¤W­¶¡@1¢x2¢x3¢x4¢x5¢x6¡@¦¸­¶

»e¸Á»P¼Æ¾Ç ¡]²Ä 4 ­¶¡^

½²Áo©ú

 

­º­¶ | ·j´M

¡D­ì¸ü©ó¬ì¾Ç¤ë¥Z²Ä¤G¤Q¤C¨÷²Ä¤C´Á
¡D§@ªÌ·í®É¥ô±Ð©ó¥x¤j¼Æ¾Ç¨t
¡E¹ï¥~·j´MÃöÁä¦r
 
¸Á±_ªº·¥­È­ì²z

¦Û¥j¥H¨Ó¡A¤HÃþ¹ï©ó»e¸Áªº¶Ô³Ò¥H¤Î¸Á±_ªº¥©§®ºë·Ç¡AµL¤£Æg´­¦³¥[¡C±q¥Íª«¾Çªº¯ª®v·Ý¨È¨½´µ¦h¼w (Aristotle)¡A¨ì¼Æ¾Ç®a Pappus¡A¥H¤Îªñ¥Nªº³Õª«¾Ç®a¹Fº¸¤å (Darwin) ³£´¿¯d¤UÆg¬üªº»y¥y¡C

¤u¸Á¤Àªc¸ÁÄú¿v¦¨¸Á±_¡A°µ¬°¦Z¸Á²£§Z¡B¨|¥®¡A¥H¤Î¦s©ñ¸Á»e¡Bªá¯»ªºÀxÂëǡC±q¥¿­±¬Ý°_¨Ó¡A¸Á±_¬O¥Ñ³\¦h¥¿¤»Ãä§Îªº¤¤ªÅ¬Wª¬ÀxÂëdzsµ²¦Ó¦¨¡A°Ñ¨£¹Ï¤K¡AŪªÌ­Y¨ã¦³¹ê¦a¨£¹L¸Á±_ªº¸gÅç·íµM¬O³Ì¦n¡C



¹Ï¤K

±q¾ã­Ó¥ßÅ骺¸Á±_¨Ó¬Ý¡A¥¦¨ã¦³¥ª¥k¡]©Î«e«á¡^¨â°¼ªºÀxÂëǡD¨äºI­±¦p¹Ï¤E¡F¦Ó¹Ï¤Q¬O¤@­Ó¬Wª¬ªºÀxÂëǡA¨ä©³³¡¬O¥Ñ¤T­Ó¥þµ¥ªºµÙ§Î­± ASBR¡BASCQ»P PBSC ©Ò²Õ¦¨¡C



¹Ï¤E



¹Ï¤Q

¤HÃþ¹ï©ó¸Á±_ªºµ²ºc¡A¥ÑÆ[¹î²£¥ÍÅå©_¡A¶i¦Ó´£¥X¨â­Ó¼Æ¾Ç°ÝÃD¡G

(i)
¬°¦ó¬O¥¿¤»Ãä§Î¡H
(ii)
©³Ã䬰¦ó¬O¤T­Ó¥þµ¥ªºµÙ§Î­±²Õ¦¨¡H

¤U­±§Ú­Ì´N¨Ó±´¯Á³o¨â­Ó°ÝÃD¡C

²Ä¤@­Ó°ÝÃD¯A¤Î¥j¦Ñªºµ¥©P°ÝÃD (isoperimetric problem)¡G§Y¦b¥­­±¤W¡A­n¥Î©T©wªøªº½u¬q³ò¦¨¤@¶ô«Ê³¬ªº»â°ì¡A¨Ï¨ä­±¿n¬°³Ì¤j¡A°ÝÀ³¦p¦ó³òªk¡H

³o­Ó°ÝÃD¤S¥s°µ Dido °ÝÃD¡C¦b¥j§Æþ¶Ç»¡¤¤¡ADido ¤½¥D¡]«Ø¥ß­{¤Ó°òªº¤k¤ý¡^¾Ì¦oªºª½Ä±´£¥X¥¿½Tªºµª®×¡G¶ê¡C¤£¹L¡A­nµ¥¨ì¨â¤d¦h¦~«áªº¤Q¤E¥@¬ö¡A³z¹LÅܤÀ¾Ç (calculus of variation) ªº¬ã¨s¡A¤~¦³¯u¥¿ÄY®æªºÃÒ©ú¡C

¹ï©óµ¥©P°ÝÃD¡A¥j§Æþ¼Æ¾Ç®a Zenodorus¡]¬ù180 B.C.¡^¤w¸gÃÒ±o¤U¦Cªºµ²ªG¡G

(i) ¦b©Ò¦³ n Ãä§Î¤¤¡A¥H¥¿ n Ãä§Îªº­±¿n¬°³Ì¤j¡A¨Ã¥BÃä¼Æ¶V¦h¡A­±¿n¤]¶V¤j¡F
(ii) ¶êªº­±¿n¤ñ¥ô¦ó¥¿¦hÃä§ÎªºÁÙ­n¤j¡C

¥t¥~¤@¤è­±¡A¥j®J¤Î¤H¤w¸gª¾¹D¡A¥Î¦P¤@ºØ§Îª¬»P¤j¤pªº¥¿¦hÃä§ÎçE¦a¡A«ê¦n¥u¦³¤TºØ¼Ë¦¡¡A°Ñ¨£¹Ï¤Q¤@¡C



¹Ï¤Q¤@

§Y¥u¯à¥Î¥¿¤T¨¤§Î¡A¥¿¤è§Î»P¥¿¤»Ãä§Î¤TºØ±¡§Î¡A¦A¨S¦³¨ä¥Lªº¤F¡C³o¬O¤T¨¤§Î¤T¤º¨¤©M¬° 180¢XªºÂ²³æ±À½×¡C

»e¸Á¤Àªc¸ÁÄú¿v±_¡A±q¾îºI­±¨Ó¬Ý¡A³o¬Û·í©ó¬O¥Î©T©w¶qªºÄú¡A­n³ò¦¨³Ì¤jªº­±¿n¡A³o¬Oµ¥©P°ÝÃD¡C¥Ñ Zenodorus ªºµ²ªG¡A¦A°t¦X¤W­zçE¦aªO¥u¦³¤TºØ¼Ë¦¡¡A©Ò¥H»e¸Á¥u¦³¥¿¤T¨¤§Î¡B¥¿¤è§Î»P¥¿¤»Ãä§Î¤TºØ¿ï¾Ü¡A¦Ó»e¸Á¾Ì¥»¯à¿ï¾Ü¤F³Ì¨Îªº¥¿¤»Ãä§Î¡C´«¨¥¤§¡D»e¸Á±Ä¥Î¡u³Ì¸gÀÙ­ì²z¡v¨Ó¦æ¨Æ¡C

¨È¾ú¤s¨ô (Alexandria) ªº´X¦ó¾Ç®a Pappus¡A¬ù¦b¦è¤¸300¦~¥Xª©¤@®M¤K¥Uªº¡m¼Æ¾Ç¤å¶°¡n(Mathematical Collection)¡A¨ä¤¤²Ä¤­¥U°Q½×µ¥©P°ÝÃD¤Î¸Á±_µ²ºc°ÝÃD¡C¥L¯S§OºÙÆg»e¸Á¡u¨Ì¥»¯à´¼¼z§@½×ÃÒ¡v(reason by instinctive wisdom) ªº¥»»â¡A¤Ñ¥Í­Ñ¦³ªº¡u¬YºØ´X¦óªº¬}®©¤O¡v(a certain geometrical foresight)¡C

¨ä¦¸¡A§Ú­Ì±´°Q¸Á±_ªº²Ä¤G­Ó°ÝÃD¡A§Y¨C­ÓÀxÂÃ«Ç (cell) ©³³¡ªº´X¦óµ²ºc¡C³o­Ó°ÝÃD¤ñ¸û§xÃø¡C

§Ú­ÌÆ[¹î¸Á±_ªº¤@­ÓÀxÂëǡA¥¦¬O¤¤ªÅªº¥¿¤»¨¤§Î¬W¡A¦Ó©³³¡¬O¥Ñ¤T­ÓµÙ§Î­±²Õ¦¨¡A¥æ·|©ó©³³¡¤¤¤ß³»ÂI S¡]¨£¹Ï¤Q¤G¡^¡CÅý§Ú­Ì¥ý¦^ÅU¤@¬q¾ú¥v¡C



¹Ï¤Q¤G

¦b1712¦~¡A¤Ú¾¤¤Ñ¤åÆ[´ú©Òªº¤Ñ¤å¾Ç®a G.F. Maraldi¡A¥L¹ê»Ú«×¶qµÙ§Îªº¨¤«×¡A±o¨ìªºµ²ªG¬O 70¢X32' »P 109¢X28'¡A¨£¹Ï¤Q¤G¡CMaraldi ¹ê¦a¥n°Ý¦ÛµM¡A¨Ã¥B¬Û«H»e¸Á¬O®Ú¾Ú³æ¯Â (simplicity) »P¼Æ¾Ç¬ü (mathematical beauty) ¨â­Ó­ì²z¨Ó¿v±_¡C

Maraldi ªºµ²ªG¤Þ°_ªk°êµÛ¦Wªº³Õª«¾Ç®a Reaumur ªº¿³½ì¡A¥L²q´ú»e¸Á¿ï¾Ü³o¨â­Ó¨¤«×¤@©w¬O¦³­ì¦]ªº¡A¥i¯à´N¬O­n¦b©T©w®e¿n¤U¡A¨Ï±oªí­±¿n¬°³Ì¤p¡A§Y¥H³Ì¤Öªº¸ÁÄú§@¥X³Ì¤j®e¿nªºÀxÂëǡC¦]¦¹¡AReaumur ´N¥h½Ð±Ð·ç¤h¦~»´ªº¼Æ¾Ç®a Samuel König ¦p¤Uªº°ÝÃD¡G

µ¹©w¥¿¤»¨¤§Î¬W¡A©³³¡¥Ñ¤T­Ó¥þµ¥ªºµÙ§Î§@¦¨¡A°ÝÀ³¦p¦ó°µ·|³Ì¸`¬Ù§÷®Æ¡H

Reaumur ¨Ã¨S¦³§i¶D König ³o­Ó°ÝÃD¬O¥Ñ¸Á±_¤Þ°_ªº¡C

¤@ª½µ¥¨ì König §âºâ±oªºµ²ªG 70¢X34" »P 109¢X26" °e¨ì Reaumur ªº¤â¸Ì¡AReaumur ¤~§i¶D König Ãö©ó¸Á±_»P Maraldi ªº¹ê´úµ²ªG¡C¥L­Ì¹ï©ó²z½×»P¹ê´úªºµ²ªG¶È¬Û®t 2"¡A¦P·P¾_Åå¡CKönig ªºµ²ªG¤ä«ù¤F Reaumur ªº²q´ú¡G»e¸Á¬O«ö¡u³Ì¸gÀÙ­ì²z¡v¨Ó¦æ¨Æ¡CKönig §Q¥Î·L¤Àªk¸Ñ¨M¤W­zªº·¥­È°ÝÃD¡A¥L»¡¡G¡u»e¸Á©Ò¸Ñ¨Mªº°ÝÃD¡A¶W¶V¥j¨å´X¦óªº¯à¤O½d³ò¡A¦Ó¥²¶·¥Î¨ì Newton »P Leibniz ªº·L¿n¤À¡C¡vµM¦Ó¡A¤@¥N³Õ¾ÇªÌ Fontenelle¡]ªk°ê¬ì¾Ç°|¥Ã¤[¯µ®Ñ¡^¦b1739¦~«o§@¥XµÛ¦Wªº§PÂ_¡A¥L§_»{»e¸Á¨ã¦³´¼¼z¡A»{¬°»e¸Á¥u¬O«ö·Ó¤Ñ¥Í¦ÛµM»P³yª«ªÌªº«ü¥Ü¡A¡u¤£ª¾¥ç¯à¦æ¡v¦a¡]ª¼¥Ø¦a¡^¨Ï¥Î°ªµ¥¼Æ¾Ç¦Ó¤w¡C

Ãö©ó König ªº¬Û®t2¤À°ÝÃD¡A«á¨Ó¸g¹L Cramer¡BBoscovich¡BMaclaurin µ¥¤Hªº­«ºâ¡Aµo²{»e¸Á¬O¹ïªº¡A¿ù¦b König¡A¦Ó König ©Ò¥Çªº¤p¿ù¤S¥X¦b­pºâ $\sqrt{2}$ ®É¡A©Ò¨Ï¥Îªº¼Æ­Èªí¦L¿ù¤F¤@­Ó¼Æ¦r¡C

¤U­±§Ú­Ì´N¨Ó¨D¸Ñ Reaumur ¹ï König ©Ò´£¥Xªº·¥­È°ÝÃD¡C

¦Ò¼{¹Ï¤Q¤Tªº¥¿¤»¨¤§Î¬W¡A¦b A¡BC¡BE ³B¤À§O¥Î¥­­± BFM¡BBDO¡BDFN ºI±¼¤T­Ó¬Ûµ¥ªº¥|­±Åé ABFM¡BCDBO¡BEDFN¡A¨£¹Ï¤Q¥|¡A¨Ï±oÅܦ¨¹Ï¤Q¤­¡C¤T­Ó¥­­± BFM¡BBDO¡BDFN ©µ¦ù¥æ©ó³»ÂI P¡A¨£¹Ï¤Q¤»¡C±q¹Ï¤Q¤TÅܦ¨¹Ï¤Q¤»¡A©ÒºI±¼ªºÅé¿n«ê¦nµ¥©ó©Ò¸É¨¬ªºÅé¿n¡C¦]¦¹¡A¹Ï¤Q¤T»P¹Ï¤Q¤»ªºÅé¿n¬Ûµ¥¡A¦ý¬O¡A¨âªÌªºªí­±¿n«o¤£¬Ûµ¥¡C



¹Ï¤Q¤T

¦]¦¹¡A­ì·¥­È°ÝÃDµ¥»ù©ó¡A¦b®e¿n©T©w¤U¡A¨D³Ì¤pªí­±¿n¡C¸Á±_¤@­ÓÀxÂëǪºªí­±¡]¹Ï¤Q¤»¡^¬O¥Ñ¤»­Ó±è§Î¡]BMGH µ¥µ¥¡^»P¤T­ÓµÙ§Î²Õ¦¨ªº¡C¦b¹Ï¤Q¥|¤¤¡A³]AB=a¡ABH=h¡AAM=x¡]x ¬OÅܼơ^¡A«h¥Ñ¾l©¶©w«ß»P²¦¤ó©w²z¥i¨D±oµÙ§ÎPBMF ªº¹ï¨¤½u

\begin{displaymath}
BF=\sqrt{3}a \quad, \quad MP=2\sqrt{x^2+\frac{a^2}{4}}
\end{displaymath}

¤µ¨C­ÓµÙ§Îªº­±¿n¬° $\sqrt{3}a\cdot 2\sqrt{x^2+\frac{a^2}{4}}$ ¨C­Ó±è§Îªº­±¿n¬° $ah-\frac{1}{2}ax$¡A©Ò¥H¤@­ÓÀxÂëǪºÁ`ªí­±¿n¬°
\begin{displaymath}
A(x) = 3\sqrt{3}a\sqrt{x^2+\frac{a^2}{4}}+3a(2h-x)
\end{displaymath} (5)

¥Ñ·L¤Àªk¡A¥O A'(x)=0 ±o

\begin{displaymath}3\sqrt{3}ax\cdot\frac{1}{\sqrt{x^2+\frac{a^2}{4}}}-3a=0\end{displaymath}

¸Ñ±o
\begin{displaymath}
x=\frac{\sqrt{2}}{4}a
\end{displaymath} (6)

§Q¥Î¤G¶¥·L¤À¡A®e©öÅ窾 $x=\frac{\sqrt{2}a}{4}$ ½T¬O·¥¤pÂI¡C¦b $x=\frac{\sqrt{2}a}{4}$ ¤§¤U¡A¶i¤@¨B¥OµÙ§Îªº¾U¨¤ $\angle PBM=\theta$¡A«h

\begin{displaymath}\tan(\frac{1}{2}\theta)=\frac{\sqrt{2}}{2}\end{displaymath}

±q¦Ó
\begin{displaymath}
\tan\theta &=& 2\sqrt{2}
\end{displaymath} (7)


\begin{displaymath}
&& \theta \quad \mbox{{\fontfamily{cwM2}\fontseries{m}\selec...
...{cwM1}\fontseries{m}\selectfont \char 107}} \quad 70^\circ 32'
\end{displaymath}

²ßÃD¡G ¦b¹Ï¤Q¤»¤¤¡A¥O £\ ªí¥Ü¹ï¨¤½u PO »P¤¤¤ß¶b PQ ¤§¥æ¨¤¡A¸ÕÃÒ¤@­ÓÀxÂëǪºÁ`ªí­±¿n¬°
\begin{displaymath}
A(\alpha)=6ha+\frac{3}{2}a^2(\frac{\sqrt{3}}{\sin\alpha}-\cot\alpha)
\end{displaymath} (8)

¦A¸Ñ $A'(\alpha)=0$¡A±o
\begin{displaymath}
\cos\alpha=\frac{1}{\sqrt{3}} \quad \mbox{{\fontfamily{cwM2}...
...family{cwM1}\fontseries{m}\selectfont \char 107}}\quad 0.57735
\end{displaymath} (9)

©Ò¥H $\alpha=54^\circ 44'$

µù¡G§Ú­Ì¤]¥i¥H§Q¥Î(6)¦¡¡A¦A°t¦X¹Ï¤Q¤»¡A±À±o(9)¦¡¡C

¹ï©ó¤@­Óªìµ¥ªº·¥­È°ÝÃD¡A­n¥Î¨ì·L¤Àªk¨Ó³B²z¡]±þÂû¥Î¤û¤M¡^¡A¥O¤H¤£º¡·N¡C©ó¬O¦³¤H¡A¨Ò¦p Maclaurin¡]1743¡^¡BL'Huillier¡]1781¡^¡A¶}©l´M¨Dªìµ¥ªº¡B²³æªº¥N¼Æ»P´X¦ó¸Ñªk¡C

(i)¥N¼Æªº°t¤èªk
§Ú­Ìª`·N¨ì¡A¦b¤W­zªº¸Ñªk¤¤¡A¨ä¹ê³£¸ò a »P h µLÃö¡A©Ò¥H§Ú­Ì¤£§«±qÀY´N°²³] a=1¡C©ó¬O(5)¦¡Åܦ¨

\begin{displaymath}A(x)=3\sqrt{3}\sqrt{x^2+\frac{1}{4}}+6h-3x\end{displaymath}

¥Ñ©ó 6h ¬O±`¼Æ¡A¬G¥u»Ý¨D

\begin{displaymath}f(x)=\frac{3\sqrt{3}}{2}\sqrt{1+4x^2}-3x\end{displaymath}

¤§³Ì¤p­È¡C¥O

\begin{eqnarray*}
y &=& \frac{3\sqrt{3}}{2}\sqrt{1+4x^2}-3x \\
y+3x &=& \frac{3\sqrt{3}}{2}\sqrt{1+4x^2}
\end{eqnarray*}


¨âÃ䥭¤è¡A¦A¤Æ²±o
\begin{displaymath}
y^2-\frac{27}{4} &=& 18x^2-6xy
\end{displaymath} (10)

¹ï¥k¶µ°t¤è¡A¦A¤Æ²±o

\begin{displaymath}3y^2-\frac{27}{2}=(6x-y)^2\geq0\end{displaymath}

¦]¦¹¡A·í y=6x ®É¡Ay ¦³³Ì¤p­È $y=\frac{3\sqrt{3}}{2}$¡A±q¦Ó

\begin{displaymath}x=\frac{y}{6}=\frac{\sqrt{2}}{4}\end{displaymath}

±o¨ì¸ò (6)¦¡¬Û¦Pªºµª®×¡]a=1¡^¡C

(ii)¤G¦¸¤èµ{ªº§P§O¦¡ªk
¥Ñ(10)¦¡±o
\begin{displaymath}
18x^2-6xy-(y^2-\frac{27}{4})=0
\end{displaymath} (11)

¬Ý§@¬O x ªº¤G¦¸¤èµ{¦¡¡C¦]¬° x ùÚ¬°¹ê¼Æ¡A¬G(11)¦¡ªº§P§O¦¡

\begin{displaymath}\Delta=36y^2+4\times 18 \times(y^2-\frac{27}{4})\geq0\end{displaymath}

¾ã²z¤Æ²±o

\begin{displaymath}y^2\geq\frac{9}{2}\end{displaymath}

©ó¬O y ªº³Ì¤p­È¬° $\frac{3\sqrt{2}}{2}$¡A¥H $y=\frac{3\sqrt{2}}{2}$ ¥N¤J(11)¦¡±o

\begin{displaymath}x=\frac{\sqrt{2}}{4}\end{displaymath}

¹Fº¸¤åºÙÆg¸Á±_¬°¡u¦b¤wª¾ªº¶È¾Ì¥»¯àªº«Øºc¤¤¬O³Ì¥O¤HÅå©_ªº¦¨´N¡v¡C¥L¤S»¡¡G¡u±ý¶W¶V³o¼Ë§¹¬üªº«Øºc¡A¦ÛµM¿ï¾Ü (natural selection) ¬O¤£¯à¹F¦¨ªº¡A¦]¬°´N§Ú­Ì©Ò¨£¡A¸Á±_¤£½×¬O¦b³Ò°Ê¤O¤W©Î¸ÁÄúªº¨Ï¥Î¤W¡A³£²Å¦X³Ì¸gÀÙªº­ì«h¡A¬Oµ´¹ï¦a§¹¬ü¡C¡v

¦b¤j¦ÛµM¤¤¡A°£¤F»e¸Á¿í¦æ¡u³Ì¤p­ì²z¡v¤§¥~¡AÁÙ¦³²ü¸­¤Wªº¤ô¯]¡A®Õ¶é¯ó¦a¥X²{ªº¤H¦æ¹D¡A¥úªº Heron ³Ìµu¸ô®|­ì²z»P Fermat ªº³Ìµu®É¶¡­ì²zµ¥µ¥¡A³o¤£¸T¨Ï§Ú­Ì­n²q´ú¡A¤j¦ÛµM¬O«öµÛ¬YºØ¡u³Ì¤p­ì²z¡v¨Ó¹B¦æªº¡C

¦b¤Q¤C¥@¬ö¡ALeibniz ±q­õ¾Ç¤W½×ÃÒ¡u³o¬O©Ò¦³¥i¯à¥@¬É¤¤³Ì¦nªº¤@­Ó¥@¬É¡v(the best of all possible worlds)¡Cª«²z¾Ç®a²×©ó¦b¤Q¤K¡B¤Q¤E¥@¬ö§ä¨ì¤F°Ê¤O¾Çªº¡u³Ì¤p§@¥Î¶q­ì²z¡v(the principle of least action)¡A¦¨¬°¼Æ²z¬ì¾Ç¤¤³Ì¬üÄRªº¦¨´N¡C

   

¤W­¶¡@1¢x2¢x3¢x4¢x5¢x6¡@¦¸­¶

¦^­¶­º
 
¡]­Y¦³«ü¥¿¡BºÃ°Ý¡K¡K¡A¥i¥H¦b¦¹ ¯d¨¥ ©Î ¼g«H µ¹§Ú­Ì¡C¡^
EpisteMath

EpisteMath (c) 2000 ¤¤¥¡¬ã¨s°|¼Æ¾Ç©Ò¡B¥x¤j¼Æ¾Ç¨t
¦Uºô­¶¤å³¹¤º®e¤§µÛ§@Åv¬°­ìµÛ§@¤H©Ò¦³


½s¿è¡G¶À«H¤¸ ³Ì«á­×§ï¤é´Á¡G2/27/2002