¤W­¶¡@1¢x2¢x3¢x4¡@¦¸­¶

®ü¥~¾Ç¤H¬Û¿Ë°O ¡]²Ä 3 ­¶¡^

§õ©v¤¸

 

­º­¶ | ·j´M

¡D­ì¸ü©ó¼Æ¾Ç¶Ç¼½²Ä¤G¨÷²Ä¤T´Á
¡D§@ªÌ·í®É¥ô±Ð©ó¤¤¥¡¼Æ¾Ç¨t

¡EµùÄÀ
¡E¹ï¥~·j´MÃöÁä¦r
 
°h¦Ó¨D¨ä¦¸

³o­Ó¼ÐÃD¥i¯à·|¤Þ°_»~·|¡C§Úªº·N«ä¬O¡A¦pªG§A§â²´¥úµy¬°©ñ§C¤@ÂI¡A ¯à°÷¿ï¤¤²Ä¤@¦W©Î²Ä¤G¦W´N¦nªº¸Ü¡A¨º»ò§AÀ³¸Ó±Ä¨ú«ç¼Ëªº¤â¬q?

«Ü¦ÛµM¦a¡A¤@¶}©l§A¤´À³«ö¥H«eªº¿ìªk¶i¦æ¡A¦Û²Är¦ì°_¡Aµ¥­Ô²Ä¤@ ­ÓÁ{®É²Ä¤@¦W¡C¦ý¬O¦pªGµ¥¤F¤@¬q®É¶¡¡A¨Î¤H©|¥¼¥X²{¡A§A¤ßùØ«KÃø§Kºò ±i°_¨Ó:¬O¤£¬O²Ä¤@¦W¤w¦¨º|ºô¤§³½? (¤w¸g¦b³Ì«e­±r-1¦ì¤¤¥X²{¤F)¡C©Ò¥H§AÀ³¸Ó¦Û²Äs¦ì(s>r)°_¡A­º¦¸¸I¨ìÁ{®É²Ä¤@¦W©ÎÁ{®É ²Ä¤G¦W®É¡A§A³£¤@§â§ì¦í¡A¦]¬°Á{®É²Ä¤G¦W¤]¥i¯à·|¬O¹ê»Ú²Ä¤G¦W¡C§Ú­Ì¤] ¥i¥HÃÒ©ú¡A³Ì¦nªº¤â¬q¡A´N¦b³o¤@ÃþùØ¡A¤£¹L§Ú¤]¤£ÃÒ©ú¤F¡C§Ú¦A²¼g¦p¤U:

Mr,s:¦Û²Är¦ì°_¡A¿ï¾ÜÁ{®É²Ä¤@¡C¦Û²Äs¦ì°_,(¦pªG¥H«e©|¥¼¿ï©w)¡A ¿ï¾ÜÁ{®É²Ä¤@©ÎÁ{®É²Ä¤G

§Ú­Ì²{¦b¨ÓºâMr,sªº¦¨¥\¾÷²v¡C²Å¸¹¦p«e¡C

\begin{displaymath}
\begin{eqalign}
P(M_{r,s})=&\sum^n_{k=r}\,P(S_{k},x_k=1 \mbo...
...} 2)\\
=&\sum^n_{k=r}{P(S_k,x_k=1)+P(S_k,x_k=2)}
\end{eqalign}\end{displaymath} (6)

(i) $r\leq k<s$: $P(S_k\vert x_k=1)=\frac{(r-l)}{(k-1)}, P(S_k,x_k=1)=\frac{(r-1)}{n(k-1)}$¡C
(ii) $r\leq k<s$: $P(S_k,x_k=2)=P(S_k,x_k=2 \mbox{{\fontfamily{cwM0}\fontseries{m}\selectfont \cha...
...0pt plus0.2pt minus0.1pt{\fontfamily{cwM1}\fontseries{m}\selectfont \char 40}})$¡C

(¦]¬°¦pªG²Äk¦ì¬O²Ä¤G¦W¡A¦Ó²Ä¤@¦W¥X²{¦b¥ý¡A«h«ö·Ó¤W­z¿ìªk¡A ²Äk¦ì®Ú¥»¤£·|³Q¿ï¨ì)¡C

²{¦b

\begin{displaymath}
\begin{eqalign}
P(x_k=2\mbox{\hskip 1.2pt plus0.4pt minus0.2...
...{m}\selectfont \char 40}}) &= \frac{(r-1)}{(k-1)}
\end{eqalign}\end{displaymath}

¬G

\begin{eqnarray*}
P(S_k,x_k=2)&=&\frac{r-1}{k-1}\cdot\frac{(n-1)-(k-1)}{n(n-1)}\\
&=&\frac{r-1}{n(k-1)}-\frac{r-1}{n(n-1)}
\end{eqnarray*}


(iii)$s\leq k$: $P(S_k\vert x_k=1)=\frac{r-1}{k-1}\cdot\frac{s-2}{k-2}$¡A ¦]¬°³o®É²Äk¦ì­n³Q¿ï¤¤¡A¤@©w¬Oa:«ek-1¦ì¤¤³Ì¦nªº­n¦b«er-1¦ìùØ¡A ¦Ó¥Bb:«ek-1¦ì¤¤¦¸¦nªº­n¦b«es-1¦ì¤¤¡Cª`·N $\frac{(s-2)}{(k-2)}$¬OP(b|a) ¡C©Ò¥H

\begin{displaymath}
P(S_k,x_k=1)=\frac{1}{n}\cdot\frac{r-1}{k-1}\cdot\frac{s-2}{k-2}
\end{displaymath}

(iv)$s\leq k$:»P(iii)¤¤²z¥Ñ¤@¼Ë¡A§Ú­Ì±o¨ì

\begin{displaymath}
P(S_k,x_k=2)=\frac{1}{n}\cdot\frac{r-1}{k-1}\cdot\frac{s-2}{k-2}
\end{displaymath}

§â©Ò¦³¤W­±µ²ªG©ñ¶i(6)¦¡ùØ¡A§Ú­Ì´N¦³

\begin{displaymath}
\begin{eqalign}
P(M_{r,s})=&\sum^n_{k=r}\,P(S_k,x_k=1\mbox{{...
...& +\frac{2(r-1)}{n}-\frac{2(r-1)(s-2)}{n(n-1)}\\
\end{eqalign}\end{displaymath} (7)

§Ú­Ì¦A°Q½×¡A·í n «Ü¤j®É¡A³Ì¦nªº r ©M s¡]=r*,s*¡^¥H¤Î P(Mr*,s*) ¸Ó¬O¦h¤Ö¡C¦]¬°(7)¦¡¸û½ÆÂø¡A³Ì§Öªº¤èªk¡A´N¬O±N³o­Ó«D³sÄòÅܼƪº¦¡¤l¡A¥Î³sÄòÅܼƪº¦¡¤l¨Ó¨ú¥N¡A¡]discrete $\rightarrow$ continous¡A³o¬O¤@¯ëÀ³¥Î¼Æ¾Ç¤¤ªººD§Þ¡^¡A µM«á¦A¥Î·L¤Àªº¤èªk¡C³oùاڥu±o¦V¤@¯ë¤¤¾Ç¦P¾Ç­Ì§@­Ó¹Dºp¡A³o¤]¬O¤£±o¤wªº¨Æ¡C«e¤@¸`ùتºµ²ªG¡A§A¦p¥Î·L¤Àªº¤èªk¡A¤]¥i§ó§Ö±o¨ì¡A¦Ü¤Ö¥i¥H¬Ù¥h¤F¾ã­¶ªº½g´T¡C

§Ú­Ì¥O

\begin{displaymath}
x=\frac{r}{n},\qquad y=\frac{s}{n}
\end{displaymath}

®Ú¾Ú«e­±ªº¸gÅç¡A·ín«Ü¤j®É¡Ar*©Ms*¤]À³¸Ó«Ü¤j¡C¦]¦¹¦pªG (r,s)¦b(r*,s*)ªþªñªº¸Ü¡Ar©Ms¤]³£«Ü¤j¡A©Ò¥H

\begin{displaymath}
\sum^{s-1}_{k=r}\,\frac{1}{k-1}\approx\log{\frac{s}{r}}=\log{\frac{y}{x}}
\end{displaymath}

§A­Yµy¬°Æ[¹î¡A¥i¨£(7)¦¡¥k¤è»P¤U¦¡¬Ûªñ
\begin{displaymath}
f(x,y)=2x\log{\frac{y}{x}}-x(y-x)+2x-2xy
\end{displaymath} (8)

²{¦b§Ú´N·íx,y¬°³sÄòÅܼơA¨Df(x,y)ªº³Ì¤jÂI(x*,y*)¡C®Ú¾Ú·L¤Àªº¤èªk¡A(x*,y*)À³¬O¤U­±¨â¦¡ªº¸Ñ:

\begin{displaymath}
\frac{\partial f}{\partial x}=0,\quad \frac{\partial f}{\partial y}=0
\end{displaymath}

­pºâ³o¨â­Ó°¾·L¤À¡A¤À§O±o¨ì

\begin{displaymath}
-2x+3y=2\log{\frac{y}{x}},\quad \frac{2x}{y}=3x
\end{displaymath}

¥Ñ¦¹§Ú­Ì±o¨ì $y^*=\frac{2}{3}$¥H¤Î
\begin{displaymath}
-\log x=1+\log (\frac{3}{2})-x \approx 1.405 -x
\end{displaymath} (9)

³o¬O­Ó¡u¶W¶V¤èµ{¦¡¡v¡Ax*¬O(9)¦¡¦b(0,1)¶¡ªº¸Ñ¡Cx*ªºªñ¦ü­È¨Ã¤£Ãø¨D¡A¨£¹Ï5¡C§A¦p¦³­Ó¤p«¬­pºâ¾÷,¤£®øªá¦h¤Ö®É¶¡,



¹Ï5

´N¥i¥H§ä¥X $x^*\approx 0.347$¡C¦A±q(8)©M(9),§A´N±o¨ì

\begin{displaymath}
f(x^*,y^*)=x^*(2-x^*)\approx 0.574
\end{displaymath}

©Ò¥H§Ú­Ì·s¬Û¿Ëªkªºµª®×¬O

\begin{displaymath}
r^*\approx 0.347n,s^*\approx \frac{2}{3} n ,P(M_{r^*,s^*})\approx 0.574
\end{displaymath}

§A¦³¶W¹L¤@¥b¥H¤Wªº¾÷·|¡A¥i¥H¿ï¤¤²Ä¤@¦W©Î²Ä¤G¦W!³o©MÀH·N¶Ã¿ï¤@¦ìªº¦¨ ¥\¾÷·|$(\frac{2}{n})$¡A¯u¬O¤Ñ²W¤§§O¡C§AÁÙ°í«ù¼Æ¾ÇµL¥Î¶Ü?

   

¤W­¶¡@1¢x2¢x3¢x4¡@¦¸­¶

¦^­¶­º
 
¡]­Y¦³«ü¥¿¡BºÃ°Ý¡K¡K¡A¥i¥H¦b¦¹ ¯d¨¥ ©Î ¼g«H µ¹§Ú­Ì¡C¡^
EpisteMath

EpisteMath (c) 2000 ¤¤¥¡¬ã¨s°|¼Æ¾Ç©Ò¡B¥x¤j¼Æ¾Ç¨t
¦Uºô­¶¤å³¹¤º®e¤§µÛ§@Åv¬°­ìµÛ§@¤H©Ò¦³


½s¿è¡G¬x·ë ³Ì«á­×§ï¤é´Á¡G4/26/2002