¤W­¶¡@1¢x2¢x3¢x4¡@¤w¦b³Ì«á¤@­¶

½Í Stirling ¤½¦¡ ¡]²Ä 4 ­¶¡^

½²Áo©ú

 

­º­¶ | ·j´M

¡D­ì¸ü©ó¼Æ¾Ç¶Ç¼½²Ä¤Q¤C¨÷²Ä¤G´Á
¡D§@ªÌ·í®É¥ô±Ð©ó¥x¤j¼Æ¾Ç¨t

¡EµùÄÀ
¡E¹ï¥~·j´MÃöÁä¦r
 
¤B¡Bªì¨B§_©w±`Ãѩʪº¾÷²v·§©À

²{¦b§Ú­Ì­n§Q¥Î Stirling ¤½¦¡¨Ó±´°Q¾÷²v¤§Á¼ (the enigma of probability)¡C ­º¥ýÆ[¹î¨ì¤@­ÓÅãµMªº

¸ÉÃD6¡G
³] (an)¡A(bn)¡A(cn) ¤Î (dn) ¬Ò¬°¥¿¶µ¼Æ¦C¥B $\lim_{n \rightarrow \infty} \frac{a_n}{b_n} = l$¡C­Y $a_n \sim c_n$ ¥B $b_n \sim d_n$ «h $\lim_{n \rightarrow \infty} \frac{c_n}{d_n} = l$¡C

±µµÛ­pºâ¡u¥á 2n ¦¸»ÉªO«ê¦n¥X²{ n ¦¸¥¿­±ªº¾÷²v p2n ¦b $n \rightarrow \infty$ ªº·¥­­¡v

\begin{eqnarray*}
\lim_{n \rightarrow \infty} p_{2n} &=& \lim_{n \rightarrow \in...
...} \\
&=& \lim_{n \rightarrow \infty} \frac{1}{\sqrt{\pi n}} = 0
\end{eqnarray*}


©w²z3¡G $ \lim_{n \rightarrow \infty} p_{2n} = 0$¡C

¦]¦¹¡A·í $n \rightarrow \infty$ ®É¡Ap2n ¤£¦ý¤£¦p­ì¥ý®Æ·QªºÁͪñ©ó 1¡]§YÅK©wµo¥Í¡^¡A¤Ï¦Ó¬OÁͪñ©ó 0¡]§Y¤£¥i¯àµo¥Í¡^¡C ³oĵ§i§Ú­Ì¡A¾÷²vªº¸ÑÄÀ­n«Ü¤p¤ß¡C

±`Ãѩʪº»¡ªk¡G¡u¥á«Ü¦h¦¸»ÉªO¥¿­±¤j¬ù¦û¤@¥b¡C¡v¦pªG±N¡u¤j¬ù¦û¤@¥b¡v¡A ¸ÑÄÀ¬°¡u«ê¦n¬O¤@¥b¡vªºÂI¦¡±À¦ô»¡ªk¡AÅãµM¬O¤£¹ïªº¡C¦p¦ó­×¥¿©O¡H ¦ÛµM·Q¨ìªº¬O§ï¥Î°Ï¶¡¦¡±À¦ôªº»¡ªk¡]¥Î¤â®ü©³¼´°w¤£¦¨¡A´N§ï¥Îºô¤l¨Ó¼´¡^¡C

¬°¤F±Ô­z¤è«K°_¨£¡A§Ú­Ì¤Þ¤JÀH¾÷ÅÜ¼Æ (random variable) ªº·§©À¡C ¹ï©ó k=1, 2, 3 ¡K¡A¥OÀH¾÷ÅܼÆ

\begin{displaymath}
\xi_k = \left\{
\begin{array}{ll}
1,&\mbox{ {\fontfamily{cwM...
...{cwM2}\fontseries{m}\selectfont \char 222}}
\end{array}\right.
\end{displaymath}

¦A¥O

\begin{displaymath}S_n = \xi_1 + \xi_2 + \cdots + \xi_n\end{displaymath}

³o¤]¬O¤@­ÓÀH¾÷ÅܼơA©w¸q¦b¬Y­Ó¾÷²vªÅ¶¡ (£[, F, P) ¤W¡A¥Nªí¥á n ¦¸»ÉªO¤¤¡A¥¿­±¥X²{¦¸¼Æ¤§ÀH¾÷ÅܼơA¥¦¨ã¦³¤G¶µ¤À§G¡C ©ó¬O¡uS2n=n¡v´Nªí¥Ü¥á 2n ¦¸»ÉªO¥¿­±«ê¦n¥X²{ n ¦¸ªº¨Æ¥ó¡A ¨ä¾÷²v°O¬° P(S2n=n)¡C¦]¦¹©w²z3¬O»¡ $\lim_{n \rightarrow \infty} P(S_{2n}=n)=0$¡C

¶i¤@¨B§Ú­Ì²q·Q¡GS2n ¸¨¦b n ªºªñ®Ç¤§¾÷²vÀ³¸Ó·|¤j°_¨Ó§a¡H ¤]³\³o¬O¡u¥¿­±¤j¬ù¦û¤@¥b¡v§ó¶K¤Áªº¸ÑÄÀ¡Cºë½Tªº­pºâ¬O±´¨DÁô±â¶ø¯µªº¤£¤Gªkªù¡A Åý§Ú­Ì´N¨Óºâºâ¬Ý¡C¥O a > 0 °ß¤@­Ó©T©w¼Æ¡A¨º»ò

\begin{eqnarray*}
P(n-a \leq S_{2n} \leq n+a) & = & \sum_{k=n-a}^{n+a} \, _{2n}C...
...ty \mbox{{\fontfamily{cwM1}\fontseries{m}\selectfont \char 118}}
\end{eqnarray*}


¦]¦¹§Ú­Ì¤S±o¨ì¤@­Ó¤£¥X©Ò®Æªºµ²ªG¡G

©w²z4¡G ¹ï¥ô·N©T©w¼Æ a > 0¡A

\begin{displaymath}\lim_{b \rightarrow \infty} P( \mid S_{2n} - n \mid \leq a ) = 0\end{displaymath}

´«¨¥¤§¡A¥H n ¬°¤¤¤ß¡A¥ª¥k¤§ªø¬Ò¬° a ¤§°Ï¶¡¡AÁÙ¬O¨S¦³ºô¦í¥ô¦ó¾÷²v¡I

¥t¥~¡A±N°¸¼Æ 2n §ï¦¨©_¼Æ 2n+1¡A©w²z4¤´µM¦¨¥ß¡C¦]¬°·í $n \rightarrow \infty$ ®É¡A¬ÛÀ³¶µªº¤ñ­È¬°

\begin{displaymath}
\frac{ _{2n+1}C_k \frac{1}{ 2^{2n+1} } }{ _{2n}C_k \frac{1}{...
... \frac{2n+1}{2n+1-k} \cdot \frac{1}{2} \rightarrow \frac{1}{2}
\end{displaymath}

©Ò¥H

\begin{eqnarray*}
\lefteqn{ P( -a \leq S_{2n+1} - \frac{2n+1}{2} \leq a ) } \\
...
...^{a+ \frac{2n+1}{2}}
\, _{2n}C_k \frac{1}{2^{2n}} \rightarrow 0
\end{eqnarray*}


©Ò¥H±o¨ì

©w²z5¡G ¹ï¥ô·N¦³­­¥¿¼Æ a¡AùÚ¦³

\begin{displaymath}\lim_{n \rightarrow \infty} P(-a \leq S_{2n+1} - \frac{2n+1}{2} \leq a) = 0\end{displaymath}

±N¤W­z©w²z4»P©w²z5Âkµ²°_¨Ó´N±o¨ì¡G
©w²z6¡G ¹ï¥ô·N¦³­­¥¿¼Æ a¡A«í¦³

\begin{displaymath}\lim_{n \rightarrow \infty} P(-a \leq S_n - \frac{n}{2} \leq a) = 0 . \end{displaymath}

³o¬O¤@­Ó¥O¤HÅ岧ªºµ²ªG¡A¦ý¤]¥O¤H¥¢±æ¡IÅ޿誺´e´Ò§â±`ÃѪºÆ[ÂI¥´±o²´«_ª÷¬P¡C¥Î¥ô¦ó¦³­­°Ï¶¡ [-a,a] ¨Óºôù¦í $S_n - \frac{n}{2}$ ©Ò´²§G¤§¾÷²v¡A·í $n \rightarrow \infty$ ®É¡A®Ú¥»¨S¦³©¹¨ì¥ô¦ó¾÷²v¡A¾÷²v¥þ³¡¬y¥¢±¼¡I´«¨¥¤§¡A¥á n ¦¸»ÉªO¡A¥X²{¥¿­±ªº¦¸¼Æ¡A¸¨¦b¥]§t $\frac{n}{2}$ ªº¥ô¦ó¦³­­°Ï¶¡ªº¾÷·|¡A·í n «Ü¤j®É¡A·L¥G¨ä·L¡C

¤°»ò¬O¾÷²v¡H¥¦¤´µM¬O¡u¶³²`¤£ª¾³B¡v¡I

James Bernoulli¡]1654¡ã1705¡^¿n20¦~ªº¨¯­W¤u§@²×©ó±o¨ì¬ð¯}©Êªºµo²{¡G

©w²z7¡G¡]Bernoulli ªº®z¤jªk«h¡A1713¡^
¹ï¥ô·N $\xi > 0 , \lim_{n \rightarrow \infty} P( \mid \frac{S_n}{n} - \frac{1}{2} \mid \leq \xi ) = 1$¡C

   
 
µù°O

1. ±q¥~§Î¬Ý°_¨Ó¡AStirling ¤½¦¡¨Ã¤£º}«G¡A¦ý«o«Ü¦h¥Î³~¡A¥¦¬O´¦¶}³\¦h²`¨è¶ø¯µªºÆ_°Í¡C¦b¬ã¨s¤G¶µ¤À§Gªº©Ê½è®É¡ADe Moivre ³Ì¥ý±o¨ì³o­Ó¤½¦¡¡]1718¦~¡^¡F«á¨Ó James Stirling ¦b1730¦~¤S­«·s±o¨ì¥¦¡C¦b¼Æ¾Ç¤¤¦³³\¦h©w²z©Ò±¾ªº¦W¦r©¹©¹¤£¬O²Ä¤@­Óµo²{ªÌ¡A¦¹¦a¬O¤@­Ó¨Ò¤l¡C

2. ±q«e·¨ºû­õ±Ð±Â¤W¾÷²v½×½Ò¡A´¿­n¨D¾Ç¥Í¿W¥ß¦a¥h°l´M Stirling ¤½¦¡¡A¥»¤åºâ¬O¤@­Ó¦^À³¡C

3. n! ªº³sÄòÅܤƴN¬O Gamma ¨ç¼Æ¡A¤º®eºë±mÂ×´I¡A³o¬O Euler ªº°^Äm¡C

   
 
°Ñ¦Ò¤åÄm

1. M. I. Aissen, Some remarks on Stirling formula, A. M. M. 61 (1954) , 687-691.
2. H. Robbins, A remark on Stirling's formula, A. M. M. 62 (1955), 26-29
3. W. Feller, A direct proof of stirling's formula, A. M. M 74 (1967), 1223-1225.
4. R. A. Khan, A probabilistic proof of Stirling's formula, A. M. M. 81 (1974), 366-369.
5. C. S. Wong, A note on the central limit theorem, A. M. M. 84 (1997), 472.
6. C. R. Blyth and P. K. Pathak, A note on eazy proofs of Stirling's formula, A. M. M. 93 (1986), 376-379.
7. P. Diaconis and D. Freedman, An elementary proof of Stirling's formula, A. M. M. 93(1986), 123-125.
8. J. M. Patin, A very short proof of Stirling's formula, A. M. M. 96 (1989), 41-42.
9. G. Marsaglia and J. C. W. Marsaglia, A new derivation of Stirling Approximation to n!, A. M. M. 97 (1990), 826-829.

   

¤W­¶¡@1¢x2¢x3¢x4¡@¤w¦b³Ì«á¤@­¶

¦^­¶­º
 
¡]­Y¦³«ü¥¿¡BºÃ°Ý¡K¡K¡A¥i¥H¦b¦¹ ¯d¨¥ ©Î ¼g«H µ¹§Ú­Ì¡C¡^
EpisteMath

EpisteMath (c) 2000 ¤¤¥¡¬ã¨s°|¼Æ¾Ç©Ò¡B¥x¤j¼Æ¾Ç¨t
¦Uºô­¶¤å³¹¤º®e¤§µÛ§@Åv¬°­ìµÛ§@¤H©Ò¦³


½s¿è¡G²¥ßªY ¢A ®Õ¹ï¡G²¥ßªY ¢A ø¹Ï¡G±iÖq´f ³Ì«á­×§ï¤é´Á¡G4/26/2002