¤W­¶¡@1¢x2¢x3¢x4¢x5¡@¦¸­¶

½Í¸É¶¡ªk ¡]²Ä 2 ­¶¡^

¤ý¤E¶f

 

­º­¶ | ·j´M

¡D­ì¸ü©ó¬ì¾Ç¤ë¥Z²Ä¤Q¤C¨÷²Ä¤Q¤@´Á
¡D§@ªÌ·í®É¥ô±Ð©ó¤¤¥¡¼Æ¾Ç¨t
¡E¹ï¥~·j´MÃöÁä¦r
 
¤û¹yªº®t°Ó¸É¶¡¤½¦¡

©M¸É¶¡°ÝÃD«Ü¦³Ãö«Yªº¤@­ÓÆ[©À¬O®t°Ó(difference quotient ©Î divided difference), ³] x0,x1,¡K,xn ¬O¨â¨â¤£¦Pªº¤@¦ê¹ê¼Æ¡A¦A³] f(x) ¬O¹ï¤@¤Á x ­È³£¦³·N¸qªº¨ç¼Æ¡C¥O

\begin{displaymath}
f_i(x) = \frac{ f(x) -f(x_i) }{x-x_i} , i=0,1,2,\cdots
\end{displaymath}

«h fi(x) ¥s f(x) Ãö©ó xi ªº¤@¶¥®t°Ó¡A±q¸ÑªR´X¦óªºÆ[ÂI¨Ó¬Ý¡Afi(x) ªí¥Ü³s±µ (xi,f(xi)) ©M (x,f(x)) ¨âÂIªºª½½uªº±×²v¡A¹ï¤@¤Á $\neq x_i$ ªº x ­È¡Afi(x) ³£¬O¦³·N¸qªº¡C

§Ú­Ì¥i¥H§@ fi ªº¤@¶¥®t°Ó

\begin{displaymath}
f_{i,j} (x) = \frac{f_i(x)-f_i(x_j)}{x-x_j} , \qquad j \neq i
\end{displaymath}

³o¥s§@ f(x) ªº¤G¶¥®t°Ó¡A°£¤F xi,xj ¨âÂI¥H¥~¡Afi,j(x) ³£¦³·N¸q¡C¥é¦¹§Ú­Ì¥i¥H§@ f(x) ªº³v¦¸°ª¶¥®t°Ó $f_{i,j,\cdots,k}(x)$¡C

§â 0,1,2,¡K ¨Ì¦¸§@·s¨¬¼Ð (subscript)¡A¥i¥H±N f(x) ªº³v¦¸®t°Ó±Æ¦¨¤U¦C¹Ï§Î¡G

\begin{displaymath}
\begin{array}{ccccccc}
x_0 & f(x_0) &&&&& \\
x_1 & f(x_1) &...
...ots & \cdots & \cdots & \cdots & \cdots& \cdots \\
\end{array}\end{displaymath}

³o¼Ëªº¹Ï§Î¥s f ªº®t°Óªí (lozenge diagram)¡Aªí¤¤²Ä¤T¦æ¥H«á¨C¶µ³£¬O¨ä¥ªÃä¤@¶µ»P¸Ó¶µ©Ò¦b¦æ³»¤W¤@¶µªº®t³Q³Ì¥ª¦æ¹ïÀ³¶µ°£ªº°Ó¡C¨Ò¦p

\begin{displaymath}
f_{0,1}(x_4) = \frac{f_0(x_4)) - f_0(x_1)}{x_4 - x_1}
\end{displaymath}

±q³v¦¸®t°Óªº©w¸q§Ú­Ì¥i¥H±o¨ì

\begin{eqnarray*}
(*) \qquad f(x_{n+1}) &=& f(x_0)+f_0(x_{n+1})(x_{n+1}-x_0) \\ ...
...n)(x_{n+1}-x_0)(x_{n+1} - x_1)\\
&&\cdots(x_{n+1}- x_{n-1}) + R
\end{eqnarray*}


¦¡¤¤

\begin{displaymath}
R=f_{0,1,\cdots,n}(x_{n+1})(x_{n+1}-x_0)(x_{n+1}-x_1) \cdots (x_{n+1} - x_n)
\end{displaymath}

²{¦bÅý§Ú­Ì¬Ý¤@¬Ý x,x2,x3 Ãö©ó 0,2,7,-3,8 ½ÑÂIªº®t°Óªí¡G

\begin{displaymath}
\begin{array}{rrrrrrrrrrrrr}
x & x & & & & & & x & x^2 & & ...
...8 & 8 & 1 & 0 & 0 & 0 & \, & 8 & 64 & 8 & 1 & 0 & 0
\end{array}\end{displaymath}


\begin{displaymath}
\begin{array}{rrrrrr}
x & x^3 & & & & \\
0 & 0 & & & & \\...
...& -27 & 9 & -1 & 1 & \\
8 & 512 & 64 & 10 & 1 & 0
\end{array}\end{displaymath}

±q³o¨ÇªíªºÆ[¹î¡A§Ú­Ì¥i¥H²q·Q¡G¦pªG k>n¡A«h xn ªº²Ä k ¶¥®t°Ó¥²ùÚ¬° 0¡A¨Æ¹ê¤W³o¬O¹ïªº¡A§Ú­Ì¥i¥H¥Î¼Æ¾ÇÂk¯Çªk¨ÓÃÒ©ú¡G

«Ü©úÅ㪺 $x^0 \equiv 1$ ªº¦U¶¥®t°Ó³£¬O 0¡A°²¦p§Ú­Ì¤w¸gª¾¹D©w²z¹ï x0,x1,¡K,xn-1 ³£¦¨¥ß¡A¥O f(x) = xn ¦]¬°

\begin{displaymath}
f_0(x)=\frac{x^n-x_0^n}{x-x_0} =
x^{n-1}+x_0x^{n-2}+\cdots+x_0^{n-1}
\end{displaymath}

¬O¤@­Ó n-1 ¦¸ªº¦h¶µ¦¡¡A©Ò¥H f0 ªº n ¶¥¥H¤W®t°Ó³£¬O 0¡A¦]¦¹¦pªG k>n¡A«h k-1>n-1¡A©ó¬O

\begin{displaymath}
f_{0,1,\cdots,k}(x)
= \frac{f_{0,1,\cdots,k-1}(x_k)-f_{0,1,2,\cdots,k-1}(x_0)}{x_0 - x_k} = 0
\end{displaymath}

±q¦Ó¦³

©w²z¡]¤û¹y¡^ n ¦¸¦h¶µ¦¡ªº²Ä n+1 ¶¥¥H¤Wªº®t°Ó¥þ¬O 0¡C

²{¦b¦^¨ì¤½¦¡(*),°²©w f(x)=t(x) ¬O¤@­Ó n ¦¸¦h¶µ¦¡¡A«hR=0¡A¥H $\bar{x}$ ¥N xn+1 «K±o

\begin{eqnarray*}
t(\bar{x}) &=& t(x_0) + t_0(x_1)(\bar{x}-x_0) \\
&& {} + t_{0...
...n-1}(x_n)(\bar{x}-x_0)(\bar{x} - x_1) \cdots (\bar{x} - x_{n-1})
\end{eqnarray*}


³o«K¬O¤û¹yªº¸É¶¡¤½¦¡¡C

¤@¯ë»¡¨Ó¡A¤û¹y¸É¶¡¤½¦¡¨Ã¤£¤Q¤À¦n¥Î¢w¢w³o¬O¥Ñ©ó»s§@®t°Óªí®É­n§@«Ü¦h¦¸°£ªkªº½t¬G¡A¦ý­Y xi = a+ih¡A¨ä¤¤ a ¤Î h ¬°©w¼Æ¡A§Ú­Ì¥Î yi ªí¥Ü t(xi)¡A¥Î $\triangle y_i$ ªí¥Ü yi+1 -yi¡A¥Î $\triangle^2 y_i$ ªí¥Ü $\triangle y_{i+1} - \triangle y_i$ µ¥µ¥¡A³o¨Ç $\triangle^k y_i$ ¥s§@ yi ªº®t¤À (finite differences)¡A¦Ó¤û¹y¸É¶¡¤½¦¡¥i¥H§ï¼g¬°

\begin{displaymath}
t(a+sh) = y_0 + {s \choose 1} \triangle y_0
+ {s \choose 2} \triangle^2 y_0 + \cdots
+ {s \choose n} \triangle^n y_0
\end{displaymath}

¦¡¤¤

\begin{displaymath}
{s \choose k} = \frac{s(s-1) \cdots (s-k+1)}{1 \cdot 2 \cdot \cdots \cdot k}
\end{displaymath}

³o¥s§@¤û¹yªº®t¤À¸É¶¡¤½¦¡¡A¬O¼Æ­È¤ÀªR (numerical analysis) ¤¤ªº¤@­Ó°ò¥»¤½¦¡¡C

   

¤W­¶¡@1¢x2¢x3¢x4¢x5¡@¦¸­¶

¦^­¶­º
 
¡]­Y¦³«ü¥¿¡BºÃ°Ý¡K¡K¡A¥i¥H¦b¦¹ ¯d¨¥ ©Î ¼g«H µ¹§Ú­Ì¡C¡^
EpisteMath

EpisteMath (c) 2000 ¤¤¥¡¬ã¨s°|¼Æ¾Ç©Ò¡B¥x¤j¼Æ¾Ç¨t
¦Uºô­¶¤å³¹¤º®e¤§µÛ§@Åv¬°­ìµÛ§@¤H©Ò¦³


½s¿è¡G±d©ú°a ³Ì«á­×§ï¤é´Á¡G2/17/2002