¤W­¶¡@1¢x2¢x3¢x4¡@¦¸­¶

¬Û²§¥Nªí¨t¥j¤µ½Í ¡]²Ä 3 ­¶¡^

±iÂíµØ

 

­º­¶ | ·j´M

¡D­ì¸ü©ó¼Æ¾Ç¶Ç¼½²Ä¤Q¨÷²Ä¤@´Á
¡E¹ï¥~·j´MÃöÁä¦r
 
3.¹q¸£±a¨Óªº½ÄÀ»¡G¦I¤ú§Qºâªk

¦b1960¦~¥Nªº¼ö¼éùØ¡A¥t¥~¤@­Ó²§­x¬ð°_ªº¬O¹q¸£¡C ¹q¸£ªº¿³°_§¹¦¨¤HÃþ§Ö³t­pºâªº¬ü¹Ú¡A³\¦h¥H«e¤H­Ì¤£´±°ø±æªº°ÝÃD¡A ¦A«×³Q®³¥X¨Ó­É§U¹q¸£µL«è¨¥ªº§Ö³t­pºâ¶¶§Q§¹¦¨¡C¦ý¬O¹q¸£ªº§Ö³t¤]¦³¨ä¤@©wªº·¥­­¡A ©ó¬O¤@ªù·s¿³ªº¾Ç°Ý-ºâªk(Algorithm)-¼sªxªº¬ã¨s¡C

Á|¨Ò¨Ó»¡¡A¯¸¦b²z½×ªºÆ[ÂI¡A¦ó¤ó©w²zµLºÃªº¬O¤@­Ó·¥º}«Gªº©w²z¡A ¦ý±q¹ê¥Îªº¥ß³õ¨Ó¬Ý¡A¥¦¦ü¥G²@µLµo´§ªº¾l¦a¡CÀH«Kµ¹n­Ó¶°¦X¡A ­Y·Q¥Î¦ó¤ó©w²zÅçÃÒ¬O§_¦s¦b¤@­Ó¬Û²§¥Nªí¨t¡A ´N¥²¶·§â 2n-1 ºØ¤£¦Pªº k ­Ó¶°¦X®³¥X¨Ó¡A ¬Ý¥¦­ÌÁp¶°¬O§_¦s¦b³Ì¤Ök­Ó¤¸¯À¡C¤@¤è­±¡A·ín¤j®É¡A2n ¤j±o¤£¥i«äij¡A ¦AªÌ§Y¨ÏÅçÃÒ¥Xªºµª®×¬OªÖ©wªº¡A¦ó¤ó©w²z¤]¨S§i¶D§Ú­Ì¨º¤@²Õ¬O¬Û²§¥Nªí¨t¡A ¬°¦¹¡A§Ú­Ì»Ý­n¤@­Ó¦³®Äªººâªk¡C

§â¬Û²§¥Nªí¨tÂà´«¦¨¤G¤À¹Ïºô (bipartite graph) ¤W¨D¹ï¶° (matching) ªº°ÝÃD¬O¤@ºØ¤è«Kªº»y¨¥¡C ¤@¯ë¦Ó¨¥¡A¤@­Ó¹Ïºô (graph) ¥]§t¦³­­­Ó³»ÂI (vertices) ¥H¤Î¤@¨ÇÁp±µ¨â­Ó³»ÂIªºÃä (edges)¡A¦p¹Ï1 ªº A1,A2,A3,A4,a,b,c,d ¬O³»ÂI¡A (A1,a),(A1,b),$\cdots\cdots$ ¬OÃä¡A¦ý¹Ï¤W (A1,c) ©M (A3,b) ¨âÃä¥t¥~¬Û¥æªºÂI¨Ã¤£ºâ°µ³»ÂI¡A´«¨¥¤§¡AÁp±µ¬Y¨â³»ÂIªºÃä¨ä¹ê¥uªí¥Ü³o¨âÂI¬O ¡u¦³Ãö«Y¡v©Î¡u¬Û¾F¡v¦Ó¤w¡A¦Ü©ó¥Îª½½u©Î¦±½uªí¥Ü¡A¹êµL°Ï§O¡C



¹Ï1

¹Ï1ªº¹Ïºô´N¬O©Ò¿×ªº¤G¤À¹Ïºô¡A¦]¬°³»ÂI¥i¥H¤À¬°¨â³¡¤À¡A¨ä¤¤¥ô¤@³¡¤À¤ºªº¥ô¤G³»ÂI¤£¬Û¾F¡C³o­Ó¤G¤À¹Ïºô¨Æ¹ê¤W¤]´N¬O¨Ò1ªº¶°±Úªº¹Ïºôªí¥Üªk¡F $a\in A_1$ ©Ò¥H (A1,a) ¬O¤@±øÃä¡A $b \not \in A_2$ ©Ò¥H (A2,b) ¤£¬O¤@±øÃä¡C (A1,A2,A3,A4)¬O¤@²Õ¬Û²§¥Nªí(a,b,c,d),¦b¹Ïºô¤W¬Û·í©ó(A1,a), (A2,c),(A3,b),(A4,d)¥|Ãä,¤À§Oªí¥Ü$a\in A_1$,$c\in A_2$, $b\in A_3$,$d\in A_4$;³o¥|Ã䤤ªº¥ô¨âÃä¨S¦³¦@¦P³»ÂI, ¦]¬°§Ú­Ì§ä¤£¦P¶°¦Xªº¬Û²§¥Nªí,¹Ï2¤¤²Ê½uªí¥Ü³o¥|Ãä¡C ¹³³oºØ¨â¨â¤£§t¦@¦P³»ÂIªºÃä©Ò²Õ¦¨ªº¶°¦XºÙ¬°¹ï¶°(matching)¡C ©Ò¥H¨D$(A_1,\cdots$ $\cdots,A_n)$ªº¤@²Õ¬Û²§¥Nªí, ¬Û·í©ó¦b¥¦©Ò¹ïÀ³ªº¤G¤À¹Ïºô¤¤§ä¤@­Ó¦³nÃ䪺¹ï¶°¡C



¹Ï2

¥Î¤G¤À¹Ïºôªí¥Ü¶°¦X±Ú $(A_1,\cdots\cdots,A_n)$ªº¥t¤@¦n³B¬O¥i¥H¬Ý¥X¶°¦XAi©M¤¸¯Àajªº¹ïºÙ©Ê, ¦pªG¹ï¨C¤@¤¸¯Àaj,©w¸q¶°¦X $B_j=\{i;\:a_j\in A_i\}$, (A1,$\cdots\cdots$,An) ©M (B1,$\cdots\cdots$,Bm) ©Ò¹ïÀ³¥X¨Óªº¤G¤À¹Ïºô¹ê»Ú¤W¬O¦P¤@¹Ïºô(¥i¯à³»ÂI¥ª¥k¬Û¤Ï,¦WºÙ¦U²§)¡C¦b±B«Ã°ÝÃD¤¤,³oªí¥Ü¨k¤k¥­µ¥¡C

ÀH«Kµ¹¤@¶°¦X±Ú (A1,$\cdots\cdots$,An) ¤£¤@©w¦s¦b¬Û²§¥Nªí¨t, ©Ò¥H¦b¥¦ªº¤G¤À¹Ïºô¤¤,¤]¤£¨£±o¯à§ä¨ì¤@­ÓnÃ䪺¹ï¶°¡C¤@¯ë¨Ó»¡, §Ú­Ì¦³¿³½ìªº¬O,ÀH«Kµ¹¤@­Ó¤G¤À¹Ïºô,¨D¤@­Ó¨ã¦³³Ì¦hÃ䪺¹ï¶°, ¦³¦Wªº¦I¤ú§Q¤èªk(Hungarian method)´N¬O¸Ñ¨M³o°ÝÃDªº¦nºâªk¡C

µ¹©w¤@­Ó¤G¤À¹ÏºôG=(X,Y,E),¨ä¤¤X©MY¦X¦¨©Ò¦³³»ÂI,E¬OÃ䶰, ¥ô¤@Ã䪺¤@ºÝÂI¦bX¤º,¥t¤@ºÝÂI¦bY¤º¡C¥tµ¹©wG¤¤ªº¤@­Ó¹ï¶°M, ¦p¹Ï3(a)¬O¤@­Ó¨Ò¤l,²Ê½u¥Nªí¹ï¶°M¡C



¹Ï3(a)



¹Ï3(b)

G ªº¤@±øM-¥iÂX±i¸ô®| (M-augmenting path) ¬O§t¦³ 2n+1 ­Ó³»ÂIªº¤@±ø¸ô®| (v0,v1,v2,$\cdots\cdots$, v2n,v2n+1)¡A¨ä¤¤ $(v_{2i},v_{2i+1})\in E\setminus M$, $i=0,1,\cdots\cdots,n$, ¦ý¬O $(v_{2i-1},v_{2i})\in M$, $i=1,\cdots\cdots,n$ ¨Ã¥B v0 ©M v2n+1 ¬OM-¼ÉÅS³»ÂI(M-exposed vertices)¡A ¤]´N¬O v0 ©M v2n+1 ¤£¬O M ¤º¥ô¦óÃ䪺ºÝÂI¡C ¨Ò¦p¹Ï3(a)¤¤ (x3,y1,x1,y3) ¬O¤@±ø M-¥iÂX±i¸ô®|¡C

§ä¨ì¤@±øM-¥iÂX±i¸ô®| P ªº¦n³B¬O¡A¦pªG±NM¦bPªºÃä¥h±¼¡A´«¤WP ¤¤¤£¦bMªºÃä¡A±N³y¦¨¤@­Ó·s¹ï¶°M*¡A¨äÃä¼Æ¤ñ­ì¨ÓMªºÃä¼Æ¼W¥[1¡C ¹Ï3(b)´N¬O¥Î¤W­zM-¥iÂX±i¸ô®|°µ¥X¨Ó¬°M*¡C

¨©º¸»ô©w²z(Berge Theorem)¡G ¥ô¤@¹Ïºô¡]¤£¤@©w¬O¤G¤À¹Ïºô¡^¤¤ªº¹ï¶°M¬O³Ì¤j¹ï¶°ªº¥R¤À±ø¥ó¬O¤£¦s¦b M-¥iÂX±i¸ô®|¡C

¦I¤ú§Q¤èªk²³æªº»¡´N¬O±q¤G¤À¹ÏºôG=(X,Y,E)ªº¥ô·N¹ï¶°M(¨Ò¦pªÅ¶°¦X) ¶}©l,¦³¨t²Îªº´M§äM-¥iÂX±i¸ô®|¡A­Y§ä¨ì´N±o¨ì¤@­Ó§ó¤jªº¹ï¶°¡A ¦AÄ~Äò¤@ª½¨ì¤£¦s¦bM-¥iÂX±i¸ô®|¬°¤î¡C ´M§äM-¥iÂX±i¸ô®|ªº¤èªk¦p¤U­z¡C

(¥Ò) $i\longleftarrow 0$;¦C¥X©Ò¦³M-¼ÉÅS³»ÂI·í§@²Äi¼h¡C
(¤A) ·íi¬O°¸¼Æ®É:¨Ì¦¸¦C¥X©M²Äi¼h³»ÂI¬Û¾Fªº³»ÂI·í§@²Äi+1¼h, ¦ý³Q¦C¥X¹Lªº³»ÂI¤£¦A­«½Æ;­Y²Äi+1¼h¨S¦³³»ÂI«h°±¤î, ªí¥Ü¨S¦³M-¥iÂX±i¸ô®|¡C·íi¬O©_¼Æ®É: ­Y¦³¬Y­Ó²Äi¼hªº³»ÂI¬OM-¼ÉÅS³»ÂI, ªí¥Ü§ä¨ì¤@±øM-¥iÂX±i¸ô®|; §_«h±N²Äi¼h¨C¤@³»ÂI©ÒÁp±µªº¤@±øMÃä§ä¥X¨Ó, ¥t¤@ºÝÂI·í§@²Äi+1¼h³»ÂI¡C
(¤þ) $i\longleftarrow i+1$;¦^¨ì(¤A)­«°µ¡C

¥H¹Ï3(a)¬°¨Ò,¥i¥H±o¨ì¤U¹Ï;¨ä¤¤§Ú­Ì½á¤©°¸(©_)¼Æ¼hªº³»ÂI¥H¥¿(­t)¸¹, ³o¬O¬°¤F¥H«á»¡©ú¤è«K¡C



¹Ï4

¦]¬°y3(­t¸¹)¬OM-¼ÉÅS³»ÂI,©Ò¥H§ä¤@±øM-¥iÂX±i¸ô®|, ´N¬O (y3,x1,y1,x3),³o¬O¥Ñy3­Ëªð¦^¥h§ä¨ìªº¡C ¥Ñ³o­ÓM-¥iÂX±i¸ô®|±o¨ì¤@­Ó§ó¤jªº¹ï¶°,¦p¹Ï3(b)©Ò¥Ü, ¦A°µ¤@¦¸±o¨ì¤U¹Ï,ªí¥Ü¤£¦s¦bM-¥iÂX±i¸ô®|,©Ò¥H¤w¸g§ä¨ì³Ì¤j¹ï¶°¡C



¹Ï5

   

¤W­¶¡@1¢x2¢x3¢x4¡@¦¸­¶

¦^­¶­º
 
¡]­Y¦³«ü¥¿¡BºÃ°Ý¡K¡K¡A¥i¥H¦b¦¹ ¯d¨¥ ©Î ¼g«H µ¹§Ú­Ì¡C¡^
EpisteMath

EpisteMath (c) 2000 ¤¤¥¡¬ã¨s°|¼Æ¾Ç©Ò¡B¥x¤j¼Æ¾Ç¨t
¦Uºô­¶¤å³¹¤º®e¤§µÛ§@Åv¬°­ìµÛ§@¤H©Ò¦³


½s¿è¡GªL§g©É ¢A ®Õ¹ï¡G¶À©ÉºÑ ¢A ø¹Ï¡G²¥ßªY ³Ì«á­×§ï¤é´Á¡G4/26/2002