¥j§Æþ´X¦ó¤T¤j°ÝÃD ¡]²Ä 5 ¶¡^ ±d©ú©÷
|
¡Dì¸ü©ó¼Æ¾Ç¶Ç¼½²Ä¤K¨÷²Ä¤G´Á¡B²Ä¤K¨÷²Ä¤T´Á¤À¨â´Á¥Z¥X ¡D§@ªÌ·í®É¥ô±Ð©ó¥x¤j¼Æ¾Ç¨t ¡EµùÄÀ ¡E¹ï¥~·j´MÃöÁä¦r |
¤è¶ê°ÝÃD¡B¤Tµ¥¤À¨¤°ÝÃD»P¿¥ß¤è°ÝÃD¡AÁöµM¸¹ºÙ´X¦ó¤T¤j°ÝÃD¡A¥i¬O¦b¤Q¤K¡B¤Q¤E¥@¬ö¡A¨Ã¨S¦³¤Ó¦hªº´X¦ó¾Ç®a¬ã¨s³o¨Ç°ÝÃD¡C®É¥NÅܤF¡A´X¦ó¤T¤j°ÝÃD¦b¥j§Æþªº½T¬O¼öªùªº°ÝÃD¡A¦b¤Q¤E¥@¬ö«o³vº¥¥¢¥h¨ä¥ú±m¡C ¤Q¤E¥@¬ö³Ì¼öªùªº´X¦ó¾Ç¬O®g¼v´X¦ó (projective geometry)¡C¦b Carl Friedrich Gauss¡]1777¡ã1851¦~¡^¬ã¨s¤T«×ªÅ¶¡ªº¦±±¡ABernhard Riemann¡]1826¡ã1866¦~¡^¬ã¨s¥ô·Nºû¼Æªº·L¤À¬y«¬¤§«á¡A·L¤À´X¦ó (differential geometry) «á¨Ó©~¤Wµo®i¬°¤@¤ä¼Æ¾Ç¥D¬y¡C¥t¤@¤è±¡AAlfred Clebsch¡]1833¡ã1872¦~¡^¡BMax Noether¡]1844¡ã1921¦~¡^¡BAlexander von Brill¡]1842¡ã1935¦~¡^¹Á¸Õ§â Riemann ªº Abel ¿n¤Àªº²z½×«Ø¥ß¦b¤@ÓÄY®æªº´X¦óªº°ò¦¡A²×©ó«Ø¥ß¤F¥N¼Æ´X¦ó (alebraic geometry)¡A¥N¼Æ´X¦ó¤]¬O²{¥N¼Æ¾Çªº¤@¤ä¥D¬y¡C±q²{¦bªºÆ[ÂI¨Ó¬Ý¡A¤Q¤E¥@¬öªº´X¦ó¾Ç®a¦b¯dµ¹«á¥Nªººë¯«¿ò²£¤¤¡A¥H·L¤À´X¦ó»P¥N¼Æ´X¦ó³Ì¬°¬Ã¶Q¡C ¦b¥»¸`§ÚÌn²²¤¤¶²Ð¤Q¤E¥@¬ö´X¦ó¾Ç®aªº¥Dn¬¡°Ê¡G«D¼Ú´X¦ó¡B®g¼v´X¦ó¡B·L¤À´X¦ó Erlangen ºõ»â»P´X¦ó¾Çªº°ò¦¡C§Ṳ́£§Æ±æŪªÌ¥H¬°´X¦ó¤T¤j°ÝÃD¬O´X¦ó¾Ç¬ã¨sªº¥Dn½ÒÃD¢w¢w§¹¥þ¤£¬O³o»ò¦^¨Æ¡C ¤Q¤C¡B¤Q¤K¥@¬ö¬O·L¿n¤À»P¤ÀªR¾Ç¤@¤ä¿W¨qªº®É¥N¡C¦b¸ÑªR´X¦óµo®i¤§«á¡A¶Ç²Îªº´X¦ó¾Ç®a¦b®ð¶Õ¤WÅãµM¿é¤H¤@ºI¡C±q¤Q¤K¥@¬ö¥½´Áªk°ê¤j²©Rªº®É¥N¡A´X¦ó¾Çªº¬ã¨s¤S³vº¥¬¡ÅD°_¨Ó¡C¥Dnªºì¦]¬O Gaspard Monge ¡]1746¡ã1818¦~¡^§â·L¤Àªº¤èªk¤Þ¤J´X¦ó¾Çªº¬ã¨s¡A§Q¥Î´X¦ó¾Çªºª½Æ[¨Ó»²§U·L¤À¤èµ{ªº¬ã¨s¡CMonge ¤S¬O¤@ӲĤ@¬yªº±Ð®v¡A¦b¥Lªº±a»â¤§¤U¡ACharles Dupin¡]1784¡ã1873¦~¡^¡AVictor Poncelet¡]1788¡ã1867¦~¡^µ¥¤@§å´X¦ó¾Ç®a²×©ó¦¨ªø°_¨Ó¡C®Ú¾Ú Flelix Klein ªºÁ¿ªk¡AMonge ªº®ÑŪ°_¨Ó´N¹³¤p»¡¤@¼Ë¡A²M·¡¬yºZ¡A¤£ªK¤£½¯¡A¨ì³B¬OÂ×´I¬¡¼âªº·Q¹³¤O¡AÀH®É¦bÅã¥Ü¤@Ó¯u¥¿ªº´X¦ó¾Ç®aªº¼Ð°O¡G¹ï§Î¬Ûªº¼ö·R¡C ¦b¤¶²Ð¤Q¤E¥@¬ö´X¦ó¾Ç®aªº¥Dn¬¡°Ê®É¡A§ÚÌ·Q²K±Ô¤@¥ó¨Æ¡C¤Q¤E¥@¬ö¬O´X¦ó«ì´_¬¡¤Oªº®É¥N¡A¦³¤£¤Ö´X¦ó¾Ç®a«Ü¼ö¤ßªº¬ã¨s¼Ú¤ó¥±´X¦óªº°ÝÃD¡C¨Ò¦p¡AC.J. Brianchon¡]1785¡ã1864¦~¡^»P Poncelet ÃÒ©ú¤EÂI¶ê©w²z¡G¥±¤T¨¤§Î¤TÃ䪺¤¤ÂI¡B¤TÓ°ªªº««¨¬¡B¤TÓ°ªªº¤¤ÂI¡A³o¤EÓÂI¦@¶ê¡CKarl Wilhelm Feuerbach¡]1800¡ã1834¦~¡^¬Æ¦ÜÃÒ©ú¤EÂI¶êªº¶ê¤ß¦ì©ó Euler ½u¤W¡]¤º¤Á¶ê¶ê¤ß¡B¥~±µ¶ê¶ê¤ß¡B«¤ß¡A³o¤TÂI¦@½u¡A¥s°µ Euler ½u¡^¡A¨Ã¥B¤EÂI¶ê»P¸Ó¤T¨¤§Îªº¤TÓ¥~¤Á¶ê¬Û¤Á¡C³oÃþ¥±¤T¨¤§Î»P¶ê§Îªº¥j¥j©Ç©Çªº©w²z¦b¤Q¤E¥@¬öªì´Á²ª½¦p«B«á¬Kµ«¯ëªº¨ì³B´þ¥Í¡C¥i¬O§Ṳ́µ¤Ñ´X¥G³£¤£ª¾¹D³o¨Ç©w²z¡A¦b½Ò°ó¤W¤]¤£·|±Ð³o¨Ç©w²z¡C³o¨Ç¤T¨¤§Î»P¶ê§Îªº¬ü§®©w²z¨Ã¨S¦³¨Ï§Ú̹ï´X¦óªº·§©À§ó¥[²`¨è¡A ¤]µL§U©ó§Ú̵o®i¤@ºØ¬¡¼â²M´·ªºª½Æ[·Q¹³¤O (intuition)¡A¥¦¹³¤@¨Ç²`¶øªºÁ¼»yº¡¨¬¤HÃþªº¦n©_¤ß¡C¦b¸ÑªR´X¦óªº«Â¤OÅ¢¸n¤U¡A³oºØÁ¼»y¨ä¹ê¤£²q¤]½}¡C ¦]¦¹¾¨ºÞ³oÃþªº¬¡°Ê¦b¤Q¤E¥@¬öªì´Á¬Û·í¦h¡A§Ų́䣱N¨ä¦C¬°¤Q¤E¥@¬ö´X¦ó¾Ç®aªº¥Dn¬¡°Ê¡F¨Æ¹ê¤W¡AFelix Klein ªº¡m¤Q¤E¥@¬ö¼Æ¾Ç¥v¡n®Ú¥»´N¤£°Q½×³o¨Ç¨Æ¡C¾ú¥vªº¬x¬y·|Åýª÷¤lº}¯B°_¨Ó¡A¤]·|§âªd¨F±»®I¦bªe§É©³¤U¡C 6
|
®g¼v´X¦ó¬O¤Q¤E¥@¬ö´X¦ó¾Ç®aªº¥Dn¾Ô³õ¡A¼Ú¤ó´X¦ó¡B«D¼Ú´X¦ó¡B²y±´X¦óªº¶q«×©Ê½è (metric properties) ¦b®g¼v´X¦ó¤§¤º±o¨ì²Î¤@ªº³B²z¡Aºî¦X¾Ç¬£¡]synthetic school, ¥H Carnot¡BPoncelet¡BSteiner¡BVon Staudt¡BChasles ¬°¥D¡^»P¸ÑªR¾Ç¬£¡]analytic school, ¥H Möbius¡BPlücker¡BCayley ¬°¥D¡^¦b®g¼v´X¦óªº¬ã¨s®i¶}¥Õ¤b¾Ô¡C §Q¥Î®g¼v´X¦óªºÆ[ÂI¡A³\¦h¥j¦Ñªº©w²z¡A¦p Pappus ©w²z¡APascal ©w²z¡A³Q«·sÃÒ©ú¡A³\¦h·sªº¤èªk©M·sªº´X¦ó·§©À³Q´£¥X¨Ó¡C ®g¼vªº·§©À¡A¬O Gerard Desargues¡]1593¡ã1662¦~¡^³Ì¥ý´£¥Xªº¡C ¦³¦Wªº Desargues ©w²z»¡¡G¦pªG »P ªº¹ïÀ³³»ÂIªº³s½u AA',BB',CC' ¥æ©ó¤@ÂI O¡C¥O¨ä¹ïÀ³Ãä AB »P A'B'¡ABC »P B'C'¡ACA »P C'A' ¦U¥æ©ó P,Q,R¡C«h P,Q,R ¤TÂI¦@½u¡C(ŪªÌ¤£§«§â »P ·Q¦¨¸¨¦b¤£¦Pªº¥±¤W¡A§Q¥Î²³æªº¥ßÅé´X¦ó¡A«Ü®e©öÃÒ©ú P,Q,R ¦@½u¡C¦A¦Ò¼{¦P¤@¥±ªº±¡§Î¡C¥i¬O Desargues ªº®g¼v´X¦ó¨Ã¨S¦³¤Þ°_·í®É¼Æ¾Ç®aªºª`·N¡C
®g¼v´X¦óªº¶}³ÐªÌÀ³¸Óºâ V. Poncelet¡CPoncelet ¬O Monge ¦b¤Ú¾¤¤uÃÀ¾Ç®Õªº¾Ç¥Í¡A1812¦~ÀH Napoléon Bonaparte¡]®³¯}±[¡^»·©º«X°ê¡A¥L¦b¸Ó¦~ªº¥V©u·|¾Ô³Q«R¡A¥}¸T¦b¥ñº¸¥[ªeÃ䪺ÂÄ©Ô¦«¤Ò (Saratov)¡C¨â¦~ªººÊº»¥Í¬¡¨Ï¥L³Ð³y¤F®g¼v´X¦ó¡C¥L¦b¥}©Ð¤¤¡A¹ïµÛ¤@¸s¦P¬O¤uÃÀ¾Ç®Õ²¦·~ªºÃø¤Íµoªí¥Lªº¼Æ¾Ç¤ß±o¡C ¦b¨S¦³¥ô¦ó°Ñ¦Ò®Ñªº´c¦HÀô¹Ò¤U¡A¥L«·sÃÒ©ú Monge »P Carnot ±Ð¹Lªº©w²z¡AµM«á´£¥X¥L¦Û¤v·sªºµ²ªG¡C1815¦~¦^°ê¤§«á¡A§â³o¨Çµ²ªGµoªí¡A®g¼v´X¦ó©ó²j½Ï¥Í¡C Poncelet ´£¥X®g¼v (projectivity) ªº·§©À¡C¨Ò¦p¡A¥Ñ O ÂI§âª½½u l1 §ë®g¨ìª½½u l2¡A¦A¥Ñ O' ÂI§âª½½u l2 §ë®g¨ì l3¡C¦p¬O¾Þ§@¡A´X¦¸§ë®gªºµ²ªG´N¬O®g¼v¡C®g¼v§â l1 ªºÂI¤@¤@¹ïÀ³¨ì l3¡A¨Ò¦p A ¹ïÀ³¨ì A''¡AB ¹ïÀ³¨ì B''¡C§Ṳ́£¥u¥i¥H¹ïª½½u§@®g¼v¡A§Ṳ́]¥i¥H¹ï¥±§@®g¼v¡C
Poncelet ÁÙ´£¥X¹ï°¸©Ê (duality) ªº·§©À¡C¦b®g¼v¥±¤W¡AÂI©M½u¤¬¬°¹ï°¸¡C ¦]¦¹ Desargues ©w²zªº¹ï°¸©w²zÅܦ¨¡GY¦³ª½½u l1¡Al2¡Al3¡A»P l1'¡Al2'¡Al3'¡A ¦pªG li »P lj ªº¥æÂI¦@½u¡Ai=1,2,3¡A¥O li »P lj ¥æ©óÂI Pij¡Ali' »P lj' ¥æ©óÂI Pij'¡C«hª½½u , , ¦@ÂI¡C¡]Desargues ©w²zªº°f©w²z¡IŪªÌ¦Û¤vÃÒ©ú§a¡C¡^ ¦¹¥~ Poncelet ÁÙ´£¥X³sÄò©Êì²z (principle of continuity)¡BµL½a»·½u (the line at infinity)¡BµêÀÀÂI (imaginary points) µ¥µ¥·§©À¡C Poncelet ¬O¤@Ó¤£Ä@·N¨Ï¥Î®y¼Ðªººî¦X´X¦ó¾Ç®a¡C¦pªG¨Ï¥Î¸ÑªRªº¤èªk¡APoncelet ªº³\¦h·§©À³£¥i¥HÅܦ¨§ó¥[ªº©ú¥Õ²M·¡¡C ®g¼v¥±¬O¼Ú¤ó¥±¦A¥[¤W¤@±øµL½a»·ªº½u¡C®g¼v¥±ªº¨C¤@ÂI¥i¥H¥Î®y¼Ð (x0:x1:x2) ªí¥Ü¡A¨ä¤¤ x0,x1,x2 ¤£¥þ¬°¹s¡C¨âÓ®y¼Ð (x0:x1:x2) »P (y0:y1:y2) ¥Nªí¦P¤@ÂI¡A¦pªG , , ¡A£f¬O¬Y¤@Ó¤£¬°¹sªº¼Æ¡C¼Ú¤ó¥±¥i¥H¬Ý°µ {(x0: x1:x2):¨ä¤¤ ªºÂI¶°¦X¡F¦pªG§â , ¥N¤J¡A¼Ú¤ó¥±ªºÂI«ê¦n©M {(1:w:v)} ªºÂI¤@¤@¹ïÀ³¡C¦b¼Ú¤ó¥±¤Wªºª½½u¤èµ{¦¡ au+bv+c=0¡A¦b®g¼v¥±Åܦ¨ ax1+bx2+cx0=0¡C¼Ú¤ó¥±ªº©ßª«½u v=au2¡A¾ò¶ê ¡AÂù¦±½u ¦b®g¼v¥±¤À§OÅܦ¨ ax12-x0x2=0, a2b2x02-b2x12-a2x22=0, a2b2x02-b2x12+a2x22=0¡A¦ü¥G¨S¦³¤Ó¤jªº°Ï§O¡AµL½a»·ªº½u¬O x0=0¡C¨â±øª½½u¥²©w¬Û¥æ¡C ®g¼v¥±ªºª½½u¤èµ{¦¡¬J¬O ax0+bx1+cx2=0¡A§Ṳ́£§«§âª½½uªº®y¼Ð©w¬°(a:b:c)¡C³o¼Ë»¡¨Ó¡Aª½½u©MÂI°Z¤£¬O¤@¤@¹ïÀ³¤F¡H³o´N¬O Poncelet ªº¹ï°¸©Ê¡C ¦pªG¦b®g¼v¥±ªºÂI®y¼Ð¨ú¦Û¹ê¼Æ¡A´N±o¹ê®g¼v¥± (real projective plane)¡C¦pªG®e³\½Æ¼Æ¥X²{¦b³o¨ÇÂIªº®y¼Ð¡A´N±o¨ì½Æ®g¼v¥± (complex projective plane)¡C Poncelet ªº©Ò¿×µêÀÀÂI¥u¤£¹L¬O½Æ®g¼v¥±¤Wªº¤@ÓÂI¡CPoncelet ¥Ñ¹ê®g¼v¥±¥Xµo¡A«o¤£±o¤£¨«¨ì½Æ®g¼v¥±¡C©Ò¿×ªºµêÀÀÂI¨Ã¤£µêµLÄÆ´ù¡A¦Ó¬O²z½×ªº¥²µM²£ª«¡C ¦b½Æ®g¼v¥±¤W¡A¥ô¦ó¤@Ó«D°h¤Æªº¤G¦¸¦±½u¡A¸g¹L¾A·íªº®y¼ÐÅÜ´«¡A³£¥i¤Æ¦¨ x02+x12+x22=0 ªº§Î¦¡¡]¦ó¬G¡H½Ðª`·N¤@Ó¤T¶¥¹ïºÙ¯x°}¥²¥i¹ï¨¤¤Æ¡^¡C¦]¦¹¡A¦b½Æ®g¼v¥±¡A©Ò¿×©ßª«½u¡BÂù¦±½u¡B¾ò¶ê®Ú¥»´N¬O¦P¤@¥óªF¦è¡C Poncelet ªº³sÄò©Êì²z¥i¥H¥Î½Æ®g¼v¥±ªº Zariski topology ¨Ó¸ÑÄÀ¡F§ÚÌ©h¥B±q²¤¡C ŪªÌ¦pªG·Q¾Ç²ß¤@ÂI®g¼v´X¦ó¡AÅý§Ú±ÀÂË R. Hartshorne,¡mFundations of Projective Geometry¡n¡C ³o¥»®Ñ±qºî¦X´X¦ó¡B¸ÑªR´X¦ó©M¹B°Ê¸s (transformation groups) ¤TÓÆ[ÂI¨Ó±´°Q®g¼v´X¦ó¡A¬O¤@¥»¼g±o¬Û·íºë½oªº¤p®Ñ¡C §â½Æ®g¼v¥±¥[¥H±À¼s¡A´N¬O n ºûªº½Æ®g¼vªÅ¶¡ (n-dimensional complex projective space)¡A¨ä¤¤ªºÂI¬O ¡Axi ¬O½Æ¼Æ¡C©Ò¿×ªº¥N¼Æ¦h¼ËÅé (algebraic variety) ´N¬O¦b¬Y¤@Ó n ºû½Æ®g¼vªÅ¶¡¤§¤º¡Aº¡¨¬¤@²Õ¤èµ{¦¡ªº©Ò¦³ÂIªº¶°¦X¡C ¨Ò¦p¡A{ (x0:x1:x2): x05+x15+x25=0 } ¬O½Æ®g¼v¥±ªº¥N¼Æ¦h¼ËÅé¡C¥N¼Æ¦h¼ËÅ餧¤Wªº´X¦ó¡A¥N¼Æ¦h¼ËÅ骺¤ÀÃþ¥H¤Î¥N¼Æ¦h¼ËÅ餧¤Wªº¨ç¼Æ½×¤@ª½¬O±q¤Q¤E¥@¬ö¥H¨Ó¥N¼Æ´X¦ó¾Ç®a³Ì·P¿³½ìªº°ÝÃD¡C
|
Monge ÁöµM§â¤ÀªRªº¤èªk¤Þ¤J´X¦óªº¬ã¨s¡A¨Ó°Q½×¦±½u»P¦±±ªº¦UºØ©Ê½è¡A¥L¨Ã¨S¦³§â¥¦Ì¬Ý§@¤@Ó¿W¥ß¦s¦bªº´X¦ó¹ï¶H (geometrical object)¡C²Ä¤@ӧ⦱±¬Ý¦¨¿W¥ß¦s¦bªº´X¦ó¹ï¶Hªº¬O Gauss¡]1827¦~¡^¡C
¤T«×ªÅ¶¡¤¤ªº¦±±ªºÂI (x,y,z)¡A¥un¦b¨¬°÷¤pªº½d³ò¡A³£¥i¥H¥Î¨âÓ°Ñ¼Æ u¡A
v ªí¥Ü¥X¨Ó¡A§Y
¼g¦¨·L¤À¦¡¡A±o ¦]¬°©·ªø¤¸¯À¬O ds2=dx2+dy2+dz2¡A¬G
ds2=Edu2+2Fdudv+Gdv2
¨ä¤¤ ¨Ò¦p ¬O¦±±¤Wªº¤@±ø¦±½u¡A«h±qÂI (x(u(t0) , v(t0)), y(u(t0) , v(t0)) , z(u(t0) , v(t0)) ¨ìÂI (x(u(t1) , v(t1)) , y(u(t1) , v(t1)), z(u(t1) , v(t1)) ªº©·ªø¬O Gauss §â Edu2+2Fdudv+Gdv2 ¥s°µ¦±±ªº²Ä¤@°ò¥»¦¡ (the first fundamental form)¡C ²Ä¤@°ò¥»¦¡¥u¥Ñ¦±±¥»¨¨M©w¡A»P¨ä©P³òªº¤T«×ªÅ¶¡¨S¦³Ãö«Y¡C¦]¦¹¡A¥unª¾¹D²Ä¤@°ò¥»¦¡¡A´N¥i¥H§â¦±±¬Ý°µ¤@Ó¿W¥ßªº´X¦ó¹ï¶H¨Ó¬ã¨s¡CGauss ¿W¨ìªºÆ[¹î¬O¡A¦±±ªº³\¦h«nªº´X¦ó©Ê½è¥u¥Ñ²Ä¤@°ò¥»¦¡´N¥i¥H½T¥ß¤F¡C ¨Ò¦p¦±²v (total curvature) »P´ú¦a½u (geodesics) ´N¬O¡C ¦±²v¬O´ú«×¦±±Ås¦±ªºµ{«×¡Cª½Ä±ªº¤ÏÀ³¦ü¥G¬O³o¼Ë¡A¦pªG¤£¬O¦b¤T«×ªÅ¶¡¡A«ç»ò¬Ý±o¥X¦±±¦b¨ºùØÅs¦±¡A ¦b¨ºùؤñ¸û¥©Z¡H¥i¬O¤Ï¹L¨Ó»¡¡A·Q¹³¦³¤@°¦¥u¦³¤G«×·Pıªº¤pÂΡA¥¦¤°»ò®ÉÔª¦¨ì¤s³»¡A ¤°»ò®ÉÔ¨ì¹F¾b³¡¡A¤°»ò®ÉԨӨ쥦a¡AÃø¹D¦Û¤v¤@ÂI¤]¨S¦³·Pı¶Ü¡H¨Æ¹ê¤W¡A³o¬O Gauss »{¬°³Ì«nªº©w²z (Gauss theorem egregium)¡G¡]°ª´µ¡^¦±²v§¹¥þ¥Ñ²Ä¤@°ò¥»¦¡¨M©wªº¡C ´ú¦a½u¥i¥H¬Ý§@¬O¼Ú¤ó¥±ªº¡uª½½u¡v·§©Àªº±À¼s¡C¨Ò¦p¡A¦b²y±ªº´ú¦a½u´N¬O¤j¶ê ¡]¹L²yªº¥±»P²y±ªº¥æ¶°¡^¡C¦Ò¼{¤j¶êªºÀu©·»P¦H©·¡A§Ú̪¾¹D¡A³q¹L²y±¨âÂIªº¤j¶ê©·¡]§Y´ú¦a½u¡^¤£¤@©w¬O³q¹L³o¨âÂIªø«×³Ìµuªº¦±½u¡C
Gauss °£¤F¦Ò¼{³oºØ§½³¡ªº´X¦ó©Ê½è (geometry in the small)¡A¥L¤]¦Ò¼{¤j°ì©Ê½è (geometry in the large)¡C¨Ò¦p¡A¥O A ¬O¦±±ªº¤T¨¤§Î¡]¤TÃä³£¬O´ú¦a½u¡^¡AY¨ä¤T¤º¨¤¬O £\,£],£^¡AGauss µo²{
¦]¦¹¡A¦]¬°²y±¬O¦±²vùÚ¬°¤@Ó¥¿ªº±`¼Æ¡A²y±¤T¨¤§Îªº¤T¤º¨¤©MùÚ¤j©ó £k¡C ¦]¬° Poincaré ¼Ò«¬ªº«D¼Ú´X¦óªº¦±²vùÚ¬°¤@Ótªº±`¼Æ¡A¤T¨¤§Îªº¤T¤º¨¤©MùÚ¤p©ó £k¡C ¦]¬°¼Ú¤ó¥±ªº¦±²vùÚ¬°¹s¡A¦]¦¹¤T¨¤§Îªº¤T¤º¨¤©M«ê¦n¬O £k¡C
1854¦~ Riemann §â Gauss ªº·Qªk¤©¥H±À¼s¡C¥L§â¶Ç²Îªº¤T«×ªÅ¶¡ªº·§©ÀÂX¤j¨ì¥ô·Nºû¼ÆªºªÅ¶¡¡A
©·ªø¤¸¯À¬O³oºØªÅ¶¡³Ì°ò¥»ªº´X¦ó©Ê½è¡C¨ãÅ骺»¡¡An ºûªÅ¶¡¤§¤¤ÂIªº¤@²Õ®y¼Ð¦pªG¬O (x1,¡K,xn)¡A¥O©·ªø¤¸¯À
¨ä¤¤ ¬O x1,¡K,xn ªºµL½a¥i·L¤À¨ç¼Æ¡C±q³oùØ¥Xµo¡ARiemann ¤]¥i¥H¦Ò¼{¦±½u©·ªø¡B¦±²v¡B´ú¦a½u¡C ¬°¤F¦³®Äªº¬ã¨s³oºØ Riemann ´X¦ó (Riemannian geometry)¡A¼Æ¾Ç®a¥²¶·§â·L¿n¤À§@§ó¶i¤@¨Bªºµo®i¡C ¦b·L¤À¤è±¡A³o´N¬O E.B. Christoffel, G. Ricci-Curbastr¡]¼Æ¾Ç®a²ºÙ¥L¬°Ricci¡^»P Tulli Levi-Civita¡]1873¡ã1941¦~¡^µo®i¥X¨Óªº±i¶q¤ÀªR (tensor analysis)¡C ¦b¿n¤À¤è±¡A¦³ Eli Cartan¡]1869¡ã1951¦~¡^µo®i¥X¨Óªº·L¤À¦¡ (differential forms)¡C ¥Î³o¨Ç¤u¨ã¡A¥i¥H¦b Riemann ´X¦ó¤W±¦Ò¼{¤°»ò¥s°µ¥¦æ²¾°Ê¡A¨º´N¬O¦±²v±i¶q (curvature tensor) ªº¥\¥Î¡C¤]¥i¥H¦Ò¼{¤£¦PÂIªº¤Á½uªÅ¶¡ (tangent space) ¤§¶¡ªºÁp¨t (connection, ©Î Levi-Civita connection)¡CLevi-Civita µo²{¡A¨Ã«D¥u¦³©·ªø¤¸¯Àªº´X¦óªÅ¶¡¤~¦³¡uÁp¨t¡vªº·§©À¡F¥L§â¡uÁp¨t¡v§@¬°¤@Ó¿W¥ßªº´X¦ó·§©À¨Ó¬ã¨s¡A¦]¦¹±o¨ì¤F·sªº´X¦óªÅ¶¡¡A§Y non-Riemannian geometry¡C Riemann ªº´X¦óÆ[ÂI¨Ï¤HÃþ¹ïªÅ¶¡ªº»{Ãѱo¨ì«e©Ò¥¼¦³ªº¸Ñ©ñ¡C¤@ n Ó¿W¥ßªºª«²z¶q©Ò§@¥Îªºª«²zÅé¨t¡A¤£¥¿¬O¤@Ó n ºûªÅ¶¡¶Ü¡H¦]¦¹¡A³oºØ¼s¸qªº´X¦ó·§©À¥¿¦nÂX¤j¤F´X¦óªºÀ³¥Î¡C ŪªÌ¦pªG¨ã¦³·L¿n¤Àªºª¾ÃÑ¡A¥i¥H°Ñ¦Ò¥H¤Uªº¤å³¹¡A R. Penrose,¡qThe geometry of the universe¡r, in ¡mMathematics Today¡n, edited by L.A. Steen¡A»P S.S. Chern,¡qGeneral relativity and differential geometry¡r, in¡mEinstein Centennial Symposium¡n, Inst. Adv. Study, Princeton, N.J. 1979. Addison-Wesley, 1980, Reading, Mass. ³o¨â½g¤å³¹«Ü¥Í°Ê¨Ã¥B«Ü²`¨èªº¤¶²Ð·L¤À´X¦óªº´XÓ°ò¥»·§©À¡A¨Ã¥B°Q½×·L¤À´X¦ó»Pª«²z¡]¤×¨ä¬O¬Û¹ï½×¡^ªºÃö«Y¡C
|
¤Q¤E¥@¬ö¥X²{¤F³o»ò¦h´X¦óªÅ¶¡¡A¤£§K¨Ï¼Æ¾Ç®an«·s·Q¤@·Q¡G¤°»ò¬O´X¦óªÅ¶¡¡H¦p¦ó§â³o¨Ç´X¦óªÅ¶¡¤ÀÃþ¡H Klein ªº Erlangen ºõ»â (Erlangen program) ´N¬O·Q¥Î¹B°Ê¸sªº·§©À¨Ó§â¦UºØ´X¦ó¶i¦æ¤ÀÃþ¡C
¥H¼Ú¤ó¥±´X¦ó¦Ó¨¥¡A¡u¤GÃä¤@§¨¨¤©w²z¡]SAS©w²z¡^¡v§i¶D§ÚÌ¡A¼Ú¤ó´X¦ó®e³\ªº¹B°Ê¬O«Oªø¹B°Ê (isometry)¡C«Oªø¹B°Ê¨ä¹ê´N¬O²¾°Ê (translation)¡BÂà°Ê (rotation) ©Î¥¦Ìªº¦X¦¨¨ç¼Æ¡C¦pªG§âÂIªº®y¼Ð°O¬° (x,y)¡A«h«Oªø¹B°Ê¥i¥Hªí¥Ü¬°
¦Ò¼{ G ªº¥ô·N¤¸¯À³£¥i¥H¬Ý¦¨¤@ºØ«OªøÅÜ´«¡C¦b¯x°}¼ªk¤U¡AG Åܦ¨¤@Ó¸s(group)¡CG ´N¬O¼Ú¤ó¥±´X¦óªº¹B°Ê¸s¡C ¼Ú¤ó¥±´X¦ó©Ò¬ã¨sªºªø«×¡B¨¤«×¡B¤¤ÂI¡B¶ê¡B¾ò¶ê¡BÂù¦±½u¡B±¿n¡A¦b G ªº§@¥Î¤§¤U³£ºû«ù¤£ÅÜ¡C´«¥y¸Ü»¡¡Aªø«×¡B¨¤«×¡K¡K³o¨Ç´X¦ó¶q³£¬O¹B°Ê¸s G ªº¤£Åܶq (invariant)¡C Klein ¦b1872¦~´N¥ô Erlangen ¤j¾Çªº±Ð±Â¡C¦b¦P¤@¦~¡A¥L´£¥X¤@Ó¤ÀÃþ¦UºØ´X¦óªº¿ìªk¡A¥@ºÙ Erlangen ºõ»â¡CKlein »{¬°¡A©Ò¿×ªº´X¦ó´N¬O¬ã¨s¦UºØ¹B°Ê¸sªº¤£Åܶq¡F¹ï©ó¤£¦Pªº¹B°Ê¸s¡A´N²£¥Í¤£¦Pªº´X¦ó¡C
¦]¦¹¼Ú¤ó¥±´X¦ó¹ïÀ³ªº¹B°Ê¸s¬O
¥é®g´X¦ó (affine geometry) ªº¹B°Ê¸s¬O ¦]¦¹¦b¥é®g¼v´X¦ó¤¤¡A¶ê»P¾ò¶ê¤]¥i¥H¬Û¤¬Âà´«¡C
®g¼v´X¦óªº¹B°Ê¸s¬O
¨ä¤¤ H ¬° ¦b®g¼v´X¦ó¤¤¡A¶ê»PÂù¦±½u¤]¥i¥H¬Û¤¬Âà´«¡C®g¼v´X¦óªº¤£Åܶq¬O¡u«¦XÃö«Y¡v(incidence relation)¡G¦p¡A¤@ÓÂI¬O§_¸¨¦b¬Y±øª½½u¤W¡]Desargue ©w²z¡BPappus ©w²z©Ò°Q½×ªº´N¬O³oºØ´X¦ó©Ê½è¡^¡C¦@½u¥|ÂIªº½Õ©M¤ñ¡]harmonic ratio¡A©Î cross ratio¡^¤]¬O®g¼v´X¦óªº¤£Åܶq¡C Erlangen ºõ»â·íµM¤£¯à§â©Ò¦³ªº´X¦óªÅ¶¡¯Ç¤J¨äÅé¨t¡CKlein ¥»¤H¤]«D±`ÁA¸Ñ³oӨƹê¡A¤@¯ëªº Riemann ªÅ¶¡³q±`³£¤£¯à©ñ¦b Erlangen ºõ»â¤§¤º°Q½×¡C¤£¹L Erlangen ºõ»â²¦³º´£¨Ñ¤@Ó·sªº¬ã¨s´X¦ó¾Çªº¨¤«×¡C
|
¦Û±q«D¼Ú´X¦ó¥X²{¤§«á¡A¡m´X¦ó쥻¡n¤w¥¢¥h¨ä°ß§Ú¿W´Lªº¦a¦ì¡C¤Q¤E¥@¬ö¥½´Á¡A³\¦h¼Æ¾Ç®aµo²{¡m´X¦ó쥻¡nÁÙ¦³³\¦h¥O¤H¤£¯à§Ô¨üªº¦a¤è¡C¨Ò¦p¡A¡m´X¦ó쥻¡n»¡¡Aª½½u¬O¥u¦³ªø«×¡A¨S¦³¼e«×ªº´X¦ó¹ï¶H¡AÂI¥u¦³¦ì¸m¡A¨S¦³ªø«×¤]¨S¦³¼e«×¡C¥ÎÄY®æªº¼Æ¾Ç¼Ð·Ç¨Ó¬Ý¡A³o¨Ç¸Ü¨s³ºÁ¿¤F¤°»ò©O¡H ¤S¦p¡]¨£¤U¹Ï¡^¡A§Ṳ́̾°»ò¯àªÖ©wªº»¡ª½½u AP »Pª½½u BC ªº¥æÂI¤@©w¸¨¦b½u¬q BC ¤§¤W¡H¡m´X¦ó쥻¡nªº¤½²z»P©w²z¦ü¥G¤£¯à«OÃÒ³o¥ó§Ú̱`¥Îªº¨Æ¹ê¡C
Hilbert ªº¡m´X¦ó¾Çªº°ò¦¡n(Grundlagen der Geometrie) «·s¾ã²z¥±´X¦óªº¤½²z¡]1899¦~¡^¡CHilbert §âÂI¡B½u¡B±ªºª½Æ[Áp·Q§¹¥þé¹Ü¡F¥L»¡¡A§A¤]¥i¥H§âÂI¡B½u¡B±´«Ó¦WºÙ¡A¥s°µ´È¤l¡B®à¤l¡B°à°s±í¡C«nªº¬O¡A¦UºØ©w¸q»P¤½²z³W©w¥X¨ÓªºÂI¡B½u¡B±¤§¶¡ªº¬Û¤¬Ãö«Y¡A¦Ó¤£¬OÂI¡B½u¡B±³o¨Ç¦r±¤Wªº²[¸q¡C¥L«D±`¤p¤ßªº¦C¥X¦UºØ¤½²z¡]¥]¬A´XÓ Euclid ¤£¦Ûı¨Ï¥Î¦Ó¨S¦³¦C¥Xªº¤½²z¡^¡A¨Ã¥B¤@¦A±j½Õ¦UºØ¤½²z¶¡ªº¬Û®e©Ê (consistency)¡B¿W¥ß©Ê (independent) »P§¹³Æ©Ê (completeness)¡C¸g¹L Hilbert ¾ã²z¤§«áªº¥±´X¦ó¤~Åܦ¨ÅÞ¿è¤W¦Û¨¬ªººtöÅé¨t¡C Hilbert ªº¤u§@©TµM¹ý©³ºR·´¤F¡m´X¦ó쥻¡nªº±R°ª¦a¦ì¡A¦ý¬O¥¦¹ï´X¦ó¾Çªº¬ã¨s¨s³º¦³¤°»ò«¤jªº¼vÅT©O¡H§Ṳ́w¸g¬Ý¨ì¡A·L¤À´X¦ó©M¥N¼Æ´X¦ó¦w¤W§½³¡®y¼Ð (local coordinate) ªº¸Ë³Æ¤§«á¡A¦¤w©b¤W¥ú©úªº«e³~¡A®Ú¥»µL·å²z·|¤°»ò¤½²zÅé¨t¬O§_§¹¾ã¦Û¨¬¡C¦b¦³´X¦ó¾Ç (finite geometry) ªº¬ã¨s¥i¯àÁÙ¥i¥H¬Ý¨ì Hilbert ªº¼vÅT¡CÓ¤H»{¬°¡A¡m´X¦ó¾Çªº°ò¦¡n³Ì¤jªº§@¥Î¬O±À°Ê¤G¤Q¥@¬ö¬Y¨Ç¼Æ¾Ç³¡ªù¡]¦p¡A©â¶H¥N¼Æ¡BÂI¶°©Ý¾ë¡Bªx¨ç¤ÀªR¡^ªº¤½²z¤Æ¹Lµ{¡A¨Ã¥B±a°Ê¼Æ¾ÇÅ޿誺¬ã¨s¡C
|
|
¡]Y¦³«ü¥¿¡BºÃ°Ý¡K¡K¡A¥i¥H¦b¦¹ ¯d¨¥ ©Î ¼g«H µ¹§ÚÌ¡C¡^ |
EpisteMath (c) 2000 ¤¤¥¡¬ã¨s°|¼Æ¾Ç©Ò¡B¥x¤j¼Æ¾Ç¨t ¦Uºô¶¤å³¹¤º®e¤§µÛ§@Åv¬°ìµÛ§@¤H©Ò¦³ |
½s¿è¡G¶À«H¤¸ | ³Ì«áקï¤é´Á¡G5/3/2002 |