤¡A±N¶°¦X Ai µø¬°²Ä i Ó©eû·|ªº¦¨û¶°¡A
¦ý¬O¨CÓ¤H³£¥i¯à¦b¦n´XÓ¤£¦Pªº©eû·|ùØÀY¡A
°ÝÃD´N¬On¦b¨CÓ©eû·|¸Ì§ä¨ì¤@¦ì¥Nªí¡A
¦ý¬O¦P¤@¤H¤£¯à¥Nªí¤@Ó¥H¤Wªº©eû·|¡C
¦b±B«Ã°ÝÃDùØ¡AAi ¥i¥H¬Ý¦¨¬O²Ä i Ó¤k«Ä¥i¯à°U¥I²×¨ªº¥Õ°¨¤ý¤l¶°¡A
¤ë¦Ñªº¥ô°È¬On±N©Ò¦³¤k«Ä³\°tµ¹¤@¦ì¥Õ°¨¤ý¤l¡A
¦ý¤G¤k¤£¥i¦P°t¤@¤Ò¡C
¬°¤F§óÁA¸Ñ°ÝÃD©Ò¦b¡AÅý§Ú̬ݬݤU±¤TÓ¨Ò¤l¡C
- ¨Ò 1¡G
A1 = { a,b,c } ,
A2 = { c,d } ,
A3 = { b,d } ,
A4 = { c,d }¡C
¹ï³oÓ¨t²Î¡A«ê¦³¨â²Õ¤£¦Pªº¬Û²§¥Nªí¨t¡A´N¬O (a,c,b,d) ©M
(a,d,b,c)¡C
- ¨Ò 2¡G
A1 = { a } , A2 = { b } ,
A3 = { a , b} ,
A4 = { c,d,e,f,g,h }¡C
³oÓ¶°¦X±ÚµL¸Ñ¡A¦]¬° a ¥²¶·¥Nªí A1¡Ab ¥Nªí A2¡A¦]¦¹ A3 ´N§ä¤£¨ì¥Nªí¡C
- ¨Ò 3¡G
A1 = { 3 , 4 } ,
A2 = { 3 , 7 , 9 } ,
A3 = { 2 , 3 } ,
A4 = { 6 , 11 , 12} ,
A5 = { 4 , 6 , 8} ,
A6 = { 2 , 6 , 9} ,
A7 = { 3 , 4 , 8 } ,
A8 = { 3 , 5 , 10 , 13 },
A9 ={ 2 , 3 , 7 , 9 } ,
A10 = { 2 , 8 , 9 }¡C
¹ï©ó³oÓ¶°¦X±Ú¡A¨Ã¤£¬O¤@²´¥i¥H¬Ý¥Xµª®×¬O¤°»ò¡A
¦b¤£ª¾¹D¦n¿ìªkªº±¡ªp¤U¡A¥¦¥i¯à®ö¶O§Ṳ́@Ó¤p®É¡A
¥ÎÆZ¤Oªº¤èªk¥h¹Á¸Õ¦UºØ¥i¯à¡A³Ì«á²×©ó±o¨ìµª®×¤F¡G
¤£¦s¦b¤@Ó¬Û²§¥Nªí¨t¡C¬°¤FnÅý¤j®a«HªA¡A
§Ų́䣻Ýn±N³o¤@¤p®Éªººtºâ«¨Ó¤@¦¸¡A
¤@Ó²©öªº¤èªk¥i¯à¬O³o¼Ëªº¡A±N A1,A2,A3,A4,A5,A6,A7,A8,A9,A10
³o 8 Ó¶°¦XÁp¶°¡A±o¨ì {2,3,4,6,7,8,9} ¥u§t 7 Ó¤¸¯À¡A
©Ò¥H¤£¥i¯à§ä¨ì¤@Ó¬Û²§¥Nªí¨t¡C
¨Ò 3 ªº½×ÃÒ¹ê¦b¬O³oÓ°ÝÃDªº¤@ÓÃöÁä¡A¥¦§i¶D§ÚÌ¡A¦pªG
¦b¤@Ó¬Û²§¥Nªí¨t¡A
ÀH«K®³¥X k Ó¶°¦X Ai1, ,Aik ¨Ó¡A
¨äÁp¶°³Ì¤Ö¦³kÓ¤¸¯À¡F´«¨¥¤§¡An»¡A¨S¦³¬Û²§¥Nªí¨t¡A
¥un§ä¥XkÓ¶°¦X¡A¨äÁp¶°ªº°ò¼Æ¤p©ók§Y¥i¡C¥O¤HÅå³Yªº¬O¡A
³oÓ¥²n±ø¥ó¦P®É¤]¬O¥R¥÷±ø¥ó¡A
³o´N¬OµÛ¦Wªº¦óµá¤O©w²z (Philip Hall's Theorem )¡A
§Ú̱N¥Î©M¼Æ¾ÇÂk¯Çªk¬Ûµ¥ªº³Ì¤pì²z¨ÓÃÒ©ú¥¦¡C
- ¦ó¤ó©w²z¡G
¦s¦b¤@Ó¬Û²§¥Nªí¨tªº¥R¤À±ø¥ó¬O¹ï©Ò¦³
ùÚ¦³
¡C
- ÃÒ©ú¡G
¥²n±ø¥óªºÃÒ©ú¤w¦p¤W©Òz¡A²{ÃÒ±ø¥ó¬°¥R¤À¡C¦pªG¹ï©Ò¦³
ùÚ¦³
¡A
§ÚÌ¥i¥H°²³] A ¬Oº¡¨¬³oÓ±ø¥óªº³Ì¤p¶°¦X±Ú¡A¤]´N¬O¡A
±q¥ô¦ó¤@Ó Ai ¤¤¥h±¼¥ô¤@¤¸¯À©Ò±oªº·s¶°¦X±Ú¤£¦Aº¡¨¬¤Wz±ø¥ó¡C
º¥ýnÃÒ©úªº¬O¡A©Ò¦³Ai«ê§t¤@¤¸¯À¡C §_«h°²³]A1§t¦³x¤Îy¦ý
¡A«h
©M
³£¤£º¡¨¬¤Wz±ø¥ó¡A
¦]¦¹¦s¦b¨¬½X¶° I,
¨Ï±o
¨ä¤¤
©Ò¥H
±o¨ì¥Ù¬Þ,©Ò¥H¨C¤@Ó¶°¦X Ai={ai} «ê§t¤@¤¸¯À,¦ý¦]¬°¦ó¤ó©w²zªº±ø¥ó,
©Ò¥H³o¨Ç a1, ,an ³£¤£¬Û¦P,¦]¦¹´N±o¨ì¤@Ó¬Û²§¥Nªí¨t
(a1, ,an)¡C
¦ó¤ó©w²z¦³³\¦h¦³½ìªºÀ³¥Î,¨Ò¦p¥¦¥i¥H¥Î¨Ó±o¨ì¤U±¨âÓ©w²zªºÂ²¼äÃÒ©ú¡C
- ´µ§B¯Ç©w²z(Sperner's Theorem):
¶°¦XE«ê§tnÓ¤¸¯À,F¬OEªº¤l¶°¦X±Ú,¨ä¤¸¯À¨â¨â¤¬¬Û¤£¥]§t¡A
«hF³Ì¦h¥u¦³(
)Ó¤¸¯À¡C
- §B¦Ò¤Ò-¶¾¯Ã°Ò©w²z(Birkhoff-von Neumann Theorem):
¤@ÓÂù«ÀH¾÷¯x°} (doubly stochastic matrix) ¬O¤@ n x n ªº«Dt¹ê¼Æ¯x°}¡A¨ä¥ô¤@¦æ©Î¦Cªº©M«ê¬°1¡FY¨ä¤¸¯À§¡¬°0©Î1¡A
«hºÙ¬°±Æ¦C¯x°} (permutation matrix)¡A¦]¬°¥¦«ê©M¤@Ó
¤Wªº±Æ¦C¬Û¹ïÀ³¡C©w²z¬O»¡¡A
YD¬OÂù«ÀH¾÷¯x°}¡A«h¦s¦b±Æ¦C¯x°}
¤Î©M¬°1ªº¥¿¹ê¼Æ
¨Ï±o
¡C¨Ò¦p
±q¤åÄm¤W¦Ò¾Ú¡A¦ó¤ó©w²z©l©ó1935¦~¡A¨Æ¹ê¤W¦b1931¦~¬_¥§ô (D. Konig)
©M¨Èôªk§Q (E. Egervary) ´N´¿¥H¤£¦Pªº»y¨¥¡]§Y (0,1) ¯x°}©Î¤G¤À¹Ïºô¡^¡AÃÒ©ú¨ì¬Û¦Pªºµ²ªG¡F¤×¦³¬ÆªÌ°Ãô (Meger) ¦b1927¦~®É¡A¬ã¨s¹Ïºôªº³s³q©Ê¡A
´N¦³¤@¨Ç§ó¤@¯ë¤Æªº©w²z¡A±N«e¤TªÌªºµ²ªGµø¬°¯S®í±¡ªp¡C¦ó¤ó©w²z«nªº°^Äm¬O¡A
³o¼Ë´yzªº©w²z¡A¶}±Ò¤F¤@¨Çºò³¬ªºµ¡´v¡A³q¦V©¹¤éÂA¬°¤Hª¾ªº¤j¹D¡C
±q1930¦~¥N¨ì1950¦~¥N¤§¶¡¬O¬Û²§¥Nªí¨tªº°_¨B®É´Á,¨ä¤¤¹p¦h (Rado) ªº°^Äm»á¦h¡F
¤@ª½¨ì1960¦~¥N¡A³o®M²z½×©MÀÀ°}²z½×(matroid theory)¬Ûµ²¦X¡A¤~¤j®i²§±m¡C
|
|
¹ï¥~·j´MÃöÁä¦r¡G ¡Dvon Neumann
|