¤W­¶¡@1¢x2¢x3¢x4¢x5¡@¤w¦b³Ì«á¤@­¶

¥j§Æþ´X¦ó¤T¤j°ÝÃD ¡]²Ä 5 ­¶¡^

±d©ú©÷

 


­º­¶ | ·j´M

¡D­ì¸ü©ó¼Æ¾Ç¶Ç¼½²Ä¤K¨÷²Ä¤G´Á¡B²Ä¤K¨÷²Ä¤T´Á¤À¨â´Á¥Z¥X
¡D§@ªÌ·í®É¥ô±Ð©ó¥x¤j¼Æ¾Ç¨t

¡EµùÄÀ
¡E¹ï¥~·j´MÃöÁä¦r
 
5.´X¦ó¤T¤j°ÝÃD¤£¬O´X¦ó¾Ç¬ã¨sªº¥D¬y

¤è¶ê°ÝÃD¡B¤Tµ¥¤À¨¤°ÝÃD»P­¿¥ß¤è°ÝÃD¡AÁöµM¸¹ºÙ´X¦ó¤T¤j°ÝÃD¡A¥i¬O¦b¤Q¤K¡B¤Q¤E¥@¬ö¡A¨Ã¨S¦³¤Ó¦hªº´X¦ó¾Ç®a¬ã¨s³o¨Ç°ÝÃD¡C®É¥NÅܤF¡A´X¦ó¤T¤j°ÝÃD¦b¥j§Æþªº½T¬O¼öªùªº°ÝÃD¡A¦b¤Q¤E¥@¬ö«o³vº¥¥¢¥h¨ä¥ú±m¡C

¤Q¤E¥@¬ö³Ì¼öªùªº´X¦ó¾Ç¬O®g¼v´X¦ó (projective geometry)¡C¦b Carl Friedrich Gauss¡]1777¡ã1851¦~¡^¬ã¨s¤T«×ªÅ¶¡ªº¦±­±¡ABernhard Riemann¡]1826¡ã1866¦~¡^¬ã¨s¥ô·Nºû¼Æªº·L¤À¬y«¬¤§«á¡A·L¤À´X¦ó (differential geometry) «á¨Ó©~¤Wµo®i¬°¤@¤ä¼Æ¾Ç¥D¬y¡C¥t¤@¤è­±¡AAlfred Clebsch¡]1833¡ã1872¦~¡^¡BMax Noether¡]1844¡ã1921¦~¡^¡BAlexander von Brill¡]1842¡ã1935¦~¡^¹Á¸Õ§â Riemann ªº Abel ¿n¤Àªº²z½×«Ø¥ß¦b¤@­ÓÄY®æªº´X¦óªº°ò¦¡A²×©ó«Ø¥ß¤F¥N¼Æ´X¦ó (alebraic geometry)¡A¥N¼Æ´X¦ó¤]¬O²{¥N¼Æ¾Çªº¤@¤ä¥D¬y¡C±q²{¦bªºÆ[ÂI¨Ó¬Ý¡A¤Q¤E¥@¬öªº´X¦ó¾Ç®a¦b¯dµ¹«á¥Nªººë¯«¿ò²£¤¤¡A¥H·L¤À´X¦ó»P¥N¼Æ´X¦ó³Ì¬°¬Ã¶Q¡C

¦b¥»¸`§Ú­Ì­n²²¤¤¶²Ð¤Q¤E¥@¬ö´X¦ó¾Ç®aªº¥D­n¬¡°Ê¡G«D¼Ú´X¦ó¡B®g¼v´X¦ó¡B·L¤À´X¦ó Erlangen ºõ»â»P´X¦ó¾Çªº°ò¦¡C§Ú­Ì¤£§Æ±æŪªÌ¥H¬°´X¦ó¤T¤j°ÝÃD¬O´X¦ó¾Ç¬ã¨sªº¥D­n½ÒÃD¢w¢w§¹¥þ¤£¬O³o»ò¦^¨Æ¡C

¤Q¤C¡B¤Q¤K¥@¬ö¬O·L¿n¤À»P¤ÀªR¾Ç¤@¤ä¿W¨qªº®É¥N¡C¦b¸ÑªR´X¦óµo®i¤§«á¡A¶Ç²Îªº´X¦ó¾Ç®a¦b®ð¶Õ¤WÅãµM¿é¤H¤@ºI¡C±q¤Q¤K¥@¬ö¥½´Áªk°ê¤j­²©Rªº®É¥N¡A´X¦ó¾Çªº¬ã¨s¤S³vº¥¬¡ÅD°_¨Ó¡C¥D­nªº­ì¦]¬O Gaspard Monge ¡]1746¡ã1818¦~¡^§â·L¤Àªº¤èªk¤Þ¤J´X¦ó¾Çªº¬ã¨s¡A§Q¥Î´X¦ó¾Çªºª½Æ[¨Ó»²§U·L¤À¤èµ{ªº¬ã¨s¡CMonge ¤S¬O¤@­Ó²Ä¤@¬yªº±Ð®v¡A¦b¥Lªº±a»â¤§¤U¡ACharles Dupin¡]1784¡ã1873¦~¡^¡AVictor Poncelet¡]1788¡ã1867¦~¡^µ¥¤@§å´X¦ó¾Ç®a²×©ó¦¨ªø°_¨Ó¡C®Ú¾Ú Flelix Klein ªºÁ¿ªk¡AMonge ªº®ÑŪ°_¨Ó´N¹³¤p»¡¤@¼Ë¡A²M·¡¬yºZ¡A¤£ªK¤£½¯¡A¨ì³B¬OÂ×´I¬¡¼âªº·Q¹³¤O¡AÀH®É¦bÅã¥Ü¤@­Ó¯u¥¿ªº´X¦ó¾Ç®aªº¼Ð°O¡G¹ï§Î¬Ûªº¼ö·R¡C

¦b¤¶²Ð¤Q¤E¥@¬ö´X¦ó¾Ç®aªº¥D­n¬¡°Ê®É¡A§Ú­Ì·Q²K±Ô¤@¥ó¨Æ¡C¤Q¤E¥@¬ö¬O´X¦ó«ì´_¬¡¤Oªº®É¥N¡A¦³¤£¤Ö´X¦ó¾Ç®a«Ü¼ö¤ßªº¬ã¨s¼Ú¤ó¥­­±´X¦óªº°ÝÃD¡C¨Ò¦p¡AC.J. Brianchon¡]1785¡ã1864¦~¡^»P Poncelet ÃÒ©ú¤EÂI¶ê©w²z¡G¥­­±¤T¨¤§Î¤TÃ䪺¤¤ÂI¡B¤T­Ó°ªªº««¨¬¡B¤T­Ó°ªªº¤¤ÂI¡A³o¤E­ÓÂI¦@¶ê¡CKarl Wilhelm Feuerbach¡]1800¡ã1834¦~¡^¬Æ¦ÜÃÒ©ú¤EÂI¶êªº¶ê¤ß¦ì©ó Euler ½u¤W¡]¤º¤Á¶ê¶ê¤ß¡B¥~±µ¶ê¶ê¤ß¡B­«¤ß¡A³o¤TÂI¦@½u¡A¥s°µ Euler ½u¡^¡A¨Ã¥B¤EÂI¶ê»P¸Ó¤T¨¤§Îªº¤T­Ó¥~¤Á¶ê¬Û¤Á¡C³oÃþ¥­­±¤T¨¤§Î»P¶ê§Îªº¥j¥j©Ç©Çªº©w²z¦b¤Q¤E¥@¬öªì´Á²ª½¦p«B«á¬Kµ«¯ëªº¨ì³B´þ¥Í¡C¥i¬O§Ú­Ì¤µ¤Ñ´X¥G³£¤£ª¾¹D³o¨Ç©w²z¡A¦b½Ò°ó¤W¤]¤£·|±Ð³o¨Ç©w²z¡C³o¨Ç¤T¨¤§Î»P¶ê§Îªº¬ü§®©w²z¨Ã¨S¦³¨Ï§Ú­Ì¹ï´X¦óªº·§©À§ó¥[²`¨è¡A ¤]µL§U©ó§Ú­Ìµo®i¤@ºØ¬¡¼â²M´·ªºª½Æ[·Q¹³¤O (intuition)¡A¥¦¹³¤@¨Ç²`¶øªºÁ¼»yº¡¨¬¤HÃþªº¦n©_¤ß¡C¦b¸ÑªR´X¦óªº«Â¤OÅ¢¸n¤U¡A³oºØÁ¼»y¨ä¹ê¤£²q¤]½}¡C

¦]¦¹¾¨ºÞ³oÃþªº¬¡°Ê¦b¤Q¤E¥@¬öªì´Á¬Û·í¦h¡A§Ú­Ì¨Ã¤£±N¨ä¦C¬°¤Q¤E¥@¬ö´X¦ó¾Ç®aªº¥D­n¬¡°Ê¡F¨Æ¹ê¤W¡AFelix Klein ªº¡m¤Q¤E¥@¬ö¼Æ¾Ç¥v¡n®Ú¥»´N¤£°Q½×³o¨Ç¨Æ¡C¾ú¥vªº¬x¬y·|Åýª÷¤lº}¯B°_¨Ó¡A¤]·|§âªd¨F±»®I¦bªe§É©³¤U¡C 6

   
 
5.1 «D¼Ú´X¦ó

Euclid ¡]¼Ú°ò¨½¼w¡^ªº¡m´X¦ó­ì¥»¡nªº²Ä¤­¤½³]»¡¡G¡u¨âª½½u¬Û¥æ©ó¤º¨¤©M¤p©ó¤Gª½¨¤ªº¤@°¼¡v¡C¡v³o­Ó¤½³]´N¬O¤j®a¼ôª¾ªº¥­¦æ¤½³]¡C



«Ü¤[¥H¨Ó¡A¼Æ¾Ç®a´N¹ï³o­Ó¤½³]¤£¤ÓµÎªA¡C¬Û«H³s Euclid ¥»¤H¤]¤£º¡·N¡A§_«h¥L¤£·|§â³o­Ó¤½³]Â\¦b³Ì«á­±¡Aª½¨ì«D¥Î¤£¥i®É¤~´£¥X¨Ó¡F¨Ã¥B¥L¤]¤£·|§â³o­Ó¤½³]Á¿±o³o»ò¹û§á¡C¦³¨Ç¤H·Q§ä¤@­Ó¬Ý¨Ó¤ñ¸û¶¶²´ªº¤½³]¥N´À¥¦¡A¦³¨Ç¤H·Q±q¨ä¥L´X­Ó¤½³]¾É¥X³o­Ó¤½³]¡C³Ì¦³¦Wªº¬O§â²Ä¤­¤½³]´«¦¨¥H¤Uªº¥­¦æ¤½³]¡G¡u¹L½u¥~¤@ÂI¥i§@°ß¤@ªºª½½u¥­¦æ³o¤wª¾½u¡v¡Cª½¨ì¤Q¤K¥@¬ö«á´Á¡A¤~¦³¤@¨Ç¼Æ¾Ç®a³vº¥¬Û«H¥­¦æ¤½³]¬O¿W¥ß©ó Euclid ªº¨ä¥L¤½³]¡C

¯u¥¿ªº¬ð¯}¨Ó¦Û¤@¥÷¤£¤Ó¦³¦Wªº«X°ê´Á¥Z¡C1829¦~ Nikolai lvanovich Lobatchevsky¡]1793¡ã1856¦~¡^´£¥X«D¼Ú´X¦óªº·§©À¡A¦b³oºØ´X¦ó¾ÇùØ¡A¹L½u¥~¤@ÂI¦s¦b¤£¥u¤@±øª½½u¥­¦æ©ó³o¤wª¾½u¡C 1832¦~ János Bolyai¡]1802¡ã1860¦~¡^¡A¶ø¦I«Ò°êªº¤@­Ó­x©x¡A¤]¿W¥ßªº´£¥X¬Û¦üªºµ²ªG¡C¨Æ¹ê¤W¦­¦b Lobatchevsky »P Bolyai ¤§«e¡A°¶¤jªº Gauss ¦­¤w¶}©l¬ã¨s«D¼Ú´X¦ó¾Ç¡A¥u¬O¨S¦³µoªí¦Ó¤w¡C



Lobatchevsky ªº·Qªk¥i¥H²³æªº´y­z¦p¤U¡C¥L¦P·N¼Ú¤ó´X¦óªº¨ä¥L¤½³]¡A¥u§â¥­¦æ¤½³]§ïÅÜ¡C ³] AB ¬O¤wª¾ª½½u¡AC ¬O½u¥~¤@ÂI¡Aa ¬O C ÂI¨ì AB ªº¶ZÂ÷¡CLobatchevsky °²³]¹ï©ó³o¼Ëªº C ÂI»P AB¡A¥²¦s¦b¤@­Ó¨¤«× $\pi(a)$¡]ÀH a ªº¤j¤p¦Ó§ïÅÜ¡^¡A¨Ï±o³q¹L C ÂIªºª½½u¤À¦¨¨âÃþ¡G¤@Ãþª½½u»P AB ¬Û¥æ¡A³o¨Çª½½u»P CD ªº§¨¨¤¤p©ó $\pi(a)$¡F³Ñ¤U¤@Ãþª½½u¤£»P AB ¬Û¥æ¡A³oÃþª½½u³ÌÃä¬Éªº¬Oª½½u p »P q¡Ap »P q ´N¬O³q¹L C ÂIªº¡u¥­¦æ½u¡v¡CLobatchevsky ¨M©w¡A

\begin{displaymath}
0\leq\pi(a)\leq\frac{\pi}{2} \; \mbox{{\fontfamily{cwM0}\fon...
...es{m}\selectfont \char 47}} \;
\pi(a)=2\tan^{-1}\frac{1}{e^a}
\end{displaymath}



¦]¦¹¡A­Y C ¦b AB ¤W¡A $\pi(a)=\frac{\pi}{2}$¡A³o¨â±ø¥­¦æ½u»P AB ­«¦X¡F­Y C ¦bµL½a»·³B¡A$\pi(a)=0$¡C¥Ñ¦¹¥L¯à¾É¥X¤T¨¤¤½¦¡¡A

\begin{eqnarray*}
\cot\pi(a)&=&\cot\pi(c)\cdot\sin A\\
\sin A&=&\cos B\cdot\sin\pi(b)\\
\sin\pi(c)&=&\sin\pi(a)\cdot\sin\pi(b)
\end{eqnarray*}


¥O¤HÅå©_ªº¡A³o¨Ç¤T¨¤¤½¦¡³º©M²y­±¤T¨¤ªº¤½¦¡·¥¬Û¹³¡G¥u­n§Ú­Ì§â²y­±¤T¨¤ªº a,b,c ´«¦¨ ia,ib,ic¡A´N±o¨ì«D¼Ú´X¦óªº¤T¨¤¤½¦¡¡C

¦b³oºØ´X¦óªÅ¶¡¤¤¡A¤T¨¤§Îªº¤T¤º¨¤©M¤p©ó £k¡C¥b®|¬° r ªº¶êªº©Pªø¬O $\pi(e^r-e^{-r})$¡A ­±¿n¬O $\pi(e^{\frac{r}{2}}-e^{-\frac{r}{2}})^2$¡C¤@¯ëªº»¡¡A¦pªG y=f(x) ¬O³oºØ´X¦óªÅ¶¡¤Wªº¦±½u¡A ¨ä©·ªø¤¸¯À¬O $ds=\sqrt{(dy)^2+\frac{(dx)^2}{\sin^2\pi(x)}}$¡C



Lobatchevsky ´X¦óÁÙ¥i¥H¥Î¥t¤@­ÓÆ[ÂI¨ÓÁA¸Ñ¡A³o¬O Henri Poincaré¡]1854¡ã1912¦~¡^´£¥X¨Óªº¡C¦b Poincaré ªº¼Ò«¬¤¤¡A§Ú­Ì¦Ò¼{ªº¡uÂI¡v¬O¶ê¤ºªº©Ò¦³ªºÂI¡]¤£§t¶ê©P¤WªºÂI¡^¡F¡uª½½u¡v¦³¨âºØ¡A¤@ºØ¬O³q¹L¶ê¤ßªºª½½u¡A¥t¤@ºØ¬O»P¶ê©P¥¿¥æªº¥ô·N¶ê©·¡C ¨âÂI P1 »P P2 ªº¶ZÂ÷©w¬° $\ln(\frac{P_1P_b}{P_2P_b} \cdot \frac{P_2P_a}{P_1P_a})$¡A ¨ä¤¤ P1 Pa,¡K ¬O¨ä¼Ú¤ó´X¦ó¤¤ªº¶ZÂ÷¡]¦p¤W¹Ï¡^¡C

Lobatchevsky »P Bolyai ´£¥X«D¼Ú´X¦óªº·§©À¡A³Ìªì¨Ã¨S¦³¤Þ°_¼Æ¾Ç®aªºª`·N¡C ¤@¯ëªº¤H¤´µM¬Û«H¼Ú¤ó´X¦ó¤~¬Oª«²z¥@¬É¯u¥¿ªº´X¦ó¼Ò«¬¡A«D¼Ú´X¦ó¥u¤£¹L¬OÅ޿西½Tªº¤@®MºtöÅé¨t¦Ó¤w¡C ª½¨ì Riemann ´£¥X¼s¸qªºªÅ¶¡ªº·§©À¡A§â Lobatchevsky »P Bolyai ªº«D¼Ú´X¦ó¯Ç¤J·L¤À´X¦óªº½d³ò¤§¤º¡A«D¼Ú´X¦ó¤~³Q¼Æ¾Ç®a¤ß¦w²z±oªº±µ¯Ç¤U¨Ó¡CRiemann ªº·L¤À´X¦ó¦b 1916¦~³Q Albert Einstein¡]1879¡ã1955¦~¡^§@¬°¼s¸q¬Û¹ï½×ªº°ò¦¡A¤HÃþ¤~µo²{¡A¼Ú¤ó´X¦ó¨Ã¤£¥²µM¬Oª«²z¥@¬É°ß¤@ªº´X¦ó¼Ò«¬¡C

   
 
5.2 ®g¼v´X¦ó

®g¼v´X¦ó¬O¤Q¤E¥@¬ö´X¦ó¾Ç®aªº¥D­n¾Ô³õ¡A¼Ú¤ó´X¦ó¡B«D¼Ú´X¦ó¡B²y­±´X¦óªº¶q«×©Ê½è (metric properties) ¦b®g¼v´X¦ó¤§¤º±o¨ì²Î¤@ªº³B²z¡Aºî¦X¾Ç¬£¡]synthetic school, ¥H Carnot¡BPoncelet¡BSteiner¡BVon Staudt¡BChasles ¬°¥D¡^»P¸ÑªR¾Ç¬£¡]analytic school, ¥H Möbius¡BPlücker¡BCayley ¬°¥D¡^¦b®g¼v´X¦óªº¬ã¨s®i¶}¥Õ¤b¾Ô¡C §Q¥Î®g¼v´X¦óªºÆ[ÂI¡A³\¦h¥j¦Ñªº©w²z¡A¦p Pappus ©w²z¡APascal ©w²z¡A³Q­«·sÃÒ©ú¡A³\¦h·sªº¤èªk©M·sªº´X¦ó·§©À³Q´£¥X¨Ó¡C

®g¼vªº·§©À¡A¬O Gerard Desargues¡]1593¡ã1662¦~¡^³Ì¥ý´£¥Xªº¡C ¦³¦Wªº Desargues ©w²z»¡¡G¦pªG $\triangle ABC$ »P $\triangle A'B'C'$ ªº¹ïÀ³³»ÂIªº³s½u AA',BB',CC' ¥æ©ó¤@ÂI O¡C¥O¨ä¹ïÀ³Ãä AB »P A'B'¡ABC »P B'C'¡ACA »P C'A' ¦U¥æ©ó P,Q,R¡C«h P,Q,R ¤TÂI¦@½u¡C(ŪªÌ¤£§«§â $\triangle ABC$ »P $\triangle A'B'C'$ ·Q¦¨¸¨¦b¤£¦Pªº¥­­±¤W¡A§Q¥Î²³æªº¥ßÅé´X¦ó¡A«Ü®e©öÃÒ©ú P,Q,R ¦@½u¡C¦A¦Ò¼{¦P¤@¥­­±ªº±¡§Î¡C¥i¬O Desargues ªº®g¼v´X¦ó¨Ã¨S¦³¤Þ°_·í®É¼Æ¾Ç®aªºª`·N¡C



®g¼v´X¦óªº¶}³ÐªÌÀ³¸Óºâ V. Poncelet¡CPoncelet ¬O Monge ¦b¤Ú¾¤¤uÃÀ¾Ç®Õªº¾Ç¥Í¡A1812¦~ÀH Napoléon Bonaparte¡]®³¯}±[¡^»·©º«X°ê¡A¥L¦b¸Ó¦~ªº¥V©u·|¾Ô³Q«R¡A¥}¸T¦b¥ñº¸¥[ªeÃ䪺ÂÄ©Ô¦«¤Ò (Saratov)¡C¨â¦~ªººÊº»¥Í¬¡¨Ï¥L³Ð³y¤F®g¼v´X¦ó¡C¥L¦b¥}©Ð¤¤¡A¹ïµÛ¤@¸s¦P¬O¤uÃÀ¾Ç®Õ²¦·~ªºÃø¤Íµoªí¥Lªº¼Æ¾Ç¤ß±o¡C ¦b¨S¦³¥ô¦ó°Ñ¦Ò®Ñªº´c¦HÀô¹Ò¤U¡A¥L­«·sÃÒ©ú Monge »P Carnot ±Ð¹Lªº©w²z¡AµM«á´£¥X¥L¦Û¤v·sªºµ²ªG¡C1815¦~¦^°ê¤§«á¡A§â³o¨Çµ²ªGµoªí¡A®g¼v´X¦ó©ó²j½Ï¥Í¡C

Poncelet ´£¥X®g¼v (projectivity) ªº·§©À¡C¨Ò¦p¡A¥Ñ O ÂI§âª½½u l1 §ë®g¨ìª½½u l2¡A¦A¥Ñ O' ÂI§âª½½u l2 §ë®g¨ì l3¡C¦p¬O¾Þ§@¡A´X¦¸§ë®gªºµ²ªG´N¬O®g¼v¡C®g¼v§â l1 ªºÂI¤@¤@¹ïÀ³¨ì l3¡A¨Ò¦p A ¹ïÀ³¨ì A''¡AB ¹ïÀ³¨ì B''¡C§Ú­Ì¤£¥u¥i¥H¹ïª½½u§@®g¼v¡A§Ú­Ì¤]¥i¥H¹ï¥­­±§@®g¼v¡C



Poncelet ÁÙ´£¥X¹ï°¸©Ê (duality) ªº·§©À¡C¦b®g¼v¥­­±¤W¡AÂI©M½u¤¬¬°¹ï°¸¡C ¦]¦¹ Desargues ©w²zªº¹ï°¸©w²zÅܦ¨¡G­Y¦³ª½½u l1¡Al2¡Al3¡A»P l1'¡Al2'¡Al3'¡A ¦pªG li »P lj ªº¥æÂI¦@½u¡Ai=1,2,3¡A¥O li »P lj ¥æ©óÂI Pij¡Ali' »P lj' ¥æ©óÂI Pij'¡C«hª½½u $\overline{P_{12}P_{12}'}$, $\overline{P_{23}P_{23}'}$, $\overline{P_{31}P_{31}'}$ ¦@ÂI¡C¡]Desargues ©w²zªº°f©w²z¡IŪªÌ¦Û¤vÃÒ©ú§a¡C¡^

¦¹¥~ Poncelet ÁÙ´£¥X³sÄò©Ê­ì²z (principle of continuity)¡BµL½a»·½u (the line at infinity)¡BµêÀÀÂI (imaginary points) µ¥µ¥·§©À¡C

Poncelet ¬O¤@­Ó¤£Ä@·N¨Ï¥Î®y¼Ðªººî¦X´X¦ó¾Ç®a¡C¦pªG¨Ï¥Î¸ÑªRªº¤èªk¡APoncelet ªº³\¦h·§©À³£¥i¥HÅܦ¨§ó¥[ªº©ú¥Õ²M·¡¡C

®g¼v¥­­±¬O¼Ú¤ó¥­­±¦A¥[¤W¤@±øµL½a»·ªº½u¡C®g¼v¥­­±ªº¨C¤@ÂI¥i¥H¥Î®y¼Ð (x0:x1:x2) ªí¥Ü¡A¨ä¤¤ x0,x1,x2 ¤£¥þ¬°¹s¡C¨â­Ó®y¼Ð (x0:x1:x2) »P (y0:y1:y2) ¥Nªí¦P¤@ÂI¡A¦pªG $y_0=\lambda x_0$, $y_1=\lambda x_1$, $y_2=\lambda x_2$¡A£f¬O¬Y¤@­Ó¤£¬°¹sªº¼Æ¡C¼Ú¤ó¥­­±¥i¥H¬Ý°µ {(x0: x1:x2):¨ä¤¤ $x_0\neq0\}$ ªºÂI¶°¦X¡F¦pªG§â $u=\frac{x_1}{x_0}$, $v=\frac{x_2}{x_0}$ ¥N¤J¡A¼Ú¤ó¥­­±ªºÂI«ê¦n©M {(1:w:v)} ªºÂI¤@¤@¹ïÀ³¡C¦b¼Ú¤ó¥­­±¤Wªºª½½u¤èµ{¦¡ au+bv+c=0¡A¦b®g¼v¥­­±Åܦ¨ ax1+bx2+cx0=0¡C¼Ú¤ó¥­­±ªº©ßª«½u v=au2¡A¾ò¶ê $\frac{u^2}{a^2}+\frac{v^2}{b^2}=1$¡AÂù¦±½u $\frac{u^2}{a^2}-\frac{v^2}{b^2}=1$ ¦b®g¼v¥­­±¤À§OÅܦ¨ ax12-x0x2=0, a2b2x02-b2x12-a2x22=0, a2b2x02-b2x12+a2x22=0¡A¦ü¥G¨S¦³¤Ó¤jªº°Ï§O¡AµL½a»·ªº½u¬O x0=0¡C¨â±øª½½u¥²©w¬Û¥æ¡C

®g¼v¥­­±ªºª½½u¤èµ{¦¡¬J¬O ax0+bx1+cx2=0¡A§Ú­Ì¤£§«§âª½½uªº®y¼Ð©w¬°(a:b:c)¡C³o¼Ë»¡¨Ó¡Aª½½u©MÂI°Z¤£¬O¤@¤@¹ïÀ³¤F¡H³o´N¬O Poncelet ªº¹ï°¸©Ê¡C

¦pªG¦b®g¼v¥­­±ªºÂI®y¼Ð¨ú¦Û¹ê¼Æ¡A´N±o¹ê®g¼v¥­­± (real projective plane)¡C¦pªG®e³\½Æ¼Æ¥X²{¦b³o¨ÇÂIªº®y¼Ð¡A´N±o¨ì½Æ®g¼v¥­­± (complex projective plane)¡C Poncelet ªº©Ò¿×µêÀÀÂI¥u¤£¹L¬O½Æ®g¼v¥­­±¤Wªº¤@­ÓÂI¡CPoncelet ¥Ñ¹ê®g¼v¥­­±¥Xµo¡A«o¤£±o¤£¨«¨ì½Æ®g¼v¥­­±¡C©Ò¿×ªºµêÀÀÂI¨Ã¤£µêµLÄÆ´ù¡A¦Ó¬O²z½×ªº¥²µM²£ª«¡C

¦b½Æ®g¼v¥­­±¤W¡A¥ô¦ó¤@­Ó«D°h¤Æªº¤G¦¸¦±½u¡A¸g¹L¾A·íªº®y¼ÐÅÜ´«¡A³£¥i¤Æ¦¨ x02+x12+x22=0 ªº§Î¦¡¡]¦ó¬G¡H½Ðª`·N¤@­Ó¤T¶¥¹ïºÙ¯x°}¥²¥i¹ï¨¤¤Æ¡^¡C¦]¦¹¡A¦b½Æ®g¼v¥­­±¡A©Ò¿×©ßª«½u¡BÂù¦±½u¡B¾ò¶ê®Ú¥»´N¬O¦P¤@¥óªF¦è¡C

Poncelet ªº³sÄò©Ê­ì²z¥i¥H¥Î½Æ®g¼v¥­­±ªº Zariski topology ¨Ó¸ÑÄÀ¡F§Ú­Ì©h¥B±q²¤¡C

ŪªÌ¦pªG·Q¾Ç²ß¤@ÂI®g¼v´X¦ó¡AÅý§Ú±ÀÂË R. Hartshorne,¡mFundations of Projective Geometry¡n¡C

³o¥»®Ñ±qºî¦X´X¦ó¡B¸ÑªR´X¦ó©M¹B°Ê¸s (transformation groups) ¤T­ÓÆ[ÂI¨Ó±´°Q®g¼v´X¦ó¡A¬O¤@¥»¼g±o¬Û·íºë½oªº¤p®Ñ¡C

§â½Æ®g¼v¥­­±¥[¥H±À¼s¡A´N¬O n ºûªº½Æ®g¼vªÅ¶¡ (n-dimensional complex projective space)¡A¨ä¤¤ªºÂI¬O $(x_0:x_1:\cdots:x_n)$¡Axi ¬O½Æ¼Æ¡C©Ò¿×ªº¥N¼Æ¦h¼ËÅé (algebraic variety) ´N¬O¦b¬Y¤@­Ó n ºû½Æ®g¼vªÅ¶¡¤§¤º¡Aº¡¨¬¤@²Õ¤èµ{¦¡ªº©Ò¦³ÂIªº¶°¦X¡C ¨Ò¦p¡A{ (x0:x1:x2): x05+x15+x25=0 } ¬O½Æ®g¼v¥­­±ªº¥N¼Æ¦h¼ËÅé¡C¥N¼Æ¦h¼ËÅ餧¤Wªº´X¦ó¡A¥N¼Æ¦h¼ËÅ骺¤ÀÃþ¥H¤Î¥N¼Æ¦h¼ËÅ餧¤Wªº¨ç¼Æ½×¤@ª½¬O±q¤Q¤E¥@¬ö¥H¨Ó¥N¼Æ´X¦ó¾Ç®a³Ì·P¿³½ìªº°ÝÃD¡C

   
 
5.3 ·L¤À´X¦ó

Monge ÁöµM§â¤ÀªRªº¤èªk¤Þ¤J´X¦óªº¬ã¨s¡A¨Ó°Q½×¦±½u»P¦±­±ªº¦UºØ©Ê½è¡A¥L¨Ã¨S¦³§â¥¦­Ì¬Ý§@¤@­Ó¿W¥ß¦s¦bªº´X¦ó¹ï¶H (geometrical object)¡C²Ä¤@­Ó§â¦±­±¬Ý¦¨¿W¥ß¦s¦bªº´X¦ó¹ï¶Hªº¬O Gauss¡]1827¦~¡^¡C

¤T«×ªÅ¶¡¤¤ªº¦±­±ªºÂI (x,y,z)¡A¥u­n¦b¨¬°÷¤pªº½d³ò¡A³£¥i¥H¥Î¨â­Ó°Ñ¼Æ u¡A v ªí¥Ü¥X¨Ó¡A§Y

\begin{eqnarray*}
x &=& x(u , v) \\
y &=& y(u , v) \\
z &=& z(u , v)
\end{eqnarray*}


¼g¦¨·L¤À¦¡¡A±o

\begin{eqnarray*}
dx &=& \frac{\partial x}{\partial u}du+\frac{\partial x}{\part...
... \frac{\partial z}{\partial u}du+\frac{\partial z}{\partial v}dv
\end{eqnarray*}


¦]¬°©·ªø¤¸¯À¬O ds2=dx2+dy2+dz2¡A¬G

ds2=Edu2+2Fdudv+Gdv2

¨ä¤¤

\begin{eqnarray*}
E&=&E(u , v)
=(\frac{\partial x}{\partial u})^2+(\frac{\partia...
...rac{\partial y}{\partial v})^2+(\frac{\partial z}{\partial v})^2
\end{eqnarray*}


¨Ò¦p $\varphi:(a , b) \rightarrow \mathbf{R}^3$

\begin{displaymath}
t\vert\rightarrow(x(u(t) , v(t)) , y(u(t) , v(t)) , z(u(t) ,...
...)))\mbox{{\fontfamily{cwM0}\fontseries{m}\selectfont \char 1}}
\end{displaymath}

¬O¦±­±¤Wªº¤@±ø¦±½u¡A«h±qÂI (x(u(t0) , v(t0)), y(u(t0) , v(t0)) , z(u(t0) , v(t0)) ¨ìÂI (x(u(t1) , v(t1)) , y(u(t1) , v(t1)), z(u(t1) , v(t1)) ªº©·ªø¬O

\begin{displaymath}
\int_{t_0}^{t_1}\sqrt{E(u(t) , v(t))(\frac{du}{dt})^2+
2F(u(...
...frac{du}{dt}\frac{dv}{dt}+G(u(t) , v(t))(\frac{dv}{dt})^2}\;dt
\end{displaymath}

Gauss §â Edu2+2Fdudv+Gdv2 ¥s°µ¦±­±ªº²Ä¤@°ò¥»¦¡ (the first fundamental form)¡C ²Ä¤@°ò¥»¦¡¥u¥Ñ¦±­±¥»¨­¨M©w¡A»P¨ä©P³òªº¤T«×ªÅ¶¡¨S¦³Ãö«Y¡C¦]¦¹¡A¥u­nª¾¹D²Ä¤@°ò¥»¦¡¡A´N¥i¥H§â¦±­±¬Ý°µ¤@­Ó¿W¥ßªº´X¦ó¹ï¶H¨Ó¬ã¨s¡CGauss ¿W¨ìªºÆ[¹î¬O¡A¦±­±ªº³\¦h­«­nªº´X¦ó©Ê½è¥u¥Ñ²Ä¤@°ò¥»¦¡´N¥i¥H½T¥ß¤F¡C ¨Ò¦p¦±²v (total curvature) »P´ú¦a½u (geodesics) ´N¬O¡C

¦±²v¬O´ú«×¦±­±Ås¦±ªºµ{«×¡Cª½Ä±ªº¤ÏÀ³¦ü¥G¬O³o¼Ë¡A¦pªG¤£¬O¦b¤T«×ªÅ¶¡¡A«ç»ò¬Ý±o¥X¦±­±¦b¨ºùØÅs¦±¡A ¦b¨ºùؤñ¸û¥­©Z¡H¥i¬O¤Ï¹L¨Ó»¡¡A·Q¹³¦³¤@°¦¥u¦³¤G«×·Pıªº¤pÂΡA¥¦¤°»ò®É­Ôª¦¨ì¤s³»¡A ¤°»ò®É­Ô¨ì¹F¾b³¡¡A¤°»ò®É­Ô¨Ó¨ì¥­¦a¡AÃø¹D¦Û¤v¤@ÂI¤]¨S¦³·Pı¶Ü¡H¨Æ¹ê¤W¡A³o¬O Gauss »{¬°³Ì­«­nªº©w²z (Gauss theorem egregium)¡G¡]°ª´µ¡^¦±²v§¹¥þ¥Ñ²Ä¤@°ò¥»¦¡¨M©wªº¡C

´ú¦a½u¥i¥H¬Ý§@¬O¼Ú¤ó¥­­±ªº¡uª½½u¡v·§©Àªº±À¼s¡C¨Ò¦p¡A¦b²y­±ªº´ú¦a½u´N¬O¤j¶ê ¡]¹L²yªº¥­­±»P²y­±ªº¥æ¶°¡^¡C¦Ò¼{¤j¶êªºÀu©·»P¦H©·¡A§Ú­Ìª¾¹D¡A³q¹L²y­±¨âÂIªº¤j¶ê©·¡]§Y´ú¦a½u¡^¤£¤@©w¬O³q¹L³o¨âÂIªø«×³Ìµuªº¦±½u¡C

Gauss °£¤F¦Ò¼{³oºØ§½³¡ªº´X¦ó©Ê½è (geometry in the small)¡A¥L¤]¦Ò¼{¤j°ì©Ê½è (geometry in the large)¡C¨Ò¦p¡A¥O A ¬O¦±­±ªº¤T¨¤§Î¡]¤TÃä³£¬O´ú¦a½u¡^¡A­Y¨ä¤T¤º¨¤¬O £\,£],£^¡AGauss µo²{

\begin{displaymath}
\int_AKdA=\alpha+\beta+\gamma-\pi
\end{displaymath}

¦]¦¹¡A¦]¬°²y­±¬O¦±²vùÚ¬°¤@­Ó¥¿ªº±`¼Æ¡A²y­±¤T¨¤§Îªº¤T¤º¨¤©MùÚ¤j©ó £k¡C ¦]¬° Poincaré ¼Ò«¬ªº«D¼Ú´X¦óªº¦±²vùÚ¬°¤@­Ó­tªº±`¼Æ¡A¤T¨¤§Îªº¤T¤º¨¤©MùÚ¤p©ó £k¡C ¦]¬°¼Ú¤ó¥­­±ªº¦±²vùÚ¬°¹s¡A¦]¦¹¤T¨¤§Îªº¤T¤º¨¤©M«ê¦n¬O £k¡C

1854¦~ Riemann §â Gauss ªº·Qªk¤©¥H±À¼s¡C¥L§â¶Ç²Îªº¤T«×ªÅ¶¡ªº·§©ÀÂX¤j¨ì¥ô·Nºû¼ÆªºªÅ¶¡¡A ©·ªø¤¸¯À¬O³oºØªÅ¶¡³Ì°ò¥»ªº´X¦ó©Ê½è¡C¨ãÅ骺»¡¡An ºûªÅ¶¡¤§¤¤ÂIªº¤@²Õ®y¼Ð¦pªG¬O (x1,¡K,xn)¡A¥O©·ªø¤¸¯À

\begin{displaymath}
ds^2=\sum_{i , j=1 , \cdots , n}g_{ij}dx_idx_j
\end{displaymath}

¨ä¤¤

\begin{displaymath}
g_{ij}=g_{ji} , g_{ij}=g_{ij}(x_1 , \cdots , x_n)
\end{displaymath}

¬O x1,¡K,xn ªºµL½a¥i·L¤À¨ç¼Æ¡C±q³oùØ¥Xµo¡ARiemann ¤]¥i¥H¦Ò¼{¦±½u©·ªø¡B¦±²v¡B´ú¦a½u¡C

¬°¤F¦³®Äªº¬ã¨s³oºØ Riemann ´X¦ó (Riemannian geometry)¡A¼Æ¾Ç®a¥²¶·§â·L¿n¤À§@§ó¶i¤@¨Bªºµo®i¡C ¦b·L¤À¤è­±¡A³o´N¬O E.B. Christoffel, G. Ricci-Curbastr¡]¼Æ¾Ç®a²ºÙ¥L¬°Ricci¡^»P Tulli Levi-Civita¡]1873¡ã1941¦~¡^µo®i¥X¨Óªº±i¶q¤ÀªR (tensor analysis)¡C ¦b¿n¤À¤è­±¡A¦³ Eli Cartan¡]1869¡ã1951¦~¡^µo®i¥X¨Óªº·L¤À¦¡ (differential forms)¡C

¥Î³o¨Ç¤u¨ã¡A¥i¥H¦b Riemann ´X¦ó¤W­±¦Ò¼{¤°»ò¥s°µ¥­¦æ²¾°Ê¡A¨º´N¬O¦±²v±i¶q (curvature tensor) ªº¥\¥Î¡C¤]¥i¥H¦Ò¼{¤£¦PÂIªº¤Á½uªÅ¶¡ (tangent space) ¤§¶¡ªºÁp¨t (connection, ©Î Levi-Civita connection)¡CLevi-Civita µo²{¡A¨Ã«D¥u¦³©·ªø¤¸¯Àªº´X¦óªÅ¶¡¤~¦³¡uÁp¨t¡vªº·§©À¡F¥L§â¡uÁp¨t¡v§@¬°¤@­Ó¿W¥ßªº´X¦ó·§©À¨Ó¬ã¨s¡A¦]¦¹±o¨ì¤F·sªº´X¦óªÅ¶¡¡A§Y non-Riemannian geometry¡C

Riemann ªº´X¦óÆ[ÂI¨Ï¤HÃþ¹ïªÅ¶¡ªº»{Ãѱo¨ì«e©Ò¥¼¦³ªº¸Ñ©ñ¡C¤@­Ó¥Ñ n ­Ó¿W¥ßªºª«²z¶q©Ò§@¥Îªºª«²zÅé¨t¡A¤£¥¿¬O¤@­Ó n ºûªÅ¶¡¶Ü¡H¦]¦¹¡A³oºØ¼s¸qªº´X¦ó·§©À¥¿¦nÂX¤j¤F´X¦óªºÀ³¥Î¡C

ŪªÌ¦pªG¨ã¦³·L¿n¤Àªºª¾ÃÑ¡A¥i¥H°Ñ¦Ò¥H¤Uªº¤å³¹¡A

R. Penrose,¡qThe geometry of the universe¡r, in ¡mMathematics Today¡n, edited by L.A. Steen¡A»P S.S. Chern,¡qGeneral relativity and differential geometry¡r, in¡mEinstein Centennial Symposium¡n, Inst. Adv. Study, Princeton, N.J. 1979. Addison-Wesley, 1980, Reading, Mass.

³o¨â½g¤å³¹«Ü¥Í°Ê¨Ã¥B«Ü²`¨èªº¤¶²Ð·L¤À´X¦óªº´X­Ó°ò¥»·§©À¡A¨Ã¥B°Q½×·L¤À´X¦ó»Pª«²z¡]¤×¨ä¬O¬Û¹ï½×¡^ªºÃö«Y¡C

   
 
5.4 Klein ªº Erlangen ºõ»â

¤Q¤E¥@¬ö¥X²{¤F³o»ò¦h´X¦óªÅ¶¡¡A¤£§K¨Ï¼Æ¾Ç®a­n­«·s·Q¤@·Q¡G¤°»ò¬O´X¦óªÅ¶¡¡H¦p¦ó§â³o¨Ç´X¦óªÅ¶¡¤ÀÃþ¡H

Klein ªº Erlangen ºõ»â (Erlangen program) ´N¬O·Q¥Î¹B°Ê¸sªº·§©À¨Ó§â¦UºØ´X¦ó¶i¦æ¤ÀÃþ¡C

¥H¼Ú¤ó¥­­±´X¦ó¦Ó¨¥¡A¡u¤GÃä¤@§¨¨¤©w²z¡]SAS©w²z¡^¡v§i¶D§Ú­Ì¡A¼Ú¤ó´X¦ó®e³\ªº¹B°Ê¬O«Oªø¹B°Ê (isometry)¡C«Oªø¹B°Ê¨ä¹ê´N¬O²¾°Ê (translation)¡BÂà°Ê (rotation) ©Î¥¦­Ìªº¦X¦¨¨ç¼Æ¡C¦pªG§âÂIªº®y¼Ð°O¬° (x,y)¡A«h«Oªø¹B°Ê¥i¥Hªí¥Ü¬°

\begin{displaymath}
{x\choose y}\rightarrow{x\cos\theta+y\sin\theta+a\choose -x\sin\theta+y\cos\theta+b}
\end{displaymath}

¦Ò¼{

\begin{displaymath}
G=
\left\{
\begin{array}{cc}
\pmatrix{
\cos\theta &\sin\thet...
...0&1 \cr
}
&: \theta , a , b \in \mathbf{R}
\end{array}\right\}
\end{displaymath}

G ªº¥ô·N¤¸¯À³£¥i¥H¬Ý¦¨¤@ºØ«OªøÅÜ´«¡C¦b¯x°}­¼ªk¤U¡AG Åܦ¨¤@­Ó¸s(group)¡CG ´N¬O¼Ú¤ó¥­­±´X¦óªº¹B°Ê¸s¡C ¼Ú¤ó¥­­±´X¦ó©Ò¬ã¨sªºªø«×¡B¨¤«×¡B¤¤ÂI¡B¶ê¡B¾ò¶ê¡BÂù¦±½u¡B­±¿n¡A¦b G ªº§@¥Î¤§¤U³£ºû«ù¤£ÅÜ¡C´«¥y¸Ü»¡¡Aªø«×¡B¨¤«×¡K¡K³o¨Ç´X¦ó¶q³£¬O¹B°Ê¸s G ªº¤£Åܶq (invariant)¡C

Klein ¦b1872¦~´N¥ô Erlangen ¤j¾Çªº±Ð±Â¡C¦b¦P¤@¦~¡A¥L´£¥X¤@­Ó¤ÀÃþ¦UºØ´X¦óªº¿ìªk¡A¥@ºÙ Erlangen ºõ»â¡CKlein »{¬°¡A©Ò¿×ªº´X¦ó´N¬O¬ã¨s¦UºØ¹B°Ê¸sªº¤£Åܶq¡F¹ï©ó¤£¦Pªº¹B°Ê¸s¡A´N²£¥Í¤£¦Pªº´X¦ó¡C

¦]¦¹¼Ú¤ó¥­­±´X¦ó¹ïÀ³ªº¹B°Ê¸s¬O

\begin{displaymath}
\left\{
\begin{array}{cc}
\pmatrix{
\cos\theta &\sin\theta &...
...0&1 \cr
}
&: \theta , a , b \in \mathbf{R}
\end{array}\right\}
\end{displaymath}

¥é®g´X¦ó (affine geometry) ªº¹B°Ê¸s¬O

\begin{displaymath}
\left\{
\begin{array}{cl}
\pmatrix{
\alpha &\beta &a \cr
\...
... \delta , a , b \in \mathbf{R}
\end{array}\end{array}\right\}
\end{displaymath}

¦]¦¹¦b¥é®g¼v´X¦ó¤¤¡A¶ê»P¾ò¶ê¤]¥i¥H¬Û¤¬Âà´«¡C

®g¼v´X¦óªº¹B°Ê¸s¬O

\begin{displaymath}
\left\{
\begin{array}{cl}
\pmatrix{
a_{11} &a_{12}&a_{13} \...
...in \mathbf{R}
\end{array}\end{array}\right\}
\left/
H
\right.
\end{displaymath}

¨ä¤¤ H ¬°

\begin{displaymath}
\left\{
\begin{array}{cc}
\pmatrix{
\alpha &0 &0 \cr
0&\al...
... : \alpha \neq 0, \; \alpha \in \mathbf{R}
\end{array}\right\}
\end{displaymath}

¦b®g¼v´X¦ó¤¤¡A¶ê»PÂù¦±½u¤]¥i¥H¬Û¤¬Âà´«¡C®g¼v´X¦óªº¤£Åܶq¬O¡u­«¦XÃö«Y¡v(incidence relation)¡G¦p¡A¤@­ÓÂI¬O§_¸¨¦b¬Y±øª½½u¤W¡]Desargue ©w²z¡BPappus ©w²z©Ò°Q½×ªº´N¬O³oºØ´X¦ó©Ê½è¡^¡C¦@½u¥|ÂIªº½Õ©M¤ñ¡]harmonic ratio¡A©Î cross ratio¡^¤]¬O®g¼v´X¦óªº¤£Åܶq¡C

Erlangen ºõ»â·íµM¤£¯à§â©Ò¦³ªº´X¦óªÅ¶¡¯Ç¤J¨äÅé¨t¡CKlein ¥»¤H¤]«D±`ÁA¸Ñ³o­Ó¨Æ¹ê¡A¤@¯ëªº Riemann ªÅ¶¡³q±`³£¤£¯à©ñ¦b Erlangen ºõ»â¤§¤º°Q½×¡C¤£¹L Erlangen ºõ»â²¦³º´£¨Ñ¤@­Ó·sªº¬ã¨s´X¦ó¾Çªº¨¤«×¡C

   
 
5.5 ´X¦ó¾Çªº°ò¦

¦Û±q«D¼Ú´X¦ó¥X²{¤§«á¡A¡m´X¦ó­ì¥»¡n¤w¥¢¥h¨ä°ß§Ú¿W´Lªº¦a¦ì¡C¤Q¤E¥@¬ö¥½´Á¡A³\¦h¼Æ¾Ç®aµo²{¡m´X¦ó­ì¥»¡nÁÙ¦³³\¦h¥O¤H¤£¯à§Ô¨üªº¦a¤è¡C¨Ò¦p¡A¡m´X¦ó­ì¥»¡n»¡¡Aª½½u¬O¥u¦³ªø«×¡A¨S¦³¼e«×ªº´X¦ó¹ï¶H¡AÂI¥u¦³¦ì¸m¡A¨S¦³ªø«×¤]¨S¦³¼e«×¡C¥ÎÄY®æªº¼Æ¾Ç¼Ð·Ç¨Ó¬Ý¡A³o¨Ç¸Ü¨s³ºÁ¿¤F¤°»ò©O¡H ¤S¦p¡]¨£¤U¹Ï¡^¡A§Ú­Ì¾Ì¤°»ò¯àªÖ©wªº»¡ª½½u AP »Pª½½u BC ªº¥æÂI¤@©w¸¨¦b½u¬q BC ¤§¤W¡H¡m´X¦ó­ì¥»¡nªº¤½²z»P©w²z¦ü¥G¤£¯à«OÃÒ³o¥ó§Ú­Ì±`¥Îªº¨Æ¹ê¡C



Hilbert ªº¡m´X¦ó¾Çªº°ò¦¡n(Grundlagen der Geometrie) ­«·s¾ã²z¥­­±´X¦óªº¤½²z¡]1899¦~¡^¡CHilbert §âÂI¡B½u¡B­±ªºª½Æ[Áp·Q§¹¥þ­é¹Ü¡F¥L»¡¡A§A¤]¥i¥H§âÂI¡B½u¡B­±´«­Ó¦WºÙ¡A¥s°µ´È¤l¡B®à¤l¡B°à°s±í¡C­«­nªº¬O¡A¦UºØ©w¸q»P¤½²z³W©w¥X¨ÓªºÂI¡B½u¡B­±¤§¶¡ªº¬Û¤¬Ãö«Y¡A¦Ó¤£¬OÂI¡B½u¡B­±³o¨Ç¦r­±¤Wªº²[¸q¡C¥L«D±`¤p¤ßªº¦C¥X¦UºØ¤½²z¡]¥]¬A´X­Ó Euclid ¤£¦Ûı¨Ï¥Î¦Ó¨S¦³¦C¥Xªº¤½²z¡^¡A¨Ã¥B¤@¦A±j½Õ¦UºØ¤½²z¶¡ªº¬Û®e©Ê (consistency)¡B¿W¥ß©Ê (independent) »P§¹³Æ©Ê (completeness)¡C¸g¹L Hilbert ¾ã²z¤§«áªº¥­­±´X¦ó¤~Åܦ¨ÅÞ¿è¤W¦Û¨¬ªººtöÅé¨t¡C

Hilbert ªº¤u§@©TµM¹ý©³ºR·´¤F¡m´X¦ó­ì¥»¡nªº±R°ª¦a¦ì¡A¦ý¬O¥¦¹ï´X¦ó¾Çªº¬ã¨s¨s³º¦³¤°»ò­«¤jªº¼vÅT©O¡H§Ú­Ì¤w¸g¬Ý¨ì¡A·L¤À´X¦ó©M¥N¼Æ´X¦ó¦w¤W§½³¡®y¼Ð (local coordinate) ªº¸Ë³Æ¤§«á¡A¦­¤w©b¤W¥ú©úªº«e³~¡A®Ú¥»µL·å²z·|¤°»ò¤½²zÅé¨t¬O§_§¹¾ã¦Û¨¬¡C¦b¦³­­´X¦ó¾Ç (finite geometry) ªº¬ã¨s¥i¯àÁÙ¥i¥H¬Ý¨ì Hilbert ªº¼vÅT¡C­Ó¤H»{¬°¡A¡m´X¦ó¾Çªº°ò¦¡n³Ì¤jªº§@¥Î¬O±À°Ê¤G¤Q¥@¬ö¬Y¨Ç¼Æ¾Ç³¡ªù¡]¦p¡A©â¶H¥N¼Æ¡BÂI¶°©Ý¾ë¡Bªx¨ç¤ÀªR¡^ªº¤½²z¤Æ¹Lµ{¡A¨Ã¥B±a°Ê¼Æ¾ÇÅ޿誺¬ã¨s¡C

   

¤W­¶¡@1¢x2¢x3¢x4¢x5¡@¤w¦b³Ì«á¤@­¶

¦^­¶­º
 
¡]­Y¦³«ü¥¿¡BºÃ°Ý¡K¡K¡A¥i¥H¦b¦¹ ¯d¨¥ ©Î ¼g«H µ¹§Ú­Ì¡C¡^
EpisteMath

EpisteMath (c) 2000 ¤¤¥¡¬ã¨s°|¼Æ¾Ç©Ò¡B¥x¤j¼Æ¾Ç¨t
¦Uºô­¶¤å³¹¤º®e¤§µÛ§@Åv¬°­ìµÛ§@¤H©Ò¦³


½s¿è¡G¶À«H¤¸ ³Ì«á­×§ï¤é´Á¡G5/3/2002