|
¦I¤ú§QºâªkÀ±¸É¤F¦ó¤ó©w²zpºâ¤Wªº§xÃø,¬Û»²¬Û¦¨¬°¤@®M§¹¬ü²z½×¡C
±q³o¬°¥XµoÂI,¦³´XÓµo®i¤è¦V,¥¦Ì¨Ã¤£¬O¤¬¬Û¿W¥ß,¦Ó¬O¤¬¬Û°Ñ¦Ò,¤¬¸É¦³µL¡C
§Ú̦CÁ|¤Ó¤è¦V,²¤z¤j·§¡C
- (¥Ò)§ó§Öªººâªk¡C
- (¤A)¥[Åv¤G¤À¹Ïºô¤¤¨D³Ì¤j¹ï¶°¡C
- (¤þ)ºô¸ô³Ì¤j¬y°ÝÃD¡C
- (¤B)¤@¯ë¹Ïºôªº¹ï¶°°ÝÃD¡C
- (¥³)¤GÀÀ°}¬Û¥æ°ÝÃD¡C
¦³Ãö(¥Ò)³o¤è¦V¬Opºâ¾÷ºâªkªº½ÒÃD¡Cì¨Ó¦I¤ú§Qºâªk©Ò»Ýªº®É¶¡¬OO(n3),
¨ä¤¤n¬O³»ÂI¼Æ,²z½×¤W¬O©Ò¿×ªº¦h¶µ¦¡ºâªk(polynomial algorithm),¤ñ°_
O(2n)ªººâªk¦n¤W¤Ñ,¦ýºë¯q¨Dºë,¯u¥¿¹ê»Ú±N³oºâªk¼g¬°µ{¦¡®É,
Á٧Ʊæ¯à§ó§Ö§ó¬Ù®É,°ò©ó³oÓì«h,
Hopcroft©MKarpµo®i¥X¤@ÓO(n2.5)ªººâªk¡C
(¤A)¬O¤@Ó¦ÛµMªº±À¼s¡A¦bì¨Óªº¤G¤À¹ÏºôG=(X,Y,E)¤W¡A¦pªG¨CÃä
e¹ïÀ³¤@Ó¥¿¹ê¼Æw(e)¡Aì¨Ó°ÝÃDªº¤@Ó¦ÛµM±À¼s¬O¡G¨D¤@¹ï¶°M¨Ï±o
È·¥¤j¡C¦bw(e)=1ªº±¡ªp¡A¬Û·í©ó¨D¹ï¶°M¨Ï|M|
¬°·¥¤j,´N¬Oì°ÝÃD¡C¦b±B«Ã°ÝÃDùØ¡A¦pªG±Nw(e)µø¬°´C±Cºó¦X¤@¹ï¨}½t¦¬¨ìªº¬õ¥]¡A¤ÀÅv¤G¤À¹Ïºô¹ï¶°°ÝÃD´N¬Û·í©ó´C±C·Q¿ìªk©Ô¬õ½uÁȨú³Ì¦h¬õ¥]Á`¿ú¼Æªº°ÝÃD¡C
±Nì¨Ó¦I¤ú§Qºâªk¾A·íªº×§ï¡A¥[¤JÅv¼Æ¡A¥i¥H¦¨¥\ªº¸Ñ¨M³o°ÝÃD¡F
³o¤èªkªººë¯«¹ê¦b´N¬O½u©Ê³W¹º¤¤ primaldual simplex ¤èªkªº°_·½,
©¹«á³o¤èªk³Q¦ò¨à§J´Ë¡B¦ã¼w¼Ò´µµ¥¤H¤@¦Aªº¥Î¨ì¨ä¥L°ÝÃD¤W¡C
§Ṳ́@¶}©l´N¤w¸g»¡¹L,¦b°Ãô¬Ý¨Ó,¤G¤À¹Ïºô¹ï¶°¬O¥L¬ã¨s¹Ïºô³s³q©Êªº¯S¨Ò¡F§â°Ãôªº²z½×µo´§¨ì·¥¦Üªº¬OºÖ¯S (Ford) ©M¦ò¨à§J´Ë¡A¥L̪º³Ì¤j¬y³Ì¤pºI
(maximum flow minimun cut) ²z½×¡A¬O³o¨Ç²z½×ªº¤@Ó°ª¼é¡A±N¬Û²§¥Nªí¨t¡B¬_¥§ô¤Î¨Èôªk§Q©w²z¡B°Ãô©w²z¡B²Ã¨àª×´µ¦³Ãö°¾§Ç¶°¦XÃì¤À¸Ñ©w²zºØºØ¯ÉÂøªº²z½×³£¯Ç¤J¤@ÓÅé¨t¤§¤U¡A¦³¤@®M§¹¾ãªº»¡ªk¡A¦b¤G¤Q¦~«áªº¤µ¤Ñ¬Ý¨Ó¡A³o¼Ëªº¤@²Î¤j·~¤´¬O¤Q¤À°¶¤jªº¡C
§Ú̦bÁ¿¦I¤ú§Q¤èªk®É´¿±Ôz¨©º¸»ô©w²z¡A³o©w²z¤£¥u¹ï¤G¤À¹Ïºô¦¨¥ß¡A¹ï¤@¯ë¹Ïºô³£¹ï¡A¦ý¬O¦I¤ú§Q¤èªk«o¤£¾A¥Î¨ì¤@¯ëªº¹Ïºô¡Aì¦]¦ó¦b©O¡H²{¦bÅý§Ú̬ݤ@Ó¨Ò¤l¡C
«ö·Óì¤èªk§Ú̱N±o¨ì
®Ú¾Úì¨ÓªºÁ¿ªk,³oªí¥Ü¤£¦s¦bM-¥iÂX±i¸ô®|,¦ý¬O¨Æ¹ê¤W
(v1,v2,v3,v4,v5, v6, v8,v9 ,v7, v10,)¬O¤@±øM-¥iÂX±i¸ô®|¡C
³y¦¨³o¼Ëªº¤@Ó¥Dnì¦]¬O¦b²Ä4¼hªº¨âÓ³»ÂIv8©M
v9¬Û¾F,
³o¦b¤G¤À¹Ïºô¤£¥i¯àµo¥Í¡C´N¦]¬°
,©Ò¥H¦b
C=(v3,v5,v8, v9,v6,v3)³oÓ°j¸ô¤¤,
§ÚÌ¥i¥H¥ô·N½Õ¸`¨Ï±o³oÓ°j¸ôªº¥ô¤@ÂI³£¬Û·í©ó¥¿³»ÂI,
¦Ó¥i¥H±µ¥X¤@Ót³»ÂI,¨Ò¦p¹ï©óv5(t¸¹),
Y·Q¦¨v1(¥¿)
(t)
v3(¥¿)
(t)
v9(¥¿)
(ì¨Ó¥¿,¬Ý¦¨t)
v5(ì¨Ót,¬Ý¦¨¥¿),¦P²z
v3,v5,v8,v9,v6 ³£¥i¥Hµø¬°¥¿³»ÂI,
¦b¦ã¼w¼Ò´µ¬Ý¨Ó,³oÓ°j¸ô C ¹³¤@¦·º}«Gªºªá (Blossom),
¥Lªº°µªk¬O±N³o¦·ªá¬Ý¦¨¤@ÂI,¤]´N¬O§â C ªº©Ò¦³³»ÂIÁY¦¨¤@ÂI,¦AÄ~Äòì¨Óªº°µªk,
ª½¨ì§ä¥X¤@±ø M-¥iÂX±i¸ô®|©ÎÃÒ©ú¤£¦s¦b¬°¤î,
³oÓ¹Lµ{¤¤¥i¯à¤@¦A«½Æ¸I¨ì±Nªá¦·ÁY¦¨¤@ÂI³o¥ó¨Æ¡C
¥H¤W´N¬O¦ã¼w¼Ò´µ¡uªá¦·ºâªk¡v(Blossom algorithm)ªºÂ²³æ»¡ªk¡C
³oÓºâªk¤]¥i¥H±À¼s¨ì³»ÂI¥[Åvªº°ÝÃD¡C
³Ì«á,±N¤G¤À¹Ïºô¨D³Ì¤j¹ï¶°ªº°ÝÃD¬Ý¦¨¨âÀÀ°}¬Û¥æ°ÝÃD,¥i¦^¨ì¨Ò6¡C
¦pªGG=(X, Y,E)¬O¤@Ó¤G¤À¹Ïºô,«h¥i¥H©w¸q¨âÓÀÀ°}
¤Î
¡C
¨ä¤¤
ªº¨C¤@³»ÂI³Ì¦h¬O I¤¤¤@±øÃ䪺ºÝÂI },
ªº¨C¤@³»ÂI³Ì¦h¬O J¤¤¤@±øÃ䪺ºÝÂI }¡C
¤£ÃøÅçÃÒMx©MMy¬O©w¸q¦bE¤Wªº¨âÓÀÀ°},¦Ó¥BM¬OGªº¤@ӹﶰY¥BºûY
,©Ò¥H¨DG¤¤³Ì¤j¹ï¶°µ¥©ó¨D³Ì¤j
Mx¤ÎMy¿W¥ß¶°¡C¤@¯ë¨Ó»¡,¦pªGµ¹¨âÓ©w¸q¦b¦P¤@¶°¦XS¤WªºÀÀ°}
¤Î
,¤]¥i¥H°Ý¦P¼Ëªº°ÝÃD,
¦Ó³o°ÝÃDªº¸Ñªk±N¥H«eºô¸ô¬yªº¹D²z¥Î¨ì·¥P,¬O¤@ӫܦ¨¥\ªº±À¼s¡C
ºî¦Ó¨¥¤§,±q1930¦~¥Nªº¬Û²§¥Nªí¨t¨ì¨âÀÀ°}¬Û¥æ°ÝÃD,
¨äºë¯«©M§Þ¥©¬O¦I¤ú§Q¤èªkªº¤@¦A©µ¦ù©MÂX±i¡C³o¤@¸ô¬ã¨s¡A
¦bªñ¤G¤Q¦~¨Ó¬O«Ü¬ð¥X¥O¤HÆf¥Øªº¡C
- 1.¤ý¤l«L¡q¬Û²§¥Nªí¨t²Î²¤¶¡r¡A¡m¼Æ¾Ç¶Ç¼½¡n²Ä¥|¨÷²Ä¥|´Á(69¦~12¤ë)²Ä8-12¶,¡C
- 2.Liu,¡mIntroduction to Combinatorial Mathematics¡n, New York, McGraw-Hill, 1968.
- 3.Mirsky,¡mTransversal Theory¡n, New York, Academic Press, 1971.
- 4.Welsh,¡mMatroid Theory¡n,New York, Academic Press, 1976.
|
|
|