¤W­¶¡@1¢x2¢x3¢x4¢x5¢x6¡@¦¸­¶

½Í½Í¤RªQ¹Lµ{ (Poisson Process) ¡]²Ä 3 ­¶¡^

®]¦Û°·;¥Û¥ò©Ý

 

­º­¶ | ·j´M

¡D­ì¸ü©ó¼Æ¾Ç¶Ç¼½²Ä¤G¨÷²Ä¥|´Á
¡D§@ªÌ·í®É¥ô±Ð©ó¬ü°ê­³®¦¦{¥ß¤j¾Ç¼Æ¾Ç¨t;¬ü°ê±K¦è®Ú¤j¾Ç¼Æ¾Ç¨t
¡E¹ï¥~·j´MÃöÁä¦r
 
¤T¡B

³o¤@¸`ùØ¡A­º¥ý§Ú­Ì·Q½Í½Í¬°¤°»ò¦b¥H¤W¤Þªº¹ê¨Ò¤¤¡A±ø¥ó(iv)¬O¦X²zªº¡C §Ú­Ì¤w¸gÃÒ©ú¦b±ø¥ó (i),(ii) ©M (iii) ¤§¤U¡A±ø¥ó (iv)©M (iv')¬O¬Ûµ¥ªº¡C ±ø¥ó(iv')»¡

\begin{eqnarray*}
P(X(h)=1) &=& \lambda h + o(h) \approx \lambda h, \\
P(X(h)\g...
...nus0.1pt{\fontfamily{cwM1}\fontseries{m}\selectfont \char 118} }
\end{eqnarray*}


¥Î©ó¨®½ø³q¹L¦¸¼Æªº¨Ò¤l¡A³o­Ó±ø¥ó¥u¤£¹L»¡·í®É¬q [0,t] «Üµuªº®É­Ô¡A ¦b®É¬q [0,t] ¤¤³q¹L¤@½ø¨®ªº¾÷²v¤j·§¥¿¬O¤ñ©ó®É¬qªºªø«× h¡A¨ä¤ñ¨Ò±`¼Æ´N¬O £f¡C ¥t¥~³o±ø¥ó¤S»¡¦b®É¬q [0,h] ¤¤¡A³q¹L¨â³¡¨®¥H¤Wªº¾÷²v´X¥G¬O¹s¡C ³o¼Ëªº°²©w¦ü¥G¬O«Ü±µªñ²{¹êªº¡A¨º»ò±ø¥ó(iv)´N¤£¬O¤Ó©_©Ç¤F¡C

²Ä¤G¸`ùتºÃÒ©ú (iv')$\Rightarrow$(iv) ²o¯A¨ì±Àºt¬ìº¸²öªGº¸¤Ò¤èµ{¦¡©M¸Ñ³o²Õ·L¤À¤èµ{¦¡¡C ¤U­±§Ú­Ì·Ç³Æ¥Î²Ä¤@¸`ªºµ²ªG§@¤@­Ó¤£¤ÓÄY®æ¦ý«Üª½Ä± (Intuitive) ªºÃÒ©ú¡A Åý§A­Ì§ó¥i¥H¬Ý¥X±ø¥ó(iv)ªº¦X²z©Ê¨Ó¤F¡C

°²©w(i),(ii),(iii)¤Î(iv')¦¨¥ß¡CÅý§Ú­Ì§â®É¬q [0,t] ¤À¦¨ n µ¥¤À¡A 0= t0 < t1 < t2 < ¡K < tn = t¡A $t_i- t_{i-1} = \frac{1}{n}$¡C¡]¦p¤U¹Ï©Ò¥Ü¡^



±ø¥ó (ii) »¡ X(t1) - X(t0), X(t2) - X(t1),¡K,¡K X(tn) - X(tn-1) ³£¬O¿W¥ßªºÀH¾÷ÅܼơA±ø¥ó(iii)«ü¥X¥L­Ì¦³¦P¼ËªºÀH¾÷¤À§G¡A ±ø¥ó (iv') «h»¡

\begin{eqnarray*}
&& P(X(t_i)-X(t_{i-1})=0) \approx 1 - \lambda (t_i -t_{i-1}) =...
... \lambda \frac{t}{n} \\
&& P(X(t_i)-X(t_{i-1})\geq 2) \approx 0
\end{eqnarray*}


©Ò¥H¨C­Ó¿W¥ßÀH¾÷ÅÜ¼Æ X(ti) - X(ti-1) ³£´X¥G¬O¤@­Ó»ÉªO¼Ò«¬ (Coin model)¡A ¥¿­±¡]§Yµ¥©ó 1¡^ªº¾÷²v¬O $p = \frac{\lambda t}{n}$¡A ¤Ï­±¡]§Yµ¥©ó 0¡^ªº¾÷²v¬O $q = 1- (\frac{\lambda t}{n})$¡C ©Ò¥H³o n ­ÓÀH¾÷Åܼƪº©M¡C§YÁ`¦@¥¿­±¥X²{ªº¦¸¼Æ¬°

\begin{displaymath}
X(t) = [ X(t_n) - X(t_{n-1})] + [X(t_{n-1}) - X(t_{n-2})] +\cdots + [ X(t_1) - X(t_0)]
\end{displaymath}

¡]´X¥G¬O¦³¤@­Ó¤G¶µ¤À§G¡A³oùØ $np = n \cdot \frac{\lambda t}{n}$ $= \lambda t$ ¡C ¥O $n \longrightarrow \infty$¡A¥Î²Ä¤@¸`ªºµ²ªG¡A¹ï¥ô¤@ k=0,1,2,¡K

\begin{displaymath}
P(X(t)=k) \approx {n \choose k}p^kq^{n-k}
\longrightarrow \frac{(\lambda t)^k}{k!} e^{-\lambda t}
\end{displaymath}

©Ò¥H X(t) ¦³¤@­Ó¨ã¦³°Ñ¼Æ $\lambda t$ ªº¤RªQ¤À§G¡A ³o¥¿¬O¤W­±ªº±ø¥ó(iv)¡C³o­ÓÃÒ©ú¤£°÷ÄY®æ¡A¥i¬O¤ñ²Ä¤G¸`ªºÃÒ©ú®e©ö¤F¸Ñ¡A °²¦p§A¯à¤F¸Ñ³o­ÓÃÒ©ú¡A§A´N©ú¥Õ¬°¤°»ò±ø¥ó(iv)¨Ã¤£¬O«Ü¬ðµMªº¤F¡C

¤RªQ¹Lµ{¦³¤@­Ó«Ü¦³¥Îªº¯S©Ê¡A¦A®³¨®½ø¦¸¼Æªº¨Ò¤l¨Ó»¡¡C ¦pªG§Ú­Ì¥Î T1 ªí¥Ü±q®É¶¡ 0 ¨ì²Ä¤@½ø¨®³q¹L³o¤@ÂI®Éªº®É¬q¡A ¥Î T2 ªí¥Ü±q²Ä¤@½ø¨®³q¹L³oÂI¨ì²Ä¤G½ø¨®³q¹L³oÂIªº®É¬q¡A¡K¡Kµ¥µ¥¡C «h T1, T2, T3,¡K ³£¬OÀH¾÷ÅܼơC §Ú­Ì¥s¥¦­Ì°µ¡uµ¥­Ô®É¶¡¡v(waiting time)¡C °²©w±ø¥ó(i),(ii),(iii)©M(iv)¦¨¥ß¡A §Y°²³]¦b [0,t] ¶¡³q¹Lªº¨®¼Æ X(t) ¬°¤@¤RªQ¹Lµ{¡A «h§Ú­Ì¥i¥HÃÒ©ú
(iv") T1, T2, T3,¡K ³£¬O¿W¥ßªº©M¨ã¦³¬Û¦P¤À§GªºÀH¾÷ÅܼơA ¨ä¦@¦Pªº¾÷²v¤À§G¬O

\begin{displaymath}
P(T \leq t) = 1 - e^{-\lambda t} , \quad t>0
\end{displaymath}

§Y¤@«ü¼Æ¤À§G¡A¨ä°Ñ¼Æ¬° £f¡C­nÃÒ©ú $P(T_1 \leq t) = 1 - e^{-\lambda t}$ «D±`®e©ö¡A¦]¬°

\begin{eqnarray*}
P(T \leq t) &=& 1-P(T_1>t) \\
&=& 1-P(X(t)=0) = 1 - e^{-\lambda t} , \quad t>0
\end{eqnarray*}


¥i¬O¨ä¥Lªº³¡¥÷¡A¦pÃÒ©ú T1, T2,¡K ¬O¿W¥ßªº¡A ©M T2, T3,¡K ³£¦³¹³ T1 ¤@¼Ëªº¤À§Gµ¥µ¥¡A ¦³¿³½ìªºÅªªÌ½Ð°Ñ¦Òªþ¿ý B¡C¨ä¹ê±q±ø¥ó(i),(ii),(iii)©M(iv") ¤]¥i¥H±À¥X(iv)©Î(iv')¨Ó¡C ©Ò¥H³o¤]¬O¤RªQ¹Lµ{ªº¥t¤@ºØ©w¸q¡C¨äÃÒ©ú¨Ã¤£¤ÓÃø¡A ¥ý¥Î T1, T2,¡K ¦b±ø¥ó(iv")¤¤ªº©Ê½è¡A­pºâ

\begin{eqnarray*}
&&P(T_1+T_2+\cdots+T_k \leq t) \\
&=& \lambda^k \int \cdots \...
... t_1} e^{-\lambda t_2} \cdots e^{-\lambda t_k} dt_1 \cdots dt_k,
\end{eqnarray*}


¦A¥ÑÃö«Y

\begin{eqnarray*}
&& P(X(t)=k) \\
&=& P(T_1+T_2+\cdots+ T_k \leq t, (T_1 +T_2 +...
...2+\cdots+ T_k \leq t) - P(T_1 +T_2 + \cdots T_k+T_{k+1} \leq t )
\end{eqnarray*}


­pºâ¥X¾÷²v P(X(t)=k) ¨Ó¡CŪªÌ¥i¦Û¤v­pºâ¤@¤U¡A©Î°Ñ¬Ý±Ð¬ì®Ñ¡A ¦³¿³½ìªº¥i¦AŪªþ¿ýC¡C

¦¹¦a§Ú­Ì¥u·Q«ü¥X¤RªQ¹Lµ{¬O¤@ºØ­p¼Æ¹Lµ{ (counting process)¡A ¦] X(t) ³£¬O¨ú¾ã¼Æ­Èªº¡C¨ä¥­§¡­È (mean)

\begin{eqnarray*}
EX(t) &=& \sum^\infty_{k=0} k \frac{(\lambda t)^k}{k!} e^{-\la...
...\\
&=& \sum^\infty_{k=0} \frac{(\lambda t)^k}{k!} = \lambda t,
\end{eqnarray*}


©Ò¥H £f ¥Nªíªº·N«ä¬O³æ¦ì®É¶¡¤º³q¹L¨®½ø¼Æ¦¸ªº¥­§¡­È¡C

¦pªG¤Ï¹L¨Ó§Ú­Ì±q±ø¥ó(iv")¨Ó¬Ý T1, T2,¡K¡C ¥Nªí«e«á¨®¤§¶¡ªºµ¥­Ô®É¶¡¡A¥L­Ìªº¥­§¡­È

\begin{displaymath}
ET = \int^{\infty}_0 (\lambda e^{-\lambda t}) dt = \frac{1}{\lambda}
\end{displaymath}

©Ò¥H $\frac{1}{\lambda}$¡A¥Nªí«e«á¨â¨®³q¹L®É¶¡®tªº¥­§¡­È¡C

Ä´¦p»¡ $\lambda=2$¡A¦Ó t ¬O¥Î¤ÀÄÁªí¥Ü¡A ¥Î­p¼ÆªºÆ[©À¨C¤ÀÄÁ¥­§¡¦³¨â¨®³q¹L¡A ¦pªG¥Îµ¥­Ô®É¶¡ªºÆ[©À¨Ó·Q¥Ñ©ó $1/\lambda = 1/2$¡A ©Ò¥H¥­§¡¨C 1/2 ¤ÀÄÁ¦³¤@¨®³q¹L¡A³o¨âºØÆ[©À°Z¤£°t¦X±o«Ü¦n¡A ¤]¥¿¬O¤RªQ¹Lµ{ªº¤@ºØ¨â­±©Ê¡C

¤RªQ¹Lµ{ÁÙ¦³¤@ºØ©w¸q¡A¨ä²o¯A¨ìªºÃÒ©ú¤ñ¸û³Â·Ð¡A§Ú­Ì§â¥¦©ñ¦b¤U­±ªºªþ¿ýAùØ¡C

   

¤W­¶¡@1¢x2¢x3¢x4¢x5¢x6¡@¦¸­¶

¦^­¶­º
 
¡]­Y¦³«ü¥¿¡BºÃ°Ý¡K¡K¡A¥i¥H¦b¦¹ ¯d¨¥ ©Î ¼g«H µ¹§Ú­Ì¡C¡^
EpisteMath

EpisteMath (c) 2000 ¤¤¥¡¬ã¨s°|¼Æ¾Ç©Ò¡B¥x¤j¼Æ¾Ç¨t
¦Uºô­¶¤å³¹¤º®e¤§µÛ§@Åv¬°­ìµÛ§@¤H©Ò¦³


½s¿è¡G±d©ú°a ¢A ø¹Ï¡G²¥ßªY ³Ì«á­×§ï¤é´Á¡G4/26/2002