¤W­¶¡@1¢x2¢x3¢x4¢x5¢x6¢x7¢x8¡@¦¸­¶

¶O°¨°ÝÃD ¡]²Ä 5 ­¶¡^

±d©ú©÷

 

­º­¶ | ·j´M

¡D­ì¸ü©ó¼Æ¾Ç¶Ç¼½²Ä¤C¨÷²Ä¥|´Á¡B²Ä¤K¨÷²Ä¤@´Á
¡D§@ªÌ·í®É¥ô±Ð©ó¥x¤j¼Æ¾Ç¨t

¡EµùÄÀ
¡E¹ï¥~·j´MÃöÁä¦r
 
¤èµ{¦¡ x3+y3=z3 ªº²Ä¤@ºØ±¡ªp

§Ú­Ì¥ý¤Þ¤J¦P¾l (congruence) ªº·§©À¡C ­Y n ¬O¬Y­Ó¥¿¾ã¼Æ¡Am1»P m2 ¬O¾ã¼Æ¡A¦pªG n ¥i¥H¾ã°£ m1 - m2 ¡A §Ú­Ì»¡¡Gm1 »P m2¡A ¦b¼Ò n ¤§¤U¦P¾l (mi is congruent to m2 modulo n)¡A °O¬° $m_1 \equiv m_2 \pmod{n}$¡C §Ú­Ì¤£§«§â¨â­Ó¦P¾lªº¼Æ m1 »P m2 ¬Ý¦¨¦P¤@­Ó¡u¼Æ¡v¡A ¦]¦¹¦b¼Ò n ¤§¤U¡A§Ú­Ì±o¨ì¤@­Ó¥u¦³ n ­Ó¡u¼Æ¡vªº¼Æ¨t¡A { 0,1,¡K,n-1 }¡C¨Ò¦p¡A¦b¼Ò 3 ¤§¤U¡A

\begin{displaymath}
\begin{array}{l}
2 + 2 \equiv 1 \pmod{3} \\
2 \times 2 \equiv 1 \pmod{3} \\
1+2 = 0 \pmod{3}
\end{array}\end{displaymath}

³o­Ó·s¼Æ¨tªº¹Bºâªk«h¡A¥[¡B´î¡B­¼¡A»P¾ã¼Æ¨t·¥¬Û¦ü¡C ¦pªG p ¬O¤@­Ó½è¼Æ¡A ¼Æ¨t {0,1,¡K,p-1 } ¬Æ¦ÜÁÙ¦³°£ªk¡]°£¼Æ¤£¥i¬°¹s¡^¡F ¦]¦¹¡A³o­Ó¼Æ¨t¥i¥H¹³¦³²z¼Æ¤@¼Ë¶i¦æ¥[¡B´î¡B­¼¡B°£¡C ²z¥Ñ¦ó¦b¡A½ÐŪªÌ¦Û¤wÃÒ©ú µù9 ¡C

§Q¥Î¦P¾lªº·§©À¡A§Ú­Ì­pºâ 232 ªº­Ó¦ì¼Æ¡C§A¦pªG§â 232 ­¼¶}¨Ó¨D¨ä­Ó¦ì¼Æ¡A«i®ð©TµM¥i¹Å¡A¤èªk«o¤£­È±o¹ªÀy¡C½Ðª`·N¡A­Y

\begin{eqnarray*}
m_1 & \equiv & m_2 \pmod{n} \\
k_1 & \equiv & k_2 \pmod{n}
\end{eqnarray*}


«h

\begin{eqnarray*}
m_1 + k_1 = m_2 + k_2 \pmod{n} \\
m_1 \cdot k_1 = m_2 \cdot k_2 \pmod{n}
\end{eqnarray*}


¦]¦¹¡A¦b¼Ò 10 ¤§¤U

\begin{displaymath}
\begin{array}{ll}
2^{32} & \equiv (2^4)^8 \equiv (16)^8 \equ...
...^4 \equiv 36^4 \equiv 6^4 \\
& \equiv 6 \pmod{10}
\end{array}\end{displaymath}

±o¡G232 ªº­Ó¦ì¼Æ¬O 6¡C

²{¦b§Ú­Ì¤¶²Ð¤@­Ó¬ã¨s Fermat °ÝÃDªº°ò¥»·§©À¡C ¦pªG Fermat °ÝÃD¹ï©ó n ¬O¿ùªº¡A¤]´N¬O¡A¦s¦b¥þ²§©ó¹sªº¾ã¼Æ x,y,z¡Aº¡¨¬ xn + yn = zn¡A¦Ò¼{³o­Ó°ÝÃD¡Gn »P xyz ·|¤£·|¤¬½è¡H

¦pªG¦b¥H¤W±¡§Î¤U¡An »P xyz ¥²©w¤£·|¤¬½è¡A§Ú­Ì´N»¡¡AFermat ¤èµ{¦¡¡A xn + yn = zn ªº²Ä¤@ºØ±¡ªp¦¨¥ß¡C

ªk°ê¤k¼Æ¾Ç®a Sophie Germain¡A ¡]1776¡ã1831¦~¡^ÃÒ©ú¡G­Y p »P 2p+1 ³£¬O½è¼Æ¡A «h Fermat ¤èµ{¦¡ xp + yp = zp ªº²Ä¤@ºØ±¡ªp¦¨¥ß¡C Legendre ±À¼s Germain ªº¤èªk¡AÃÒ©ú¡G­Y p ¬O½è¼Æ¡A ¥B 4p+1, 8p+1, 10p+1, 14p+1, 16p+1 ¦Ü¤Ö¦³¤@­Ó¬O½è¼Æ¡A «h Fermat ¤èµ{¦¡ªº²Ä¤@ºØ±¡ªp¦¨¥ß¡C ¥Ø«eª¾¹Dªº¬O¡A­Y p ¬O©_½è¼Æ¡A¥B p<3 x 109¡A «h Fermat ¤èµ{¦¡ xp + yp = zp ªº²Ä¤@ºØ±¡ªp¦¨¥ß¡C¡]¨£¥»¤å²Ä 7 ¸`¡^

©w²z 3 Fermat ¤èµ{¦¡ x3 + y3 = z3 ªº²Ä¤@ºØ±¡ªp¦¨¥ß¡C ´«¥y¸Ü»¡¡A¦pªG x1, y1, z1 ¬O¥þ²§©ó¹sªº¾ã¼Æ¨Ã¥Bº¡¨¬ x13 + y13 = z13¡C x13 + y13 = z13¡A«h $x_1 y_1 z_1 \equiv 0 \pmod{3}$¡C

°Q½×¡G ³\¦hÃҾڨϤH¬Û«H¡AFermat ªº½T¯à°÷ÃÒ©ú¡A x3 + y3 = z3 ¨S¦³¥þ²§©ó¹sªº¾ã¼Æ¸Ñ¡A Fermat §â³o­Ó°ÝÃDÅܦ¨¨º¨Ç¾ã¼Æ¥i¥H¼g¦¨ x2 + 3 y2 ªº«¬¦¡¡C Euler ·Q­n§â³o­Ó©w²zªºÃÒ©ú¼g¤U¨Ó¡A¦ý¬O Euler ¼g±o¨Ã¤£§¹¾ã¡C §¹¾ãªºÃÒ©ú½Ð¬Ý G.H Hardy and E.M. Wright,¡mAn introduction to the theory of numbers¡n¡A²Ä 193-197 ­¶¡C ¥»¤å¥u¸Ñ¨M Fermat¤èµ{¦¡¡A x3 + y3 = z3 ªº³¡¥÷±¡§Î¡C¦³Ãö Germain ©w²z¡A½Ð¬Ý H.M. Edwards,¡mFermat's last theorem ¡n²Ä 61-65­¶¡C

¥H¤U­n´£¥X©w²z 3 ªº¥t¤@­ÓÃÒ©ú¡C ³o­ÓÃÒ©ú«D±`Ác½Æ¡A¥Î³o­Ó¤èªk¨ÓÃÒ©ú©w²z 3 ²ª½¬O·MÄø³z³»¡C ¦ý¬O¡A±q³o­ÓÃÒ©ú«o¥i¥H¬Ý¥X¤Q¤E¥@¬ö¬ã¨s Fermat °ÝÃDªº°ò¥»¤èªk¡C ¨Æ¹ê¤W¡A§â³o­ÓÃÒ©úµy¥[­×§ï¡A¥i¥HÃÒ©ú Kummer ªº¤@­Ó©w²z¡G ­Y p ¬O¤@­Ó³W«h½è¼Æ¡A«h Fermat ¤èµ{¦¡ xp + yp = zp ªº²Ä¤@ºØ±¡ªp¦¨¥ß¡]¦³Ãö³W«h½è¼Æ¡A½Ð¬Ý¥»¤å²Ä 6 ¸`¡C¡^¡C

¥O x, y, z ¬O¤¬½è¥B¥þ²§©ó¹sªº¾ã¼Æ¡Aº¡¨¬ x3+y3=z3¡A §Ú­Ì­nÃÒ©ú $xyz \equiv 0 \pmod{3}$¡C ¤£§«°²³] x »P y ¬O©_¼Æ¡Az ¬O°¸¼Æ¡]§_«h¡A­«·s©R¦W¡A¨Ã¥B²¾¶µ¡^¡C ¥O $\omega = \frac{-1+ \sqrt{-3}}{2}$¡C ½Ðª`·N¡G

\begin{eqnarray*}
x^3 & = & z^3 - y^3 \\
& = & (z-3)(z-\omega y)(z-\omega^2y)
\end{eqnarray*}


¤@­Ó²§·Q¤Ñ¶}ªº¥D·N¡G¦pªG¡Az-y, $z- \omega y$, $z - \omega^2 y$ ¤¬½è¡A«h¦]

\begin{displaymath}
(z-y)(z-\omega y)(z- \omega^2 y)
\end{displaymath}

¬O§¹¥þ¥ß¤è¼Æ¡Az-y, $z- \omega y$, $z - \omega^2 y$ °Z¤£¤]¬O§¹¥þ¥ß¤è¼Æ¡H

°ÝÃD¬O¡A$z- \omega y$ ©ú©ú¬O­Ó½Æ¼Æ¡A «ç»ò¥i¯àÅܦ¨¾ã¼Æªº¥ß¤è¡H³o­Ó°ÝÃD¤£Ãø¸Ñ¨M¡C§Ú­Ì¥i¥H§â¡u¾ã¼Æ¡vªº·§©À±À¼s¡C ¥ý§â $Q(\omega)$ $= \{ \alpha + \beta \omega : \alpha \mbox{{\fontfamily{cwM2}\fontseries{m}\sele...
...t plus0.2pt minus0.1pt{\fontfamily{cwM1}\fontseries{m}\selectfont \char 98}} \}$ ¥s°µ¤T¦¸¤À¶êÅé (cyclotomic field)¡A ¤T¦¸¤À¤¸Å骺¤¸¯À¥i¥H§@¥[¡B´î¡B­¼¡B°£¡]°£¼Æ¤£¬°¹s¡^¡A¤T¦¸¤À¶êÅé¬O¦³²z¼Æªº±À¼s¡C ¤T¦¸¤À¶êÅ餧¤ºªº¡u¾ã¼Æ¡v´N¬O

\begin{displaymath}
\mathbf{Z}[\omega] = \{ \alpha + \beta \omega : \alpha \mbox...
...0.1pt{\fontfamily{cwM1}\fontseries{m}\selectfont \char 98}} \}
\end{displaymath}

$\mathbf{Z}[\omega]$ ªº¤¸¯À¥s°µ¤T¦¸¤À¶ê¾ã¼Æ (cyclotomic integers)¡C ©Ò¥H¤W­zªº°ÝÃD¥u¤£¹L¬O¡A$z- \omega y$ ¯à¤£¯à¼g¦¨¬Y¤@­Ó¤T¦¸¤À¶ê¾ã¼Æªº¥ß¤è¡H ¦pªG £i »P £b ³£¬O¤T¦¸¤À¶ê¾ã¼Æ¥B $\xi \neq 0$¡A §Ú­Ì»¡ £i ¾ã°£ £b¡A¦pªG $\frac{\eta}{\xi}$ ¤]¬O¤T¦¸¤À¶ê¾ã¼Æ¡] $\frac{\eta}{\xi}$ ·íµM¦b $\mathbf{Q}(\omega)$ ¤§¤º¡C¦ó¬G¡H¡^¡C ¦]¦¹¦b¤T¦¸¤À¶ê¾ã¼Æ¤§¤º¤]¥i°Q½×¦P¾lÃö«Y¡G ¦]¬°§Ú­Ì¥i¥H³W©w¡A $\eta_1\equiv \eta_2 \pmod{\xi}$ ªº¥R­n±ø¥ó¬O £i ¾ã°£ $\eta_1 - \eta_2$¡C ¤@­Ó¤À¶ê¾ã¼Æ £i ¥s°µ¥i°f¤¸¯À (invertible element)¡A¦pªG $\frac{1}{\xi}$ ¤]¬O¤À¶ê¾ã¼Æ¡]$\frac{1}{\xi}$ ·íµM¦b $\mathbf{Q}(\omega)$ ¤§¤º¡^¡A­Y $\xi = \alpha + \beta \omega $¡A«h

\begin{eqnarray*}
\frac{1}{\xi} &=& \frac{ \overline{\xi} }{ \xi \cdot \overline...
...+ \beta^2} -(\frac{\beta}{\alpha^2 - \alpha\beta+\beta^2}\omega)
\end{eqnarray*}


$\mathbf{Z}[\omega]$ ¤ºªº¥i°f¤¸¯À¥u¦³ $\pm1$,$\pm\omega$,$\pm\omega^2$¡C¡]¦ó¬G¡H¡^

¤@­Ó«D¹sªº¤À¶ê¾ã¼Æ £i ¥s°µ¤£¥i¬ù¤¸¯À (irreducible element)¡A ¦pªG £b ¬O¤À¶ê¾ã¼Æ¥B $\eta \neq 0$¡A £b ¯à¾ã°£ £i¡A«h £b ©Î $\frac{\xi}{\eta}$ ¦Ü¤Ö¦³¤@­Ó¬O¥i°f¤¸¯À¡C ¤£¥i¬ù¤¸¯À¬O½è¼Æªº±À¼s¡C

¤¶²Ð¤F¤À¶ê¾ã¼Æ¡B¥i°f¤¸¯À¡B¤£¥i¬ù¤¸¯À¤§«á¡A§Ú­Ì´N¥i¥H°Q½× $\mathbf{Z}[\omega]$ ªº¦]¼Æ¤À¸Ñ°ÝÃD¡C§Ú­Ì§â $\mathbf{Z}[\omega]$ ªº´X­Ó°ò¥»©Ê½è¦CÁ|¦p¤U¡G

(1) $\mathbf{Z}[\omega]$ ¨ã¦³°ß¤@¤À¸Ñ©Ê½è¡C¨ãÅ骺»¡¡A (i) $\mathbf{Z}[\omega]$ ªº¥ô·N¤¸¯À £a¡A ­Y $\zeta \neq 0$ ¡A£a ¤]¤£¬O¥i°f¤¸¯À¡A «h £a ¥i¼g¦¨ $\xi_1 \cdots \xi_n$ ªº«¬¦¡¡A $\xi_i$ ¬O¤£¥i¬ù¤¸¯À¡A (ii) ¦pªG $\xi_1 \xi_2 \cdots \xi_n$ $= \eta_1 \cdots \eta_m$¡A¨ä¤¤ $\xi_i$ »P $\eta_i$ ³£¬O¤£¥i¬ù¤¸¯À¡A «h n=m¡A¨Ã¥B¡]¸g¹L¾A·íªº­«·s±Æ¦C¤§«á¡^ $\frac{\xi_i}{\eta_i}$ ³£¬O¥i°f¤¸¯À¡C
(2) ­Y $\eta^3 = \xi_1 \cdots \xi_n$¡A ¨ä¤¤ $\xi_1$,¡K,$\xi_n$¡A £b ³£¬O«D¹sªº¤À¶ê¾ã¼Æ¡A¥B $\xi_1$,¡K,$\xi_n$ ¨â¨â¤¬½è¡A «h $\xi_i = u_i \zeta^3_i$¡Aui ¬O¥i°f¤¸¯À¡A$\zeta_i$ ¬O¬Y­Ó¤À¶ê¾ã¼Æ
(3) ³] p ¬O½è¼Æ¡A£\ »P £] ³£¬O¤À¶ê¾ã¼Æ¥B $\alpha \neq 0$¡C ­Y £\ ¯à¾ã°£ p »P £]¡A«h p ¥ç¥i¾ã°£ £]¡C
(4) ³] n »P m ¬O¾ã¼Æ¡C­Y n »P m ¦b¾ã¼Æ¤§¤º¤¬½è¡A«h n »P m ¦b $\mathbf{Z}[\omega]$ ¤§¤º¤]¤¬½è¡C
(5) ­Y £\ ¬O¥ô·N¤À¶ê¾ã¼Æ¡A«h¥²¥i¨D±o¤@­Ó¾ã¼Æ n¡A¨Ï±o

\begin{displaymath}
\alpha^3 \equiv n \pmod{3}
\end{displaymath}

»¡©ú ²Ä¤@­Ó©Ê½èªº±Ô­z¡A§Ú­Ì¤£¯à¼g¦¨ $\xi_i = \eta_i$¡A ¦]¬°­n§âÃþ¦ü

\begin{displaymath}
6 = 2 \cdot 3 = (-3) \cdot (-2)
\end{displaymath}

ªº±¡§Î¥]¬A¦b¤º¡C¦Ü©ó¨äÃÒ©ú¡A¥u­n°á¹L©â¶H¥N¼Æªº¤H³£«Ü®e©öÁA¸Ñ¡]¥ýÃÒ©ú $\mathbf{Z}[\omega]$ ¬O¼Ú¤óÀô¡^¡C ²Ä¤G­Ó©Ê½èùØ­±¡A¦P¼Ëªº¦h¥X¥i°f¤¸¯À ui¡C ¨Ò¤l¡A$3+6\omega$ ¤£¬O§¹¥þ¥ß¤è¡A¦ý¬O

\begin{displaymath}
3+6\omega=\omega(1-\omega)^3
\end{displaymath}

³o­Ó©Ê½èªºÃÒ©ú­Ë¬O«Ü®e©ö¡C(§Q¥Î©Ê½è(1))

²Ä¤T­Ó©Ê½èªºÃÒ©ú¤£®e©ö¡A­n§Q¥Î¨ì½è¼Æ p ¦b¤À¶ê¾ã¼ÆÀô¤À¸Ñ(ramified)ªº©Ê½è¡C

²Ä¥|­Ó©Ê½èªºÃÒ©ú: $\alpha n+\beta m=1$¡F­Y £\ ¬O¾ã°£ n »P m ªº¤À¶ê¾ã¼Æ¡A «h £\ ¾ã°£1¡C¬G £\ ¬O¥i°f¤¸¯À¡C

­nÃÒ©ú²Ä¤­­Ó©Ê½è¡A­Y £\ »P £] ¬O¤À¶ê¾ã¼Æ¡A¦b¼Ò 3 ¤§¤U¡A

\begin{eqnarray*}
(\alpha+\beta)^3 &\equiv& \alpha^3 + 3 \alpha^2\beta + 3\alpha\beta^2 + \beta^3 \\
&\equiv& \alpha^3 + \beta^3 \pmod{3}
\end{eqnarray*}


¦]¦¹¡A¦b $\alpha = p + q\omega$ ®É¡A

\begin{eqnarray*}
\alpha &\equiv& p^3 + q^3 \omega^3 \\
&\equiv& p^3 + q^3 \pmod{3}
\end{eqnarray*}


§Y¡A¨ú n=p3+q3 §Y¥i¡C

²{¦b¥i¥HÃÒ©ú©w²z 3¡C ¤wª¾ x3+y3 =z3¡Az ¬O°¸¼Æ¡Ax »P y ¬O©_¼Æ¡C¦Ò¼{

\begin{eqnarray*}
x^3 &=& z^3 - y^3 \\
&=& (z-y)(z-\omega y)(z-\omega^2y) \pmod{3}
\end{eqnarray*}


±¡ªp 1¡G z-y¡A»P $z- \omega y$ ¦³¤½¦]¼Æ £\¡A£\ ¬O¤£¥i¬ù¡C

«h £\ ¾ã°£

\begin{displaymath}
(z-\omega y) - \omega(z-y) = (1-\omega)z
\end{displaymath}

¦P²z¡A£\ ¾ã°£ $(1-\omega)y$¡C ¦ý y »P z ¤¬½è¡A ¬G y »P z ¦b $\mathbf{Z}[\omega]$ ¤]¤¬½è¡]©Ê½è(4)¡^¡C ±o £\ ¾ã°£ $1-\omega$ ¡C¦ý $1-\omega = \omega^2 \sqrt{-3}$¡C ¬G £\ ¾ã°£ $\sqrt{-3}$¡A¦]¦¹¤]¾ã°£ 3¡C¤µ £\ ¤S¾ã°£ z-y¡C ¬G 3 ¾ã°£ z-y ¡]©Ê½è(3)¡^¡C ±oÃÒ 3 ¾ã°£ x3¡C ±oÃÒ¡C¨ä¥LÃþ¦ü­Åªp¥i¥é¦¹³B²z¡C

±¡ªp2 z-y,$z- \omega y$,$z - \omega^2 y$ ¨â¨â¤¬½è¡C

$ z-\omega y = u \cdot \alpha^3$¡Au ¬O¥i°f¤¸¯À¡A £\ ¬O¤À¶ê¾ã¼Æ¡]©Ê½è(2)¡^¡C

¬G $z-\overline{\omega} y = \overline{u} \cdot \overline{\alpha}^3$ ¦ý¬O¥i°f¤¸¯À¥u¦³ $\pm1$¡A$\pm\omega$¡A$\pm\omega^2$¡C ¬G ${u}/{\overline{u}} = \omega^k$¡A k= 0,1,2 µù10 ¡C ¦b¼Ò 3 ¤§¤U¡A $\alpha^3 \equiv n \pmod{3}$¡A ¦]¦¹¡A $\overline{\alpha}^3 \equiv n \pmod{3}$¡C ¬G¥X $\alpha^3 \equiv \overline{\alpha}^3 \pmod{3}$ ±o

\begin{eqnarray*}
z - \omega y & \equiv & u \alpha^3 \equiv \frac{u}{\overline{u...
...{\omega} y) \\
& \equiv & \omega^k z - \omega^{k-1} y \pmod{3}
\end{eqnarray*}


´N k=0,1,2¡A°Q½×

\begin{displaymath}
z - \omega y \equiv \omega^k z - \omega^{k-1} y \pmod{3}
\end{displaymath}

¥iª¾ $xyz \equiv 0 \pmod{3}$¡C

k=1 ®É¸û½ÆÂø¡A¬G¥u´N¦¹±¡ªp°Q½×¡C¥Ñ

\begin{displaymath}
z - \omega y \equiv \omega z - y \pmod{3}
\end{displaymath}

¬G $ y \equiv - z \pmod{3}$¡A¦P²z¡A¥Ñ y3 = z3 - x3 ¥i±o

\begin{displaymath}
xyz \equiv 0 \pmod{3}
\end{displaymath}

©Î

\begin{displaymath}
x \equiv -z \pmod{3}
\end{displaymath}

­Y $x \equiv y \equiv -z \pmod{3}$¡A«h $x = -z +3s \; , \; y = -z +3t $¡A ±N¦¹Ãö«Y¥N¤J x3 + y3 = z3¡C¬G

3 z3 -9z2(s+t) + 27z(s2 +t2) -27(s3+t3) = 0

¥iª¾ z ¬O 3 ªº­¿¼Æ¡C

Ãþ¦ü¥H¤Wªº¤èªk¡ALagrange¡BGauss¡BJacobi¡BKummer ³£´¿¨Ï¥Î¹L¡A¨ä³Ì¤j¯SÂI¬O§â½Æ¼Æ £s ¤Þ¤H¾ã¼Æ½×ªº¬ã¨s¡CŪªÌ¤£§«·Q¤@¤U¡A¦pªG§â $\sqrt{-1}$ ¤Þ¤J¤èµ{¦¡ x2 + y2 = z2 ªº¬ã¨s¡Aµ²ªG¦p¦ó¡H µù11

·íµM¡A³Ì¤jÁxªº¹Á¸ÕÁÙ¤£¥u¦p¦¹¡C Peter Gustav Lejeune Dirichlet¡]1805¡ãl859¡^¦~§â¤ÀªRªº¤èªk¤Þ¤J¾ã¼Æ½×ªº¬ã¨s¡A µ²ªG¬O³þ¥ß¤F¸ÑªR¼Æ½× (analytic number theory) ªº°ò¦¡CDirichlet ¤@­Ó¦³¦Wªº©w²z¬O¡A­Y a »P n ¬O¤¬½è¾ã¼Æ¡A«h«¬¦¡¬° nl+a ªº½è¼Æ¦³µL½a¦h­Ó¡C

   

¤W­¶¡@1¢x2¢x3¢x4¢x5¢x6¢x7¢x8¡@¦¸­¶

¦^­¶­º
 
¡]­Y¦³«ü¥¿¡BºÃ°Ý¡K¡K¡A¥i¥H¦b¦¹ ¯d¨¥ ©Î ¼g«H µ¹§Ú­Ì¡C¡^
EpisteMath

EpisteMath (c) 2000 ¤¤¥¡¬ã¨s°|¼Æ¾Ç©Ò¡B¥x¤j¼Æ¾Ç¨t
¦Uºô­¶¤å³¹¤º®e¤§µÛ§@Åv¬°­ìµÛ§@¤H©Ò¦³


½s¿è¡G±d©ú°a ³Ì«á­×§ï¤é´Á¡G4/26/2002