¤w¦b²Ä¤@­¶¡@1¢x2¢x3¡@¦¸­¶

 


­º­¶ | ·j´M

¡D­ì¸ü©ó¼Æ¾Ç¶Ç¼½²Ä¤G¨÷²Ä¥|´Á
¡D§@ªÌ·í®É¥ô±Ð©ó¤¤¥¡¤j¾Ç¼Æ¾Ç¨t
 

ÂFÅ¢­ì²z

ÁÂÁo´¼

 
 


I. ÂFÅ¢­ì²z

ÂFÅ¢­ì²z¬O»¡±N k ­ÓªF¦è¤À¦¨ n Ãþ¡A ­Y $k \geq nr-n+1$ «h¦³¤@ÃþªF¦è¤§¼Æ¥Ø¤j©ó©Îµ¥©ó r¡C ¤Q°¦ÂF¤l¤À©ñ¦b¤E­ÓÅ¢¤¤¡A¥²¦³¤@Å¢¦Ü¤Ö©ñ¤G°¦ÂF¤l¡C ¤­©Ð«È¥|©Ð¶¡¡A¤@©w¦³¤G©Ð«È¦@¤@©Ð¶¡¡C¤T¨k°l¤G¤k¡A¥²¦³¤G¨k¬°±¡¼Ä¡C ¤Q¤T¤H¦P¦æ¡A¥²¦³¤G¤H¦P¤ë¥Í¡C¤­¤H¤À¤Q¤»¥»®Ñ¡A¥²µM¦³¤H¦Ü¤Ö¿W±o¥|¥»®Ñ¡C ³o¨Ç³£¬OÂFÅ¢­ì²z¦b¥Í¬¡¤¤±`¸I¨ìªº¹ê¨Ò¡C³o¼Ë¥­¤Zªº¹D²z¤H¤H¦b½Ñ¦h«Ý¤H±µª«¤¤¡A¤£°²«ä¯Á¹ð¥Î¤£²n¡C¹D²zÁöµM²³æ¡A¥©§®¦a¹B¥Î«o¦³·N·Q¤£¨ìªºÅå©_µ²ªG¡C

 
¹ï¥~·j´MÃöÁä¦r¡G
¡DÂFÅ¢­ì²z
¡DErdos
¡DRamsey
¡DÄõ©i¦è©w²z
¡D¹Ï§Î¾Ç
 
1.1. ³s³Ó 21 ¦¸ªº³ò´Ñ°ª¤â

¨H¤h®ü¬O¦ì³ò´Ñ·s¨q¡A¥h¦~°Ñ¥[¥þ°ê³ò´Ñ¦W¤H¤jÁÉ¡A±q¦a¤èªì¿ï¨ì³Ì«á¦W¤Hª§¹Ü¾Ô¡A¤@³s¤ñÁɤF11¬P´Á¡C¨H°ª¤â¤§¾ÔÁZ½÷·×¡AÀu³Ó°O¿ý¬O¡G¨C¤é¦Ü¤Ö³Ó¤@¦¸¡F¨C¬P´Á³Ì¦h³Ó12¦¸¡C¥Ñ¦¹°O¿ý¥i±À±o¦b¤@¬q³sÄòªº¤é¤lùØ¡A¨H´Ñ¤h¤£¦h¤£¤Ö³s³Ó¤F21¦¸¡C

µ²½×¦ü¥G¦³ÂI¥X©_¡C·Q¤@·Q¡A¦A¬Ý¤U­±ªºÃÒ©ú¡C

³] s1, s2,¡K,s77 µ¥¬°²Ä 1 ¤Ñ¡A²Ä 2 ¤Ñ¡A¡K¡K³Ì«á²Ä77¤Ñ¨H°ª¤â³Ó´Ñªº²Ö¿n¼Æ¡C¥Ñ©ó¨C¤Ñ¦Ü¤Ö³Ó¤@¦¸¤Î¨C¬P´Á³Ì¦h³Ó12¦¸¡A±o

\begin{displaymath}
& 1\leq s_1 < s_2 < \cdots < s_{77} \leq 12 \times 11 = 132 &
\end{displaymath} (1)

¥O
\begin{displaymath}
& t_i = s_i + 21, \qquad i=1,2,\cdots,77 &
\end{displaymath} (2)

«h
\begin{displaymath}
& 22 \leq t_2 < \cdots < t_{77} \leq 153 &
\end{displaymath} (3)

s1, s2,¡K,s77 ¤Î t1, t2,¡K,t77 ¦@¦³154­Ó¼Æ¡A¦ý¨ä­È¸¨¦b 1 ¦Ü153¤§153­Ó¼Æ¤¤¡C¥ÑÂFÅ¢­ì²z¡A¨ä¤¤¥²¦³¤G­Ó¼Æ¨ä­È¬Û¦P¡C¥Ñ(1)¤Î(3)¡Asi ¤§¶¡©¼¦¹¤£¬Ûµ¥¡Atj ¤§¶¡¥ç©¼¦¹¤£¬Ûµ¥¡C ¦]¦¹¬Y¤@ sk µ¥©ó¬Y¤@ tl¡C¦¹§Y sk = tl = sl +21 ©Î sk - sl = 21¡C´«¨¥¤§¡A±q²Ä l+1 ¤Ñ¦Ü²Ä k ¤Ñ¡A¨H´Ñ¤h¤£¦h¤£¤Ö³Ó¤F21¦¸¡C

   
 
1.2. ¶é¹C·|¤¤¦n¤Íª¾¦h¤Ö

«e¤é¾Ç®ÕÁ|¿ì¶é¹C·|¡A§Ú±aµÛ©d¤l¨à¤k°Ñ¥[¡C¨º¤Ñ´¸ªÅ¸U¨½¡A¤H¤s¤H®ü¡A¼ö¾x«D±`¡C¸`¥Øºë±m¡A¦³¦Y¦³ª±¡A«Ä¤l­Ì®æ¥~°ª¿³¡C ¥¿¥©¸I¨ì¤@¦ì¦h¦~¤£¨£ªº¦ÑªB¤Í½Í¯º¨¥Åw¸Ü·í¦~¡A«o±N©d¤l§N¸¨¦b¤@®Ç¡A©d¦³·N´£¿ô¦üªº´Â§Ú°Ý¡G¡uÅ¥»¡³o»ò¦h¤H¤¤¦³¨â¤H¬ÛÃѪºªB¤Í¤@¼Ë¦h§A«H¤£«H¡H¡v ­ì¨Ó©d¤lºë³qÂFÀs­ì²z¡A¦³·N¦Ò§Ú¡C¦n¦b§Ú¦b³o¤è­±¤]¤£¬O®zªÌ¡A²¤¥[«ä¯Á¡A§Ú±o¥X¤@¯ëªº±À½×¡G ¡u¤@¸s¤H¤¤¥²¦³¨â¤H¦U¦³¤@¼Ë¦hªºª¾¤Í¡v¡C ¦U¦ìŪªÌ¡A§A»{¬°³oµ²½×¹ï¶Ü¡H·Q¤@·Q¡A¦A¬Ý¤U­±ªºÃÒ©ú¡C

¤µ¦³¤H¼Æ¬° n ªº¤@¸s¤H S¡CS ¥i¤À¬° A0, A1,¡K, An-1¡C ¦¹¤¤ Ai ªí¥Ü S ¤¤¦³ i ­ÓªB¤Íªº¨º¨Ç¤H¡C µø ai ¬°ÂF¡AAi ¬°Å¢¡C¦b¦¹ n ÂF n Å¢¡AÂFÅ¢­ì²z±o¤£¥Xµ²½×¡A ¦ýµy¥[ª`·N´N¥i¬Ý¥X A0 »P An-1 ¤¤¥²¦³¤@Å¢¬OªÅªº¡C­Y A0 ¤£ªÅ¡A ªí¥Ü¦³¤@¤H¸ò¨ä¥L©Ò¦³¤H³£¤£¬OªB¤Í¡A¦]¦¹¨S¦³¤@¤H»{ÃÑ©Ò¦³¨ä¥L n-1 ¤H¡A ¦¹§Yªí¥Ü An-1¡A¬OªÅªº¡F­Y An-1¡A ¤£ªÅªí¥Ü¦³¤@¤H»{ÃÑ©Ò¦³¨ä¥L n-1 ¤H¡A¦]¦¹¤£¥i¯à¦³¤@¤H¸ò¨ä¥L©Ò¦³¤H³£¤£¬OªB¤Í¡A¦¹§Yªí¥Ü A0 ¬OªÅªº¡C¬G©Î A0 ©Î An-1 ¬°ªÅ¡A ¤£ºÞ¦p¦ó¡AS ¨Æ¹ê¤W¤À¬° n-1 Ãþ¡C ¥ÑÂFÅ¢­ì²z¡A¦³¤@Ãþ¦Ü¤Ö¦³¤G¤H¡C´«¨¥¤§¡A¦³¤G¤H¦U¦³¤@¼Ë¦hªºªB¤Í¡C

   
 
1.3. ¬ì¾Ç¤p­¸«Lªº¯ÈµP¹CÀ¸

¤p­¸«L¤@¸¹ÅK¶¯»P¤T¸¹¬Ã¬Ã¡A¦b±½¿º´cÅ]ÄÒ¤§¾l·v¡A±`·Rª±¤@ºØ°«´¼ªº¯ÈµP¹CÀ¸¡C¹CÀ¸¶}©l«e¡A¨â¤H¦U·Ç³Æ¤­±iªÅ¥Õªº¯ÈµP¡A¦U«ö¦Û¤vªº·N«ä¦b¨C±iµP¤W¼g¤@­Ó¸¹½X¡AµM«á¦U¦Û±N¤­±i¼g¤W¸¹½XªºµP»P¹ï¤è¥æ´«¡C ¹CÀ¸¶}©l¡A¨â¤H²q®±¨M©w¥ý«á¯´§Ç½ü¬y¥X¤@±iµP¡C·í¥X¤â¤§µP»P®à­±¤W¾A·í¬D¿ïªºµP¥[°_¨Ó¡A¨äÂI¼Æ©M¬°10¤§­¿¼Æ®É¡A¥XµPªÌ±o³Ó¡A¤ñÁɵ²§ô¡F§_«h½ü¨ì¹ï¤è¥XµPÄ~Äò¤ñÁÉ¡C­Y³Ì«á¦U¤H§â¦Ê±iµP¥X§¹¦Ó¥¼¤À³Ó­t¡A¤ñÁɧY¬°Âù©M¡C³o¹CÀ¸¬J²³æ¤S¦³½ì¡AÅK¶¯»P¬Ã¬Ãª±±o¬z¬z¦³¨ý¡C¦ý«Ü©_©Ç¡Aª±¤F¤d¦Ê¦¸ªº°O¿ý¤¤¡A¦U¦³³Ó­t¡A¦ý±q¨Ó¨S¦³Âù©Mªº±¡ªpµo¥Í¡C ¦³¤@¦¸¡A¥L­Ì´N§â³o¹CÀ¸¬O§_¦³Âù©Mªº°ÝÃD½Ð±Ð«n®c³Õ¤h¡C¥L«ä¯Á¤ù¨è¡A¬}¹î¨ä¤¤¹D²z«á»¡¡G¡u¬Oªº¡A¤Q­Ó¥ô·N¼Æ¥Ø²Î²Î¥[°_¨Ó­Y¤£¬O¤Qªº­¿¼Æ¡A¨ä¤¤¥²¦³¤@³¡¥÷¥[°_¥i³Q¤Q°£ºÉ¡v¡C±µµÛ«n®c³Õ¤h¤S»¡¡G¡u¨Æ¹ê¤W¡A¥ô·Nµ¹©w n ­Ó¥¿¾ã¼Æªº¼Æ¦C a1, a2,¡K,an¡A¥²©w¦³¤@¬q³s¥[°_¨Ó¬O n ªº­¿¼Æ¡C¥ÎÂFÅ¢­ì²z¸ÕÃÒ©ú¬Ý¡v¡C ¤p­¸«LÅK¶¯¤£¶ÈªZ¥\«D¤Z¡A´¼¤O¥ç°ª¡A¸g«n®c³Õ¤h¤@´£¿ô¡Aªá¤F¤@¤Ñ¤@©]­W«ä¡AªGµM¬Ý³z¤F°ÝÃD¨Ã·Q¥X¤FÃÒ©ú¡C¦U¦ìŪªÌ¡A·Q¤@·Q¡A¦A¬Ý¥H¤UÅK¶¯ªºÃÒ©ú¡C

a1,a2,¡K,an¡A¬°µ¹©w¤§ n ­Ó¥¿¾ã¼Æ¦C¡A³]

\begin{displaymath}
s_j = a_1 + a_2 + \cdots + a_j, \quad j=1,2,\cdots ,n
\end{displaymath}

¥H n °£ sj ±o°Ó qj¡A¾l rj ¼g¦¨

\begin{displaymath}
s_j = nq_j + r_j, \qquad 0 \leq r_j \leq n-1, \qquad j=1,2,\cdots,n
\end{displaymath}

­Y¬Y¤@ rk=0 «h sk ¬° n ¤§­¿¼Æ§Y±oµ²½×¡A¦]¦¹°²©w©Ò¦³ $r_i \neq 0$, j=1,2,¡K,n¡A«h r1,r2,¡K,rn µ¥ n ­Ó¼Æ¡A ¨ä­È¬Ò¸¨¦b 1,2,¡K,n-1 µ¥¤§ n-1 ­Ó¼Æ¤¤¡A ¥ÑÂFÅ¢­ì²z¡A¥²¦³¬Y¤@ rk µ¥©ó¬Y¤@ ri¡C ¬G sl-sk ¬° n ¤§­¿¼Æ¡C¦¹§Y»¡

\begin{displaymath}
a_{k+1} + a_{k+2} + \cdots + a_{l}
\end{displaymath}

¥i³Q n °£ºÉ¡C

   
 
1.4. ¤Q¤H¤¤¤§°ª¸G¦¸§Ç

¤Q­Ó¤H¥ô·N±Æ¦¨¤@¦C¥²©w¦³¥|¤H¬O«ö°ª¸G¶¶§Ç±Æ¦C¡C ¨Æ¹ê¤W¡A¤@¯ëªº±¡§Î¡A¥ô·Nªø«×¬° n2+1 ¤§¹ê¼Æ±Ô¦C¥²¥]§t¦³ n+1 ªø«×¬° n+1 ¤§»¼¼W©Î»¼´î¤l±Ô¦C¡C ¤U­±¬O²Õ¦X¾Ç¤j®v­C­}¦è (Erdös) ªºÃÒ©ú¡C °²³]µ¹©w¤§¹ê¼Æ±Ô¦C a1,a2,¡K,an2+1 ¤¤¨S¦³ªø«×¬° n+1 ªº»¼¼W¤l±Ô¦C¡A §Ú­Ì±NÃÒ©ú¥²©w¦³ªø«×¬° n+1 ¤§»¼´î¤l±Ô¦C¡C ¹ï¥ô·N ai ¦Ò¼{©Ò¦³¥H ai ¬°°_ÂI¤§»¼¼W¤l±Ô¦C¡C ¥O mi ¬°¦¹ºØ»¼¼W¤l±Ô¦C¤¤¥i¯à¹F¨ì¤§³Ì¤jªø«×¡C¥Ñ¶}©lªº°²©w±o

\begin{displaymath}
1\leq m_i \leq n , \qquad i=1,2, \cdots ,n^2+1
\end{displaymath}

m1,m2,¡K,mn2+1 ¬° n2 +1 ­Ó¼Æ¡A ¨ä­È¸¨¦b 1,2,¡K,n ¤§ n ­Ó¼Æ¤¤¡A¥ÑÂFÅ¢­ì²z¡A ¥²¦³ n+1 ­Ó mi ¨ú¦P¤@­È¡C¥O
\begin{displaymath}
m_{i_1}=m_{i_2}=\cdots =m_{i_{n+1}} \quad \mbox{{\fontfamily...
...ntseries{m}\selectfont \char 47}} \quad i_1<i_2<\cdots<i_{n+1}
\end{displaymath} (4)

­Y $a_{i_1}\leq a_{i_2}$ «h ai1 ±µ¤W¥H ai2 ¬°°_ÂI¤§³Ìªø»¼¼W§Ç¦Cºc¦¨¥H ai1 ¬°°_ÂI¡A ªø«×¬° mi2+1 ¤§»¼¼W¤l§Ç¦C¡A¦]¦¹ $m_{i_2} +1 \leq m_{i_1}$¡C ¦¹»P(4)¦¡¥Ù¬Þ¡A¬G ai1 > ai2¡A¦P²z ai2 > ai3, ¡K $a_{i_n}\leq a_{i_{n+1}}$ µ¥¡C¦¹§Y ai1,ai2, ¡K ain+1 ¬Oªø«×¬° n+1 ¤§»¼´î¤l§Ç¦C¡C

   
 
1.5. 101­Ó¼Æ¤¤ªº©_ÂÝ

±q 1¡B2¡B3¡B¡K¡K¡B200 ªº¤G¦Ê­Ó¼Æ¤¤¥ô¨ú 101 ­Ó¼Æ«h¨ä¤¤¥²©w¦³¤G¼Æ s,t¡A¨Ï±o s ¬O t ªº¦]¼Æ©Î t ¬O s ªº¦]¼Æ¡C ·Q¤@·Q¡A¦A¬Ý¥H¤UªºÃÒ©ú¡C

¥ô·N¿ï¨ú¤§ 101 ­Ó¼Æ°O¬° a1,a2, ¡K, a101¡C ±N ai ¤¤©Ò¦³§t 2 ¤§¦]¼Æ¨í¥X¡A¼g¦¨

\begin{displaymath}
a_i = 2^{l_i}p_i, \quad i=1,2,3,\cdots,101
\end{displaymath}

¨ä¤¤ pi ¬°©_¼Æ¡C p1, p2,¡K,p101 µ¥ 101 ­Ó¼Æ¡A ¨ä­È¸¨¦b 1,3,5,¡K ,199 µ¥¤§ 100 ­Ó¼Æ¤¤¡C ¥ÑÂFÅ¢­ì²z¡Aª¾¹D¬Y¨â­Ó pi ¬Ûµ¥¡C³] pk = pl = p «h ak = 2tk p ¤Î al = 2tl p¡A¥O s = ak, ¤Î t = al¡A«h s,t º¡¨¬©Ò­nªº±ø¥ó¡C

   
 
1.6. ¶ê½L¤W¤§¤CÂI

¥b®|¬° 1 ªº¶ê½L¤W¦³¤CÂI¡A¨ä¤¤¥ô·N¤GÂIªº¶ZÂ÷³£¤£¤p©ó 1¡C «h¤CÂI¤¤¦³¤@ÂI¬°¶ê¤ß¡Cµ²½×¦³ÂI¥X©_¡A·Q¤@·Q¡A¦A¬Ý¥H¤UÃÒ©ú¡C

±N¶ê½L¦p¹Ï¤@¤À¦¨¤»¶ô¬Ûµ¥¤§®°§Î A1 O A2 ,A2 O A3,¡K , A6 O A1 µ¥¡C¥O

\begin{displaymath}
\begin{array}{l}
S_1 = \mbox{{\fontfamily{cwM5}\fontseries{m...
...fontfamily{cwM0}\fontseries{m}\selectfont \char 1}}
\end{array}\end{displaymath}



¹Ï¤@

°£¶ê¤ß¥~¡A¶ê½L¤W¤§¥ô¤@ÂI³£ÄݦP¦Ó¶ÈÄÝ©ó¬Y¤@Si ¡C ­Y¤CÂI¤¤µL¤@¬°¶ê¤ß¡A«h¨ä¤¤¦³¤GÂIÄÝ©ó¦P¤@ Si¡C¦ý Si ¤¤¤§¥ô·N¤GÂIªº¶ZÂ÷³£¤p©ó1¡A¬G¤£¥i¯à¤CÂI¤¤µL¤@ÂI¬°¶ê¤ß¡Cµ²½×½T©w¡C

   
 
1.7. ¥¿¤T¨¤§Î¤º¤§¤T­Ó°Ï°ì

¥¿¤T¨¤§Î ABC ¦UÃäªø¬° 1¡A ±N ABC ©Ò³ò¦¨ªºÂI¶°¦X¡A¥ô·N¤À¦¨ S1,S2,S3 ¤T°Ï°ì¡A «h¥²©w¦³¬Y¤@ Si ¤§ª½®|¤j©ó©Îµ¥©ó $\frac{1}{\sqrt{3}}$ ¤F¡C ¦¹¤¤©Ò¿×ÂI¶°¦X S ªºª½®|¬O«ü S ¤¤¥ô·N¨âÂI¶ZÂ÷ªº³Ì¤j¼Æ¡C ¥Ñ©ó S1,S2,S3 ¤§§Îª¬²@µL­­¨î¡Aªì¬Ý¡A°ÝÃD¬O¦ü¥G«ÜÃø¡A ·Q¤@·Q¡A¦A¬Ý¥H¤UªºÃÒ©ú¡C

¥O O ÂI¬°¥¿¤T¨¤§Îªº¤¤¤ß¡AO¡BA¡BB¡BC ¤¤¥ô·N¨âÂIªº¶ZÂ÷³£¤j©ó©Îµ¥©ó $\frac{1}{\sqrt{3}}$¡Cµø O¡BA¡BB¡BC ¥|ÂI¬°ÂF¡A S1¡BS2¡BS3 ¬°Å¢¡A¥ÑÂFÅ¢­ì²z¡A¬Y¤@ Sk ¥]§t¦¹¥|ÂI¤§¨âÂI¡C ¦]¦¹ Sk ¤§ª½®|¤j©ó©Îµ¥©ó $\frac{1}{\sqrt{3}}$¡C

   
 
1.8. ¼s¸qªºÂFÅ¢­ì²z

µ¹©w«D­tªº¾ã¼Æ q1, q2,¡K,qn¡A±N k ­ÓªF¦è¤À¬° n Ãþ¡A ­Y $k \leq q_1 + q_2 + \cdots\cdots + q_n -n +1$ «h¤@©w¦³¬Y²Ä i ÃþªF¦è­Ó¼Æ¤j©ó©Îµ¥©ó qi ­Ó¡C ³o¬OÂFÅ¢­ì²z¤@¯ë±¡ªp¡C¥¦ªºÃÒ©ú«Ü²³æ¡A°²­Yµ²½×¤£½T¡A§Y¬O»¡²Ä 1 ÃþªF¦è¤p©ó q1¡A²Ä 2 Ãþ¤p©ó q2¡A¡K¡K²Ä n Ãþ¤p©ó qn¡C «h©Ò¦³ªF¦èÁ`©M

\begin{displaymath}
k \leq (q_1 -1) + (q_2 -1) + \cdots \cdots + (q_n -1)
= q_1 + q_2 + \cdots \cdots + q_n -n
\end{displaymath}

¦¹»P«e´£¥Ù¬Þ¬G¤£¥i¯à¡C ·í $q_1 = q_2 = q_3 = \cdots\cdots = r$ ®É§Y¬°­ì¨ÓªºÂFÅ¢­ì²z¡C

   

¤w¦b²Ä¤@­¶¡@1¢x2¢x3¡@¦¸­¶

¦^­¶­º
 
¡]­Y¦³«ü¥¿¡BºÃ°Ý¡K¡K¡A¥i¥H¦b¦¹ ¯d¨¥ ©Î ¼g«H µ¹§Ú­Ì¡C¡^
EpisteMath

EpisteMath (c) 2000 ¤¤¥¡¬ã¨s°|¼Æ¾Ç©Ò¡B¥x¤j¼Æ¾Ç¨t
¦Uºô­¶¤å³¹¤º®e¤§µÛ§@Åv¬°­ìµÛ§@¤H©Ò¦³


½s¿è¡G±d©ú°a ³Ì«á­×§ï¤é´Á¡G4/26/2002