¤W­¶¡@1¢x2¢x3¢x4¢x5¢x6¡@¦¸­¶

¼Æ½×¦b±K½X¤WªºÀ³¥Î ¡]²Ä 2 ­¶¡^

·¨­«Â@;·¨·Ó±X

 


­º­¶ | ·j´M

¡D­ì¸ü©ó¼Æ¾Ç¶Ç¼½²Ä¤C¨÷²Ä¤G´Á¡B²Ä¤C¨÷²Ä¤T´Á
¡D§@ªÌ·í®É¥ô±Ð©ó¬ü°ê®ü­x¬ã¨s¹êÅç©Ò;¬ü°ê¦òù¨½¹F¤j¾Ç²Î­p¨t
¡E¹ï¥~·j´MÃöÁä¦r
 
¤G¡B¦]¤l¡B½è¼Æ¡B¦P¾l¦¡»P¶O°¨¡B¤×©Ô©w²z

­Y m,n ¬°¨â¾ã¼Æ¡A¥B m>0¡A«h¥H m °£ n ¥i±o¤G¾ã¼Æ £\ »P r¡A¨Ï±o

\begin{displaymath}n=\alpha m+r\end{displaymath}

¨ä¤¤ £\ ºÙ¬°°Ó¡Ar ºÙ¬°¾l¼Æ¡A¥B $0\leq r<m$¡C­Y r=0¡A«h§Ú­Ì»¡ n ¥i³Q m ©Ò¾ã°£¡Am ¬° n ¤§¦]¤l¡An ¬° m ¤§­¿¼Æ¡A­Y¤@¼Æ°£ 1 »P¥»¨­¤§¥~µL¨ä¥L¦]¤l¡A«h¦¹¼ÆºÙ¬°½è¼Æ¡A¨Ò¦p 2,3,5,7,11 ³£¬O½è¼Æ¡A4,6,9,12 «o¤£¬O½è¼Æ¡C§Ú­Ì©w¸q n »P s ¹ï m ¦³¦P¾l¼Æ¡G

\begin{displaymath}
n = s \pmod{m}
\end{displaymath}

¦pªG n »P s ³Q m °£®É¦³¬Û¦Pªº¾l¼Æ¡C¨Ò¦p

\begin{displaymath}
\begin{eqalign}
12 & \equiv 2 \pmod{10} \; , \\
8 & \equiv 5 \pmod{3}
\end{eqalign}\end{displaymath}

¦³¤@­ÓÃö©ó¦P¾l¦¡ªºÂ²³æ©w²z¡A§Ú­Ì§â¥¦­Ì¦C¥X¨Ó¡AŪªÌ«Ü®e©öÃÒ¥X¨Ó¡C

©w²z2.1
­Y $p \equiv q \pmod{m}$¡A $a \equiv b \pmod{m}$¡A «h $ ap \equiv bq \pmod{m}$¡C

­Y¨â¥¿¾ã¼Æ p,q ªº³Ì¤j¤½¦]¤l(¬ù¼Æ)¬O 1¡A«h§Ú­ÌºÙ p,q ¤¬½è¡A¥H

(p,q)=1

ªí¥Ü¤§¡C²{¦b§Ú­Ì­nÃÒ¤@­Ó¦³Ãö¨â­Ó¤¬½è¼Æªº¤@­Ó°ò¥»©w²z¡C

©w²z2.2
­Y¨â¥¿¾ã¼Æ p,q ¤¬½è¡A«h¥i¥H§ä¨ì¤G¾ã¼Æ(¤£¤@©w¥¿) a,b¡A¨Ï±o

ap+bq=1

ÃÒ©ú¡G
¥O A ¬°§t©Ò¦³ x=ap+bq>0¡Aa,b ¬°¾ã¼Æ¤§¶°¦X¡A¦¹¶°¦XÅãµM¤£¬OªÅ¶°¦X¡A¦]¥i¨úa=b=1,p+g>0¡C¥Od¬°¦¹¶°¦X¤¤¤§³Ì¤pªÌ¡A­Yd=1¡A«h¥»©w²z±oÃÒ¡A­Yd>1¡A¥Oap+bq=d>1¡A«h¥ô¨ú¦¹¶°¤¤¤§¥t¤@¼Æ¡C a'p+b'q¡A«h§Ú­Ì­Y¥Hd°£a'p+b'q¡A«h±o

\begin{displaymath}
a'p+b'q = \alpha d+r \, , \; 0\leq r<d
\end{displaymath}

¥N¤J

d=ap+bq

«h±o

\begin{displaymath}(a'-\alpha a)p+(b'-\alpha b)q=r\end{displaymath}

¦¹r¥²¬°0¡A§_«hr¬°A¶°¤¤¤@¤p©ód¤§¼Æ¡A»P°²³]d¬°³Ì¤p¼Æ¬Û¥Ù¬Þ¡A¦]r=0¬Gd¬°A¶°¤¤¥ô¦ó¤@¼Æ¤§¦]¤l¡C¦]

\begin{displaymath}
\begin{eqalign}
p & \in A(a=1,b=0) \\
q & \in A(a=0,b=1)
\end{eqalign}\end{displaymath}

¬Gd¬°p¡Aq¤§¤½¦]¤l¡C¦ýp¡Aq¤§³Ì¤j¤½¦]¤l¬°1¡A¬Gd=1¡A©w²zÃÒ²¦¡C

³o¬O¤@­Ó·¥¦³¥Îªº©w²z¡AŪªÌ¤]³\­n°Ý¡A§Ú­Ì¦p¦ó§ä¨ìa»Pb¨Ïap+bq=1©O?¤@¯ë¥i¥ÎÁÓÂà¬Û°£ªk¡C

¨Ò¡G
§ä¾ã¼Æ a,b¡A¨Ï±o 5a+9b=1¡C¦]

\begin{displaymath}9=5+4,\,5=4+1,\end{displaymath}

¬G

1=5-4=5-(9-5)=2 x 5-9 x 1

¬G

\begin{displaymath}a=2,\, b=-1\end{displaymath}

¨t2.2
­Yw»Pm¬°¤G¤¬½èªº¥¿¾ã¼Æ¥Bm>w¡A«h¥i§ä¨ì¤@¥¿¾ã¼Æ£c¨Ï±o

\begin{displaymath}
w\theta \equiv 1 \pmod{m}
\end{displaymath}

ÃÒ©ú¡G
¥Ñ©w²zª¾¡A¦³ a¡Bb ¤G¾ã¼Æ¨Ï±oaw+bm=1¡A¦]bm¬°m¤§­¿¼Æ¡A¬G

\begin{displaymath}
aw\equiv =1 \pmod{m}
\end{displaymath}

¥O

\begin{displaymath}a=\phi m+\theta\, , 0\leq \theta <m\end{displaymath}

«h±o

\begin{displaymath}
\theta w \equiv 1 \pmod{m} \mbox{ {\fontfamily{cwM0}\fontseries{m}\selectfont \char 47} } \theta\geq 0
\end{displaymath}

¦]£c¤£¥i¯à¬°0¡A¬G¥»¨t±oÃÒ¡C

³Ì«á§Ú­Ì­n¥Î¨ì¤@­Ó¤£®e©öÃÒ©úªº¡u¶O°¨¡B¤×©Ô (Fermat-Euler) ©w²z¡v¡C¦ý¦]¬°§Ú­Ì¥u¥Î¨ì³o­Ó©w²z¤ñ¸û®e©öÃÒ©úªº¯S®í§Î¦¡¡A§Ú­Ì´N¥uÃÒ©ú²³æªº³¡¤À¡C

©w²z2.3
­Ym¬°½è¼Æ¡Aw¬°¥ô¤@»Pm¤¬½è¤§¾ã¼Æ¡A«h

\begin{displaymath}
w^{m-1} \equiv 1 \pmod{m}
\end{displaymath}

ÃÒ©ú¡G
¥ý§âw¼g¦¨w­Ó1ªº©M¡A«h¥Ñ¦h¶µ¦¡©w²zª¾

\begin{displaymath}(1+1+1+\cdots +1)^m\end{displaymath}

¤§®i¶}¦¡¤¤°£w­Ó1¤§¥~¡A³£§t¦³m¤§¦]¤l¡A(m¬°½è¼Æm!¤¤¤§m¤£¥i¯à®ø¥h)¡A¬G

\begin{displaymath}
w^m\equiv w \pmod{m}
\end{displaymath}

¨âÃä­¼¥H¨t2.2¤¤¤§a¡A§Y

\begin{displaymath}
aw\equiv 1 \pmod{m}
\end{displaymath}

±o

\begin{displaymath}
w^{m-1} \equiv 1 \pmod{m}
\end{displaymath}

¥»©w²zÃÒ²¦¡C

¨t2.3
­Y m ¬°¤G½è¼Æ p¡Bq ¤§¿n¡Aw ¬°¥ô¤@»P m(§Y¦P®É»P p »P q ¤¬½è¤§¾ã¼Æ¡A«h

\begin{displaymath}
w^{(p-1)(q-1)}\equiv 1 \pmod{m}
\end{displaymath}

ÃÒ©ú¡G¥ý¥Î©w²z¤§ÃÒ©úªk±o

\begin{displaymath}
\begin{eqalign}
w^{p-1} &\equiv 1 \pmod{m} \\
w^{q-1} &\equiv 1 \pmod{m}
\end{eqalign}\end{displaymath}

¥Ñ©w²z2.1¥i±o

\begin{displaymath}
(w^{p-1})^q\equiv 1 \pmod{m}
\end{displaymath}

§Y

\begin{displaymath}
w^{pq-q}\equiv 1 \pmod{m}
\end{displaymath}

§Y

\begin{displaymath}
w^{pq-q} \equiv 1 \equiv w^{p-1} \pmod{m}
\end{displaymath}

¦]wp-1»Pm¤¬½è¡A¥Ñ¨t2.2¤§ÃÒ©ú¥iª¾¦s¦b¤@ a ¨Ï $aw^{p-1}\equiv 1 \pmod{m}$¡A¤W¦¡­¼¥Ha±o

\begin{displaymath}
aw^{pq-q} \equiv 1 \pmod{m}
\end{displaymath}

§Y

\begin{displaymath}
aw^{p-1}w^{pq-p-q+1}\equiv w^{(p-1)(q-1)} \equiv 1 \pmod{m}
\end{displaymath}

¥»¨tÃÒ²¦¡C

§Ú­ÌÁÙ­n§Q¥Î¨ì¥t¤@­Ó²³æªº©w²z¡A§Ú­Ì¤]¦b³o¸`ùا⥦ÃÒ§¹¡C

©w²z2.4
¥O (a1,a2,¡K,an) ¬°¤@§tn­Ó¥¿¾ã¼Æªº¼Æ¦C¡A¨Ãº¡¨¬

\begin{displaymath}\left\{
\begin{array}{rcl}
a_1&\geq&1 \\
a_2&>&a_1 \\
a_3&>...
...dots& \\
a_n&>&a_1+a_2+\cdots +a_{n-1} \\
\end{array}\right.
\end{displaymath}

¤S¥O (x1,x2,¡K,xn) ¬°¤@¥Ñ0»P1²Õ¦¨ªº¼Æ¦C¡A§Y©Ò¦³ªºxi¤£¬O0´N¬O1¡A²{³]a1¡Aa2¡A¡K¡Aan¬°¤wª¾¡Ax1¡Ax2¡A¡K¡Axn¬°¥¼ª¾¡Ac¬°¤@¥¿¾ã¼Æ¡A«h¤èµ{¦¡

\begin{displaymath}
c=\sum_{i=1}^n a_ix_i \eqno{(2.2)}
\end{displaymath}

¥u¦³¤@¸Ñ©ÎµL¸Ñ¡C

ÃÒ©ú¡G
³]¦¹¤èµ{¦¡¦³¤G¸Ñ (x1,x2,¡K,xn) ¤Î (x1',x2',¡K,xn') «h®ø¥h c ¤§«á¥i±o

\begin{displaymath}\sum_{i=1}^n (x_i-x_i')a_i=0\end{displaymath}

¦]

\begin{displaymath}\vert x_i-x_i'\vert\leq 1 \end{displaymath}

¥B

\begin{displaymath}\sum_{i=1}^{n-1} a_i<a_n\end{displaymath}

¬Gan¤§«Y¼Æ¥²¬°0¡A§Yxn=xn'¡A¦]¦¹

\begin{displaymath}\sum_{i=1}^{n_1} (x_i-x_i')a_i=0\end{displaymath}

¦P²z¥i±o

\begin{displaymath}x_{n-1}=x_{n-1}',\cdots ,x_1=x_1'\end{displaymath}

¦¹¨â¸Ñ­ì¬°¤@¡C¥»©w²z±oÃÒ¡C

¦Ó­n¸Ñ(2.2)¬O«D±`®e©öªº¨Æ¡A¦]¬°­Y

\begin{displaymath}c>a_1+a_2+\cdots +a_{n-1}\end{displaymath}

«hxn¥²¬°1¡A§_«h¥²¬°0¡A¦P²z­Y

\begin{displaymath}c-x_na_n>a_1+a_2+\cdots +a_{n-2}\end{displaymath}

«hxn-1¥²¬°1¡A§_«h¥²¬°0¡A¥H¦¹Ãþ±À¡A¤@¤U¤l´N¸Ñ¥X¨Ó¤F¡C

³o´X­Ó©w²z´N¨¬°÷ÁA¸Ñ·sªº±K½Xªk¤F¡C

   

¤W­¶¡@1¢x2¢x3¢x4¢x5¢x6¡@¦¸­¶

¦^­¶­º
 
¡]­Y¦³«ü¥¿¡BºÃ°Ý¡K¡K¡A¥i¥H¦b¦¹ ¯d¨¥ ©Î ¼g«H µ¹§Ú­Ì¡C¡^
EpisteMath

EpisteMath (c) 2000 ¤¤¥¡¬ã¨s°|¼Æ¾Ç©Ò¡B¥x¤j¼Æ¾Ç¨t
¦Uºô­¶¤å³¹¤º®e¤§µÛ§@Åv¬°­ìµÛ§@¤H©Ò¦³


½s¿è¡G³¯¤å¬O ¢A ø¹Ï¡G²¥ßªY ³Ì«á­×§ï¤é´Á¡G6/17/2002