¤W­¶¡@1¢x2¢x3¢x4¡@¤w¦b³Ì«á¤@­¶

¬Û²§¥Nªí¨t¥j¤µ½Í ¡]²Ä 4 ­¶¡^

±iÂíµØ

 

­º­¶ | ·j´M

¡D­ì¸ü©ó¼Æ¾Ç¶Ç¼½²Ä¤Q¨÷²Ä¤@´Á
¡E¹ï¥~·j´MÃöÁä¦r
 
4.´X­Óµo®i¤è¦V

¦I¤ú§QºâªkÀ±¸É¤F¦ó¤ó©w²z­pºâ¤Wªº§xÃø,¬Û»²¬Û¦¨¬°¤@®M§¹¬ü²z½×¡C ±q³o¬°¥XµoÂI,¦³´X­Óµo®i¤è¦V,¥¦­Ì¨Ã¤£¬O¤¬¬Û¿W¥ß,¦Ó¬O¤¬¬Û°Ñ¦Ò,¤¬¸É¦³µL¡C §Ú­Ì¦CÁ|¤­­Ó¤è¦V,²¤­z¤j·§¡C

(¥Ò)§ó§Öªººâªk¡C
(¤A)¥[Åv¤G¤À¹Ïºô¤¤¨D³Ì¤j¹ï¶°¡C
(¤þ)ºô¸ô³Ì¤j¬y°ÝÃD¡C
(¤B)¤@¯ë¹Ïºôªº¹ï¶°°ÝÃD¡C
(¥³)¤GÀÀ°}¬Û¥æ°ÝÃD¡C

¦³Ãö(¥Ò)³o¤è¦V¬O­pºâ¾÷ºâªkªº½ÒÃD¡C­ì¨Ó¦I¤ú§Qºâªk©Ò»Ýªº®É¶¡¬OO(n3), ¨ä¤¤n¬O³»ÂI¼Æ,²z½×¤W¬O©Ò¿×ªº¦h¶µ¦¡ºâªk(polynomial algorithm),¤ñ°_ O(2n)ªººâªk¦n¤W¤Ñ,¦ýºë¯q¨Dºë,¯u¥¿¹ê»Ú±N³oºâªk¼g¬°µ{¦¡®É, Á٧Ʊæ¯à§ó§Ö§ó¬Ù®É,°ò©ó³o­Ó­ì«h, Hopcroft©MKarpµo®i¥X¤@­ÓO(n2.5)ªººâªk¡C

(¤A)¬O¤@­Ó¦ÛµMªº±À¼s¡A¦b­ì¨Óªº¤G¤À¹ÏºôG=(X,Y,E)¤W¡A¦pªG¨CÃä e¹ïÀ³¤@­Ó¥¿¹ê¼Æw(e)¡A­ì¨Ó°ÝÃDªº¤@­Ó¦ÛµM±À¼s¬O¡G¨D¤@¹ï¶°M¨Ï±o $\Sigma_{e\in M}w(e)$­È·¥¤j¡C¦bw(e)=1ªº±¡ªp¡A¬Û·í©ó¨D¹ï¶°M¨Ï|M| ¬°·¥¤j,´N¬O­ì°ÝÃD¡C¦b±B«Ã°ÝÃDùØ¡A¦pªG±Nw(e)µø¬°´C±Cºó¦X¤@¹ï¨}½t¦¬¨ìªº¬õ¥]¡A¤ÀÅv¤G¤À¹Ïºô¹ï¶°°ÝÃD´N¬Û·í©ó´C±C·Q¿ìªk©Ô¬õ½uÁȨú³Ì¦h¬õ¥]Á`¿ú¼Æªº°ÝÃD¡C ±N­ì¨Ó¦I¤ú§Qºâªk¾A·íªº­×§ï¡A¥[¤JÅv¼Æ¡A¥i¥H¦¨¥\ªº¸Ñ¨M³o°ÝÃD¡F ³o¤èªkªººë¯«¹ê¦b´N¬O½u©Ê³W¹º¤¤ primaldual simplex ¤èªkªº°_·½, ©¹«á³o¤èªk³Q¦ò¨à§J´Ë¡B¦ã¼w¼Ò´µµ¥¤H¤@¦Aªº¥Î¨ì¨ä¥L°ÝÃD¤W¡C

§Ú­Ì¤@¶}©l´N¤w¸g»¡¹L,¦b°Ã­ô¬Ý¨Ó,¤G¤À¹Ïºô¹ï¶°¬O¥L¬ã¨s¹Ïºô³s³q©Êªº¯S¨Ò¡F§â°Ã­ôªº²z½×µo´§¨ì·¥¦Üªº¬OºÖ¯S (Ford) ©M¦ò¨à§J´Ë¡A¥L­Ìªº³Ì¤j¬y³Ì¤pºI (maximum flow minimun cut) ²z½×¡A¬O³o¨Ç²z½×ªº¤@­Ó°ª¼é¡A±N¬Û²§¥Nªí¨t¡B¬_¥§­ô¤Î¨È­ôªk§Q©w²z¡B°Ã­ô©w²z¡B²Ã¨àª×´µ¦³Ãö°¾§Ç¶°¦XÃì¤À¸Ñ©w²z$\cdots\cdots$ºØºØ¯ÉÂøªº²z½×³£¯Ç¤J¤@­ÓÅé¨t¤§¤U¡A¦³¤@®M§¹¾ãªº»¡ªk¡A¦b¤G¤Q¦~«áªº¤µ¤Ñ¬Ý¨Ó¡A³o¼Ëªº¤@²Î¤j·~¤´¬O¤Q¤À°¶¤jªº¡C

§Ú­Ì¦bÁ¿¦I¤ú§Q¤èªk®É´¿±Ô­z¨©º¸»ô©w²z¡A³o©w²z¤£¥u¹ï¤G¤À¹Ïºô¦¨¥ß¡A¹ï¤@¯ë¹Ïºô³£¹ï¡A¦ý¬O¦I¤ú§Q¤èªk«o¤£¾A¥Î¨ì¤@¯ëªº¹Ïºô¡A­ì¦]¦ó¦b©O¡H²{¦bÅý§Ú­Ì¬Ý¤@­Ó¨Ò¤l¡C



«ö·Ó­ì¤èªk§Ú­Ì±N±o¨ì



®Ú¾Ú­ì¨ÓªºÁ¿ªk,³oªí¥Ü¤£¦s¦bM-¥iÂX±i¸ô®|,¦ý¬O¨Æ¹ê¤W (v1,v2,v3,v4,v5, v6, v8,v9 ,v7, v10,)¬O¤@±øM-¥iÂX±i¸ô®|¡C ³y¦¨³o¼Ëªº¤@­Ó¥D­n­ì¦]¬O¦b²Ä4¼hªº¨â­Ó³»ÂIv8©M v9¬Û¾F, ³o¦b¤G¤À¹Ïºô¤£¥i¯àµo¥Í¡C´N¦]¬° $(v_8,v_9)\in E$,©Ò¥H¦b C=(v3,v5,v8, v9,v6,v3)³o­Ó°j¸ô¤¤, §Ú­Ì¥i¥H¥ô·N½Õ¸`¨Ï±o³o­Ó°j¸ôªº¥ô¤@ÂI³£¬Û·í©ó¥¿³»ÂI, ¦Ó¥i¥H±µ¥X¤@­Ó­t³»ÂI,¨Ò¦p¹ï©óv5(­t¸¹), ­Y·Q¦¨v1(¥¿) $\longrightarrow v_2$(­t) $\longrightarrow$ v3(¥¿) $\longrightarrow v_6$(­t) $\longrightarrow$ v9(¥¿) $\longrightarrow v_8$(­ì¨Ó¥¿,¬Ý¦¨­t) $\longrightarrow$ v5(­ì¨Ó­t,¬Ý¦¨¥¿),¦P²z v3,v5,v8,v9,v6 ³£¥i¥Hµø¬°¥¿³»ÂI, ¦b¦ã¼w¼Ò´µ¬Ý¨Ó,³o­Ó°j¸ô C ¹³¤@¦·º}«Gªºªá (Blossom), ¥Lªº°µªk¬O±N³o¦·ªá¬Ý¦¨¤@ÂI,¤]´N¬O§â C ªº©Ò¦³³»ÂIÁY¦¨¤@ÂI,¦AÄ~Äò­ì¨Óªº°µªk, ª½¨ì§ä¥X¤@±ø M-¥iÂX±i¸ô®|©ÎÃÒ©ú¤£¦s¦b¬°¤î, ³o­Ó¹Lµ{¤¤¥i¯à¤@¦A­«½Æ¸I¨ì±Nªá¦·ÁY¦¨¤@ÂI³o¥ó¨Æ¡C ¥H¤W´N¬O¦ã¼w¼Ò´µ¡uªá¦·ºâªk¡v(Blossom algorithm)ªºÂ²³æ»¡ªk¡C ³o­Óºâªk¤]¥i¥H±À¼s¨ì³»ÂI¥[Åvªº°ÝÃD¡C

³Ì«á,±N¤G¤À¹Ïºô¨D³Ì¤j¹ï¶°ªº°ÝÃD¬Ý¦¨¨âÀÀ°}¬Û¥æ°ÝÃD,¥i¦^¨ì¨Ò6¡C ¦pªGG=(X, Y,E)¬O¤@­Ó¤G¤À¹Ïºô,«h¥i¥H©w¸q¨â­ÓÀÀ°} $M_x=(E,\vartheta _x)$¤Î $M_y=(E,\vartheta _y)$¡C ¨ä¤¤

$\vartheta _x=\{I\subseteq E: X$ªº¨C¤@³»ÂI³Ì¦h¬OI¤¤¤@±øÃ䪺ºÝÂI },
$\vartheta _y=\{J\subseteq E: Y$ªº¨C¤@³»ÂI³Ì¦h¬OJ¤¤¤@±øÃ䪺ºÝÂI }¡C

¤£ÃøÅçÃÒMx©MMy¬O©w¸q¦bE¤Wªº¨â­ÓÀÀ°},¦Ó¥BM¬OGªº¤@­Ó¹ï¶°­Y¥Bºû­Y $M\in \vartheta _x\bigcap \vartheta _y$,©Ò¥H¨DG¤¤³Ì¤j¹ï¶°µ¥©ó¨D³Ì¤j Mx¤ÎMy¿W¥ß¶°¡C¤@¯ë¨Ó»¡,¦pªGµ¹¨â­Ó©w¸q¦b¦P¤@¶°¦XS¤WªºÀÀ°} $M_1=(S,\vartheta _1)$¤Î $M_2=(S,\vartheta _2)$,¤]¥i¥H°Ý¦P¼Ëªº°ÝÃD, ¦Ó³o°ÝÃDªº¸Ñªk±N¥H«eºô¸ô¬yªº¹D²z¥Î¨ì·¥­P,¬O¤@­Ó«Ü¦¨¥\ªº±À¼s¡C

ºî¦Ó¨¥¤§,±q1930¦~¥Nªº¬Û²§¥Nªí¨t¨ì¨âÀÀ°}¬Û¥æ°ÝÃD, ¨äºë¯«©M§Þ¥©¬O¦I¤ú§Q¤èªkªº¤@¦A©µ¦ù©MÂX±i¡C³o¤@¸ô¬ã¨s¡A ¦bªñ¤G¤Q¦~¨Ó¬O«Ü¬ð¥X¥O¤HÆf¥Øªº¡C

1.¤ý¤l«L¡q¬Û²§¥Nªí¨t²Î²¤¶¡r¡A¡m¼Æ¾Ç¶Ç¼½¡n²Ä¥|¨÷²Ä¥|´Á(69¦~12¤ë)²Ä8-12­¶,¡C
2.Liu,¡mIntroduction to Combinatorial Mathematics¡n, New York, McGraw-Hill, 1968.
3.Mirsky,¡mTransversal Theory¡n, New York, Academic Press, 1971.
4.Welsh,¡mMatroid Theory¡n,New York, Academic Press, 1976.

   

¤W­¶¡@1¢x2¢x3¢x4¡@¤w¦b³Ì«á¤@­¶

¦^­¶­º
 
¡]­Y¦³«ü¥¿¡BºÃ°Ý¡K¡K¡A¥i¥H¦b¦¹ ¯d¨¥ ©Î ¼g«H µ¹§Ú­Ì¡C¡^
EpisteMath

EpisteMath (c) 2000 ¤¤¥¡¬ã¨s°|¼Æ¾Ç©Ò¡B¥x¤j¼Æ¾Ç¨t
¦Uºô­¶¤å³¹¤º®e¤§µÛ§@Åv¬°­ìµÛ§@¤H©Ò¦³


½s¿è¡GªL§g©É ¢A ®Õ¹ï¡G¶À©ÉºÑ ¢A ø¹Ï¡G²¥ßªY ³Ì«á­×§ï¤é´Á¡G4/26/2002