¤W­¶¡@1¢x2¢x3¡@¤w¦b³Ì«á¤@­¶

¨È°ò¦Ì¼wªº¯µ±K ¡]²Ä 3 ­¶¡^

§õ©v¤¸;¥j¾Ç²z

 


­º­¶ | ·j´M

¡D­ì¸ü©ó¼Æ¾Ç¶Ç¼½²Ä¤G¨÷²Ä¤@´Á
¡D§@ªÌ·í®É¥ô±Ð©ó¤¤¥¡¤j¾ÇÀ³¼Æ¨t;¥»©Ò½s¼¶
¡E¹ï¥~·j´MÃöÁä¦r
 
ºb±ì­ì²z»P²yÅ餽¦¡

§Ú­Ì­nÃÒ©ú¡A¤@­Ó¥b®|¬° r ªº²y¡AÅé¿n¬O $(\frac{4}{3})\cdot \pi r^3$¡C

²{¦b½Ð¬Ý¹Ï 1-a¡A¨ä¤¤ªº¶ê¡A¥b®|¬° r¡APABM ¬O¤@­ÓÃäªø¬° 2r ªº¥¿¤è§Î¡C²{¦b§Ú­Ì·Q¹³³o­Ó¹Ï§Î¶¶b AB ±ÛÂà¤@¶g¡C³o®É¹Ï¤¤ªº¶ê¡A¶¥X¤@­Ó²y¨Ó¡A¤T¨¤§Î AMN «h¶¥X¤@­Ó¶êÀ@Åé¡A¦Óªø¤è§Î PMNQ «h¶¥X¤@­Ó¶ê±í¨Ó¡C

§Ú­Ì¬Ý¬Ý¥ô·N¤@®Ú»P AB ««ª½ªºª½½u XY¡C¥¦»P¤W¥b¶êªº¥æÂI¬O G¡A»P AM ªº¥æÂI¬O F¡C³] $\overline{AZ}=a$, $\overline{GZ}=b$, $\overline{ZB}=c$¡C½Ðª`·N FZ ¤]µ¥©ó a¡C·í XY ¶ AB Âà¤@¶g®É¡AGZ,FZ,XZ ¤À§O¶¥X¤W­z¤T¥ßÅé¡]²y¡AÀ@¡A±í¡^ªº¡u°ò¥»¶ê¤ù¡v¨Ó¡C³oùةҿסu°ò¥»¶ê¤ù¡vªº·N«ä¡A´N¬O»¡¡A·í XYPQ ²¾°Ê¦Ü MN ®É¡A³o¨Ç¡u°ò¥»¶ê¤ù¡v¡A¤À§O¨Ì¦¸Å|¦X¦¨¤W­z¤T­Ó¥ßÅé¡C

§Ú­Ìª¾¹D b2 = ac,¡]¬°¤°»ò¡H¡^©Ò¥H

a2+b2=a(a+c)=2ra,

¦]¦¹

\begin{displaymath}2r\cdot \pi a^2+2r\cdot \pi b^2=a\cdot \pi 4r^2.\end{displaymath}

³o­Ó¦¡¤l»¡¤°»ò¡H¦Ò¼{¤@­Óºb±ì UV¡A¨ä¤äÂI¬° O¡A $\overline{OU}=\overline{OV}=2r.$ ¤W¦¡»¡¡A¦pªG§Ú­Ì¦b U ÂI±¾¤W¨â­Ó¶ê¤ù¡A¥b®|¬° a ©M b¡A¥t¥~¦b W ÂI¡A¡] $\overline{OW}=a$¡^¡A±¾¤W¤@­Ó¥b®|¬° 2r ªº¶ê¤ù¡A«h¥¦­Ìªº¡u­«¶q¡v¥¿¦n¥­¿Å¡A¤]´N¬O»¡¡Aºb±ì¤£°Ê¡C

²{¦b§Ú­Ì·Q¹³ XY ¥Ñ PQ ³vº¥²¾°Ê¦Ü MN¡C«ö·Ó¤W­±©Ò»¡ªº¥­¿Å±¾ªk¡A¥b®|¬° $\overline{GZ}$ ¤Î $\overline{FZ}$ ªº¶ê¤ù¡A¤@¤ù¤ù¦a³Q±¾¦b U ÂI¡A³o¨Ç¤£¦P¡u­«¶q¡vªº¶ê¤ù¡A¤À§O²Õ¦X¦¨¹Ï1-b¤¤ªº²y©MÀ@¡A±¾¦b¦P¤@ÂI U ³B¡F¦P®É¨º¨Ç±N¥b®|§¡¬° 2r ªº¶ê¤ù¡A¤@¤ù¤ù¦a³Q±¾¦b¤£¦Pªº W ÂI¤U¡CÀHµÛ XY ªº²¾°Ê¡AW ÂI¥Ñ O ²¾¦Ü V¡C¦]¦¹§Ú­Ì¦³¦P¡u­«¶q¡vªº¶ê¤ù¡A¥­§¡¦a±¾¦b OV ¤U¡C®Ú¾Ú°ò¥»¤O¾Çª¾ÃÑ¡A³o´N¬Û·í©ó±N¥þ³¡­«¶q¡A±¾¦b OV ªº¤¤ÂI C ³B¡C³o¥þ³¡ªº¡u­«¶q¡v¡A´N¬O§Ú­Ì¹Ï1-b¤¤ªº¶ê±í¡C

±q¹Ï1-bªº¡u¥­¿Å¹Ï¡v¨Ó¬Ý¡A§Ú­Ì°¨¤W®Ú¾Úºb±ì­ì²z¡A±o¨ì

\begin{displaymath}
2r \cdot (\mbox{{\fontfamily{cwM7}\fontseries{m}\selectfont ...
...t \mbox{{\fontfamily{cwM6}\fontseries{m}\selectfont \char 66}}
\end{displaymath}

¦ý¬O¡AÀ@ $=(\frac{1}{3})$¡D±í¡]¬°¤°»ò¡H½Ð°µ²ßÃD 1¡^¡A©Ò¥H 2r¡D²y $=(r-\frac{2r}{3})$¡D±í¡C ¦]¬°±íªºÅé¿n¬O©³­¼°ª¡A©ó¬O

\begin{displaymath}
\mbox{{\fontfamily{cwM7}\fontseries{m}\selectfont \char 55}}...
...66}} = \frac{1}{6}\pi\cdot 2r \cdot (2r)^2
= \frac{4}{3}\pi r
\end{displaymath}

³o­Ó¤èªk¬O¤£¬O«Ü©_§®¡H§A¬ÝÀ´¤F³o­ÓÃÒ©ú«á¡A¤@©w¤]¯à°µ²ßÃD 2¡Cºb±ì­ì²zªºÀ³¥Î¡A¨Ã¤£¬é­­©ó±ÛÂàÅ骺Åé¿n¡AŪªÌ¥i¬Ý 3 ®Ñ¤¤¤@­Ó¨D­±¿nªº¨Ò¤l¡C

²ßÃD 1. ÃÒ©ú¡GÀ@ = $(\frac{1}{3})$¡D±í¡C§A¥i¥H¥Î 4 ¤å¤¤©Ò¿×ªº¡u­D¤l­ì²z¡v¡A¤ñ¸û¤@­ÓÀ@©M¨ºùةҿתº¶§°¨¡C

²ßÃD 2. ¹Ï2¤¤ªº©ßª«½u¡A¦p¶ ab ¶b±ÛÂà¤@¶g¡A¨ä©Ò±o±ÛÂàÅ骺Åé¿n¬°

\begin{displaymath}V=\frac{1}{2}\pi r^2 l,\end{displaymath}

¸Õ¥Îºb±ì­ì²zÃÒ©ú¤§¡C

°Ñ¦Ò¸ê®Æ

  1. S.H. Gould¡]¥j¾Ç²z¡^¡GThe method of Archimedcs, Amer. Math. Monthly, 62(1955), 473-476.
  2. B.L. van der Waerden: Science Awakening, P. Noordhoff, 1954.
  3. Morris Kline: Mathematical Thought from Ancient to Modern Times, Oxford Univ. Press, 1972.¡]¥»¤å¤¤¦³Ãö¾ú¥v³¡¥÷¤j¦h±Ä¦Û¦¹®Ñ¡^¡C
  4. §õ©v¤¸¡G¡q¯ª¨R¤§¡B²yÅ餽¦¡¤Î¨ä¥L¡r¡A¡m¼Æ¾Ç¶Ç¼½¡n²Ä¤@¨÷²Ä¥|´Á¡A¤»¤Q¤»¦~¤T¤ë¡C

   

¤W­¶¡@1¢x2¢x3¡@¤w¦b³Ì«á¤@­¶

¦^­¶­º
 
¡]­Y¦³«ü¥¿¡BºÃ°Ý¡K¡K¡A¥i¥H¦b¦¹ ¯d¨¥ ©Î ¼g«H µ¹§Ú­Ì¡C¡^
EpisteMath

EpisteMath (c) 2000 ¤¤¥¡¬ã¨s°|¼Æ¾Ç©Ò¡B¥x¤j¼Æ¾Ç¨t
¦Uºô­¶¤å³¹¤º®e¤§µÛ§@Åv¬°­ìµÛ§@¤H©Ò¦³


½s¿è¡G¬x·ë ¢A ®Õ¹ï¡G¶À«H¤¸ ³Ì«á­×§ï¤é´Á¡G4/26/2002