¤w¦b²Ä¤@­¶¡@1¢x2¢x3¢x4¡@¦¸­¶

 


­º­¶ | ·j´M

¡D­ì¸ü©ó¼Æ¾Ç¶Ç¼½²Ä¤Q¨÷²Ä¤@´Á
 

¬Û²§¥Nªí¨t¥j¤µ½Í

±iÂíµØ

 
 

¬O«e¥Íª`©w«Ã½t²ö¿ù¹L
Ä@¤Ñ¤U¦³±¡¤H²×¦¨²²ÄÝ ¦pªG¤ë¤U¦Ñ¤H¬O¼Æ¾Ç®a......


1.°_·½¡G¦ó¤ó©w²z

¬Û²§¥Nªí¨t (systems of distinct representatives¡A²ºÙ SDR) ¬O1930¦~¥Nªº°ÝÃD¡A§Ú­Ì¥i¥H§â¥¦¸ÑÄÀ¬°©e­û·|¿ï¬£¥Nªíªº°ÝÃD¡A¤]¥i¥H±N¥¦¬Ý¦¨¤ë¤U¦Ñ¤H²o¬õ½uªº°ÝÃD¡C¬°¤F²³æ¡A§Ú­Ì¥ý¥Î¶°¦Xªº»¡ªk´y­z¡Gµ¹©w¶°¦X±Ú¡A $A=(A_1,\cdots\cdots,A_n)$¡A §Æ±æ¦b¨C¤@¶°¦X Ai ¤¤¿ï¥X¤@­Ó¤¸¯À ai¡A¨Ï±o ai,$\cdots\cdots$,an ¬O¬Û²§ªº n ­Ó¤¸¯À¡F³o®É§Ú­ÌºÙ $a=(a_1,\cdots\cdots,a_n)$ ¬O A ªº¤@­Ó¬Û²§¥Nªí¨t¡C

¦b©e­û·|¿ï¬£¥Nªíªº°ÝÃD¤¤¡A±N¶°¦X Ai µø¬°²Ä i ­Ó©e­û·|ªº¦¨­û¶°¡A ¦ý¬O¨C­Ó¤H³£¥i¯à¦b¦n´X­Ó¤£¦Pªº©e­û·|ùØÀY¡A °ÝÃD´N¬O­n¦b¨C­Ó©e­û·|¸Ì§ä¨ì¤@¦ì¥Nªí¡A ¦ý¬O¦P¤@¤H¤£¯à¥Nªí¤@­Ó¥H¤Wªº©e­û·|¡C ¦b±B«Ã°ÝÃDùØ¡AAi ¥i¥H¬Ý¦¨¬O²Ä i ­Ó¤k«Ä¥i¯à°U¥I²×¨­ªº¥Õ°¨¤ý¤l¶°¡A ¤ë¦Ñªº¥ô°È¬O­n±N©Ò¦³¤k«Ä³\°tµ¹¤@¦ì¥Õ°¨¤ý¤l¡A ¦ý¤G¤k¤£¥i¦P°t¤@¤Ò¡C

¬°¤F§óÁA¸Ñ°ÝÃD©Ò¦b¡AÅý§Ú­Ì¬Ý¬Ý¤U­±¤T­Ó¨Ò¤l¡C

¨Ò 1¡G A1 = { a,b,c } , A2 = { c,d } , A3 = { b,d } , A4 = { c,d }¡C ¹ï³o­Ó¨t²Î¡A«ê¦³¨â²Õ¤£¦Pªº¬Û²§¥Nªí¨t¡A´N¬O (a,c,b,d) ©M (a,d,b,c)¡C

¨Ò 2¡G A1 = { a } , A2 = { b } , A3 = { a , b} , A4 = { c,d,e,f,g,h }¡C ³o­Ó¶°¦X±ÚµL¸Ñ¡A¦]¬° a ¥²¶·¥Nªí A1¡Ab ¥Nªí A2¡A¦]¦¹ A3 ´N§ä¤£¨ì¥Nªí¡C

¨Ò 3¡G A1 = { 3 , 4 } , A2 = { 3 , 7 , 9 } , A3 = { 2 , 3 } , A4 = { 6 , 11 , 12} , A5 = { 4 , 6 , 8} , A6 = { 2 , 6 , 9} , A7 = { 3 , 4 , 8 } , A8 = { 3 , 5 , 10 , 13 }, A9 ={ 2 , 3 , 7 , 9 } , A10 = { 2 , 8 , 9 }¡C ¹ï©ó³o­Ó¶°¦X±Ú¡A¨Ã¤£¬O¤@²´¥i¥H¬Ý¥Xµª®×¬O¤°»ò¡A ¦b¤£ª¾¹D¦n¿ìªkªº±¡ªp¤U¡A¥¦¥i¯à®ö¶O§Ú­Ì¤@­Ó¤p®É¡A ¥ÎÆZ¤Oªº¤èªk¥h¹Á¸Õ¦UºØ¥i¯à¡A³Ì«á²×©ó±o¨ìµª®×¤F¡G ¤£¦s¦b¤@­Ó¬Û²§¥Nªí¨t¡C¬°¤F­nÅý¤j®a«HªA¡A §Ú­Ì¨Ã¤£»Ý­n±N³o¤@¤p®Éªººtºâ­«¨Ó¤@¦¸¡A ¤@­Ó²©öªº¤èªk¥i¯à¬O³o¼Ëªº¡A±N A1,A2,A3,A4,A5,A6,A7,A8,A9,A10 ³o 8 ­Ó¶°¦XÁp¶°¡A±o¨ì {2,3,4,6,7,8,9} ¥u§t 7 ­Ó¤¸¯À¡A ©Ò¥H¤£¥i¯à§ä¨ì¤@­Ó¬Û²§¥Nªí¨t¡C

¨Ò 3 ªº½×ÃÒ¹ê¦b¬O³o­Ó°ÝÃDªº¤@­ÓÃöÁä¡A¥¦§i¶D§Ú­Ì¡A¦pªG $A=(A_1,\cdots\cdots,A_n)$ ¦b¤@­Ó¬Û²§¥Nªí¨t¡A ÀH«K®³¥X k ­Ó¶°¦X Ai1,$\cdots\cdots$,Aik ¨Ó¡A ¨äÁp¶°³Ì¤Ö¦³k­Ó¤¸¯À¡F´«¨¥¤§¡A­n»¡A¨S¦³¬Û²§¥Nªí¨t¡A ¥u­n§ä¥Xk­Ó¶°¦X¡A¨äÁp¶°ªº°ò¼Æ¤p©ók§Y¥i¡C¥O¤HÅå³Yªº¬O¡A ³o­Ó¥²­n±ø¥ó¦P®É¤]¬O¥R¥÷±ø¥ó¡A ³o´N¬OµÛ¦Wªº¦óµá¤O©w²z (Philip Hall's Theorem )¡A §Ú­Ì±N¥Î©M¼Æ¾ÇÂk¯Çªk¬Ûµ¥ªº³Ì¤p­ì²z¨ÓÃÒ©ú¥¦¡C

¦ó¤ó©w²z¡G $A=(A_1,\cdots\cdots,A_n)$ ¦s¦b¤@­Ó¬Û²§¥Nªí¨tªº¥R¤À±ø¥ó¬O¹ï©Ò¦³ $I\subseteq$ $\{1,\cdots$ $\cdots,n\}$ ùÚ¦³ $\vert\bigcup_{i\in I}A_i\vert\geq\vert I\vert$¡C

ÃÒ©ú¡G ¥²­n±ø¥óªºÃÒ©ú¤w¦p¤W©Ò­z¡A²{ÃÒ±ø¥ó¬°¥R¤À¡C¦pªG¹ï©Ò¦³ $I\subseteq \{1, \cdots\cdots, n\}$ ùÚ¦³ $\vert\bigcup_{i\in I}A_i\vert\geq\vert I\vert$¡A §Ú­Ì¥i¥H°²³] A ¬Oº¡¨¬³o­Ó±ø¥óªº³Ì¤p¶°¦X±Ú¡A¤]´N¬O¡A ±q¥ô¦ó¤@­Ó Ai ¤¤¥h±¼¥ô¤@¤¸¯À©Ò±oªº·s¶°¦X±Ú¤£¦Aº¡¨¬¤W­z±ø¥ó¡C ­º¥ý­nÃÒ©úªº¬O¡A©Ò¦³Ai«ê§t¤@¤¸¯À¡C §_«h°²³]A1§t¦³x¤Îy¦ý $x\neq y$¡A«h $(A_1\setminus \{x\},A_2,\cdots\cdots,A_n)$ ©M $(A_1\setminus \{y\},A_2,\cdots\cdots,A_n)$ ³£¤£º¡¨¬¤W­z±ø¥ó¡A ¦]¦¹¦s¦b¨¬½X¶° I, $J\subseteq\{2,\cdots\cdots,n\}$ ¨Ï±o

\begin{displaymath}
\vert X\vert\leq\vert I\vert \mbox{{\fontfamily{cwM0}\fontseries{m}\selectfont \char 47}}\vert Y\vert\leq\vert J\vert
\end{displaymath}

¨ä¤¤

\begin{eqnarray*}
X &=& (\bigcup_{i\in I}A_i)\bigcup(A_1\setminus\{x\}), \\
Y &=& (\bigcup_{i\in J}A_i)\bigcup(A_1\setminus\{y\})
\end{eqnarray*}


©Ò¥H

\begin{eqnarray*}
\vert I\vert+\vert J\vert & \geq & \vert X\vert+\vert Y\vert \...
...\vert+\vert I\bigcap J\vert \\
&=& 1+\vert I\vert+\vert J\vert
\end{eqnarray*}


±o¨ì¥Ù¬Þ,©Ò¥H¨C¤@­Ó¶°¦X Ai={ai} «ê§t¤@¤¸¯À,¦ý¦]¬°¦ó¤ó©w²zªº±ø¥ó, ©Ò¥H³o¨Ç a1,$\cdots\cdots$,an ³£¤£¬Û¦P,¦]¦¹´N±o¨ì¤@­Ó¬Û²§¥Nªí¨t (a1,$\cdots\cdots$,an)¡C

¦ó¤ó©w²z¦³³\¦h¦³½ìªºÀ³¥Î,¨Ò¦p¥¦¥i¥H¥Î¨Ó±o¨ì¤U­±¨â­Ó©w²zªºÂ²¼äÃÒ©ú¡C

´µ§B¯Ç©w²z(Sperner's Theorem): ¶°¦XE«ê§tn­Ó¤¸¯À,F¬OEªº¤l¶°¦X±Ú,¨ä¤¸¯À¨â¨â¤¬¬Û¤£¥]§t¡A «hF³Ì¦h¥u¦³( $\frac{n}{[\frac{n}{2}]}$)­Ó¤¸¯À¡C

§B¦Ò¤Ò-¶¾¯Ã°Ò©w²z(Birkhoff-von Neumann Theorem): ¤@­ÓÂù­«ÀH¾÷¯x°} (doubly stochastic matrix) ¬O¤@ n x n ªº«D­t¹ê¼Æ¯x°}¡A¨ä¥ô¤@¦æ©Î¦Cªº©M«ê¬°1¡F­Y¨ä¤¸¯À§¡¬°0©Î1¡A «hºÙ¬°±Æ¦C¯x°} (permutation matrix)¡A¦]¬°¥¦«ê©M¤@­Ó $\{1,2,\cdots\cdots,n\}$¤Wªº±Æ¦C¬Û¹ïÀ³¡C©w²z¬O»¡¡A ­YD¬OÂù­«ÀH¾÷¯x°}¡A«h¦s¦b±Æ¦C¯x°} $P_1,\cdots\cdots,P_m$ ¤Î©M¬°1ªº¥¿¹ê¼Æ $c_1,\cdots\cdots,c_m$¨Ï±o $D=c_1P_1+\cdots\cdots+c_mP_m$¡C¨Ò¦p

\begin{displaymath}
\begin{eqalign}
\lefteqn{
\left[
\begin{array}{cccc}
0.3 &0....
...&0&0 \\
0&0&1&0 \\
1&0&0&0
\end{array}\right]
\end{eqalign}\end{displaymath}

±q¤åÄm¤W¦Ò¾Ú¡A¦ó¤ó©w²z©l©ó1935¦~¡A¨Æ¹ê¤W¦b1931¦~¬_¥§­ô (D. Konig) ©M¨È­ôªk§Q (E. Egervary) ´N´¿¥H¤£¦Pªº»y¨¥¡]§Y (0,1) ¯x°}©Î¤G¤À¹Ïºô¡^¡AÃÒ©ú¨ì¬Û¦Pªºµ²ªG¡F¤×¦³¬ÆªÌ°Ã­ô (Meger) ¦b1927¦~®É¡A¬ã¨s¹Ïºôªº³s³q©Ê¡A ´N¦³¤@¨Ç§ó¤@¯ë¤Æªº©w²z¡A±N«e¤TªÌªºµ²ªGµø¬°¯S®í±¡ªp¡C¦ó¤ó©w²z­«­nªº°^Äm¬O¡A ³o¼Ë´y­zªº©w²z¡A¶}±Ò¤F¤@¨Çºò³¬ªºµ¡´v¡A³q¦V©¹¤éÂA¬°¤Hª¾ªº¤j¹D¡C ±q1930¦~¥N¨ì1950¦~¥N¤§¶¡¬O¬Û²§¥Nªí¨tªº°_¨B®É´Á,¨ä¤¤¹p¦h (Rado) ªº°^Äm»á¦h¡F ¤@ª½¨ì1960¦~¥N¡A³o®M²z½×©MÀÀ°}²z½×(matroid theory)¬Ûµ²¦X¡A¤~¤j®i²§±m¡C

 
¹ï¥~·j´MÃöÁä¦r¡G
¡Dvon Neumann

¤w¦b²Ä¤@­¶¡@1¢x2¢x3¢x4¡@¦¸­¶

¦^­¶­º
 
¡]­Y¦³«ü¥¿¡BºÃ°Ý¡K¡K¡A¥i¥H¦b¦¹ ¯d¨¥ ©Î ¼g«H µ¹§Ú­Ì¡C¡^
EpisteMath

EpisteMath (c) 2000 ¤¤¥¡¬ã¨s°|¼Æ¾Ç©Ò¡B¥x¤j¼Æ¾Ç¨t
¦Uºô­¶¤å³¹¤º®e¤§µÛ§@Åv¬°­ìµÛ§@¤H©Ò¦³


½s¿è¡GªL§g©É ¢A ®Õ¹ï¡G¶À©ÉºÑ ¢A ø¹Ï¡G²¥ßªY ³Ì«á­×§ï¤é´Á¡G4/26/2002