¤W­¶¡@1¢x2¢x3¡@¤w¦b³Ì«á¤@­¶

»\²z½×(Theory of Majorization)¤Î¨ä¦b¤£µ¥¦¡¤WªºÀ³¥Î ¡]²Ä 3 ­¶¡^

·¨­«Â@;·¨·Ó±X

 


­º­¶ | ·j´M

¡D­ì¸ü©ó¼Æ¾Ç¶Ç¼½²Ä¤»¨÷²Ä¥|´Á

¡EµùÄÀ
¡E¹ï¥~·j´MÃöÁä¦r
 
»\²z½×¤Î¨äÀ³¥Î

§Ú­Ì­º¥ý°Q½×¦b¤°»ò±¡§Î¤U

\begin{displaymath}g(y_1)+g(y_2)\leq g(x_1)+g(x_2)\eqno{(6)}\end{displaymath}

¬°¤F¨Ï¤£µ¥¦¡¡u¤½¥­¡v°_¨£¡A§Ú­Ì§Æ±æ

\begin{displaymath}x_1+x_2=y_1+y_2\eqno{(7)}\end{displaymath}

§_«h $g(1)+g(2)\leq g(100)+g(200)$ ´N¨S¦³¤Ó¦hªº»ù­È¤F¡C±q¥Y¨ç¼Æªº©Ê½è¡A­Y§Ú­Ì¥i¥H§ä¨ì¤@­Ó $0<\lambda<1$¡A¥B

\begin{displaymath}y_1=\lambda x_1+(1-\lambda)x_2\quad,\quad y_2=(1-\lambda)x_1+\lambda x_2 \eqno{(8)}\end{displaymath}

«h(6)»P(7)³£ÅãµM¦¨¥ß¡A±q¹Ï2ª¾¡A(8)¦¡ªí¥Ü y1,y2 ¤ñ x1 »P x2 ­nºò´ê¨Ç¡C



¹Ï2

¦ý­n§â¹Ï§Î2ªº¡uºò´ê¡vÆ[©À±À¨ì n «×ªÅ¶¡¡A§Y¨ã n ­Ó¤À¶qªº¦V¶q(x1,x2,¡K,xn) ¤Î (y1,y2,¡K,yn) ´N¤£¤Ó®e©ö¤F¡C¦ý¦³ªº±¡§Î«ÜÅãµM¡AÄ´¦p»¡

\begin{displaymath}
y_i=\overline{x}=\frac{x_1+x_2+\cdots+x_n}{n} \; , \quad
i=1,2,\cdots,n
\end{displaymath}



¹Ï1

«h¥Ñ¹Ï3¬Ý¥X ($\overline{x}$,$\overline{x}$,¡K,$\overline{x}$) ÅãµM¤ñ (y1,y2,¡K,yn) ­nºò´ê¡C ¦]¦Ó§Ú­Ì¦³²Ä(4)¦¡¡A§Y

\begin{displaymath}n\phi(x)\leq\sum_{i=1}^n\phi(x_i)\end{displaymath}

¿½º¸·Q¨ì¤F³o¼Ë¤@­Ó¤ñ¸û¨â¦V¶q X=(x1,x2,¡K,xn)¡AY=(y1,y2,¡K,yn) ºò´ê©Êªº¤èªk¡C

©w¸q:
¥O X = (x1,x2,¡K,xn)¡AY = (y1,y2,¡K,yn) ¬°¨âº¥´î§Ç¦C¡A§Y

\begin{displaymath}\begin{array}{l}
x_1\geq x_2\geq x_3\geq \cdots\cdots\geq x_n\\
y_1\geq y_2\geq y_3\geq \cdots\cdots\geq y_n
\end{array}\end{displaymath}

¥B

\begin{displaymath}x_1+x_2+\cdots\cdots+x_n=y_1+y_2+\cdots\cdots+y_n\end{displaymath}

§Ú­Ì»¡X¥i¥H¡u»\±o¦í¡vY¡A©ÎY¤ñX§óºò´ê¡A¦pªG

\begin{displaymath}\begin{array}{rcl}
y_1&\leq&x_1\\
y_1+y_2&\leq&x_1+x_2\\
y_...
...1+y_2+\cdots+y_{n-1}&\leq&x_1+x_2+\cdots+x_{n-1}\\
\end{array}\end{displaymath}

¤@¯ë§Ú­Ì¥Î Y<X ªí¥Ü¤§¡C

§Ú­Ì©Ò±Äªº©w¸qÁö¥u¾A¥Î©ó¨â­Óº¥´îªº§Ç¦C¡A¦ý¦b¤@¯ë±¡§Î¤Uªº¤£µ¥¦¡¡A´X¥G³£»P§Ç¦C x1,x2,¡K,xn, y1,y2,¡K,yn ªº±Æ¦CµLÃö¡F©Ò¥H§Ú­Ì©Ò±Äªº©w¸q¨Ã¤£¥¢¨ä¤@¯ë©Ê¡CÁ|­Ó¨Ò¤l¡AX=(3, 2, 1), Y=(2.5, 2.3, 1.2)¡A«h

3+2+1=2.5+2.3+2.1

¥B

\begin{displaymath}\begin{array}{rcl}
3&\geq&2.5\\
3+2&\geq&2.5+2.3\\
\end{array}\end{displaymath}

¬G Y<X¡C ¤S«ÜÅãµMªº $Y=(\overline{x},\overline{x},\cdots,\overline{x})$ $< X = (x_1, x_2, \cdots, x_n)$¡CŪªÌ¤£§«¸Õ¸ÕÃÒ©ú¦¹¤@¨Æ¹ê¡C¡]¥H«á³\¦h¦a¤è­n¥Î¨ì¦¹¤@¨Æ¹ê¡^

µù:
§Ú­Ì¦b¤å¤¤¦³®É§â (x1,x2,¡K,xn) ¥H§Ç¦C¬Ý¤§¡C ¦³®É¤]µø $(x_1,x_2,\cdots,x_n) \in R^n$¡A·í¦V¶q¬Ý¤§¡C¦b·í§Ç¦C¬Ý®É¡A x1,x2,¡K µ¥¥iºÙ¬°¤¸¯À¡A¦b·í¦V¶q¬Ý®É¡Ax1,x2,¡K µ¥¥H¤À¶qºÙ¤§¡C §Ú­ÌºÙ X ¤Î Y ªº¨â­Ó¤¸¯À©Î¤À¶q¬Û¦P®É¡A¬O°£¤F¼Æ­È¥»¨­¥~¡A¥B¨ã¦³¬Û¦Pªº¯´§Ç©Î¦ì¸m¡C¨Ò¦p (3,2,1,5,3) ¤Î (3,1,2,5,3) ¨â¦V¶q¦³ 3 ¹ï¤¸¯À¬Û¦P¡C

¤U­±ªº©w²z§â»\ªºÆ[©À»P¥Y¨ç¼ÆªºÃö«Y°µ¤F¤@­Ó¤Þ½u¡C

©w²z4
¥OX=(x1,x2,¡K,xn),Y=(y1,y2,¡K,yn)¬°¨â¹ê¼Æ¦C¡A¥BX»PY¥u¦³¨â­Ó¤¸¯À¤£¬Û¦P¡A³]¨ä¦ì¸m¦bi¤Îj¤W(§Yxk=yk°£«Dk=i¤Îk=j)¡A«h¤U¦C±ø¥ó(i)»P(ii)¤¬¬°¥R­n±ø¥ó¡C

(i)Y<X
(ii)¦³¤@­Ó¹ê¼Æ£\;$0<\alpha <1$ ¥B $y_i=\alpha x_i+(1-\alpha)x_j$, $y_j=(1-\alpha )x_i+\alpha x_j$

ÃÒ:
¦]i»Pj¥i¬°¥ô¦ó¦ì¸m¡C¦]¦¹§Ú­Ì¤£§«°²³]

\begin{displaymath}
x_1\geq x_2\geq\cdots\geq x_i\geq\cdots\geq x_j\geq\cdots\geq x_n
\end{displaymath}

§Ú­Ì¥ý¥Ñ(i)±À¾É¥X(ii)¡C¦]°£¤F¦b i,j ¦ì¸m¤Wªº¤¸¯À¬Ò¬Û¦P¡A¤S Y<X¡A «h¥²¶·¦³

\begin{displaymath}\begin{array}{rcl}
x_i&>&y_i\\
x_i+y_j&=&y_i+y_j\\
\end{array}\end{displaymath}

¥ç§Y $x_i>y_i\geq y_j>x_j$¡C­Y¥O

\begin{displaymath}\alpha=\frac{y_i-x_j}{x_i-x_j}\end{displaymath}

«h $0<\alpha <1$ ¨Ã«Ü®e©ö¥Ñ¥N¤J £\ ¤§­È¦ÓÃÒ±o(ii)¡C

²{­Y(ii)¦¨¥ß¡C«h¥Ñ©ó¦bi¤§«eªºx,y¬Ò¬Ûµ¥¡A¬G¹ïk<i¦Ó¨¥

\begin{displaymath}x_1+x_2+\cdots +x_k=y_1+y_2+\cdots +y_k\end{displaymath}

¤S¦b k=i ®É

\begin{displaymath}\begin{array}{rcl}
&&y_1+y_2+\cdots\cdots +y_i\\
&=&x_1+x_2+...
...+\alpha x_i+(1-\alpha)x_i\\
&=&x_1+x_2+\cdots +x_i
\end{array}\end{displaymath}

³oºØ¤£µ¥ªº±¡§Î¤@ª½¨ì $k\geq j$ ®É¤S«ì´_¤Fµ¥¦¡¡]¦]¬° yi+yj=xi+xj¡^¡A¬G¥»©w²z±oÃÒ¡C

©w²z5
³]¹ê¼Æ¦C $X=(x_1,x_2,\cdots ,x_n)$¡A $Y=(y_1,y_2,\cdots ,y_n)$¤¤¡AX »P Y ¤£¥þ¬Û¦P¨Ã¥B Y<X¡A «h§Ú­Ì¥i§ä¨ì¤@­Ó¼Æ¦C Z=(z1,z2,¡K,zn) ¨ã³Æ¤U¦C¤T­Ó©Ê½è:

(1) Y<Z<X(§YY<Z,Z<X)
(2) Z»PY¤ñX»PY¦Ü¤Ö¦h¤@­Ó¬Û¦Pªº¤¸¯À
(3) Z»PX¦Ü¦h¥u¦³¨â­Ó¤¸¯À¤£¦P¡C

ÃÒ:
¦]¥»©w²zªºÃÒ©ú»P X,Y ¤§¤¸¯Àªº±Æ¦CµLÃö¡A¤£§«°²©w X,Y ¤w¦¨º¥´î±Æ¦C¡A §Y

\begin{eqnarray*}
&X:&x_1\geq x_2\geq x_3\geq\cdots\cdots \geq x_n\\
&Y:&y_1\geq y_2\geq y_3\geq\cdots\cdots \geq y_n
\end{eqnarray*}


¦] Y<X¡A¬G $\sum_{i=1}^n x_i=\sum_{i=1}^n y_i$¡A¤S¦] xi »P yi ¤£¥þ¬Û¦P¡A ¥²¦³¤@­Ó k ¨Ï±o xk>yk ¤Î¤@­Ó l ¨Ï±o xl<yl¡A¨ú i ¬°³Ì¤jªº k ¦³ xk>yk ªº©Ê½èªÌ¡A j ¬°³Ì¤pªº l>i ¨Ãº¡¨¬ xl<yl ªÌ¡A«h X,Y¡A»P i,j ªºÃö«Y¦p¤U¡G

\begin{eqnarray*}
X:&&x_1\geq x_2\geq x_3\geq\cdots\geq x_{i-1}\geq x_i\\
&&\ge...
...}\selectfont \char 16}}}\geq y_j\geq y_{j+1}\geq\cdots\cdots y_n
\end{eqnarray*}


§Y·í k=i+1,i+2,¡K,j-1 ®É yk=xk(§_«h i ¥i¦V¥k²¾©Î j ¦V¥ª²¾»P©Ò¨úªº i ¤Î j ©Ê½è¤£²Å)¡A ¤S xt>yt, $\forall t\leq¡@i$¤Îys>xs, $\forall s\geq¡@j$¡C¥O

\begin{displaymath}\delta=\min(x_i-y_i,y_j-x_j)\end{displaymath}


\begin{displaymath}\alpha=\frac{\delta}{x_i-x_j}\end{displaymath}

¥Ñ©ó $x_i>y_i\geq y_j>x_j$¡A¥iª¾ $\alpha >0$¡A¦ý $\alpha
<1$¡C ¥O zk »P xk °£ k=i,j ®É¬Ò¬Û¦P¡A¤S $z_i=x_i-\delta$, $z_j=x_j+\delta$¡C¥Ñ £\ ¤§©w¸q¡A¥i±o

\begin{displaymath}\begin{array}{lcl}
z_i&=&x_i-\delta =x_i-\alpha (x_i-x_j)\\
...
...x_j\\
z_j&=&x_j+\delta=\alpha x_i+(1-\alpha)x_j\\
\end{array}\end{displaymath}

¥Ñ©w²z3±oª¾ Z<X¡A¦] Z »P X °£¤F i,j ¦ì¸m¤Wªº¤¸¯À¥~¡A¬Ò¬Û¦P¡A¬G«Ü®e©ö¨D¥X

\begin{displaymath}
\sum_{t=l}^kz_t\geq \sum_{t=l}^ky_t \qquad t=1,2,\cdots,n-1
\end{displaymath}

¤Î

\begin{displaymath}\sum_{t=l}^nz_t= \sum_{t=l}^ny_t\end{displaymath}

¬G Y<Z¡A§Y(1)±oÃÒ¡C®Ú¾Ú £_ ¤§©w¸q¡A­Y $\delta =x_i-y_i$«hzi=yi¡A­Y $\delta =y_j-x_j$ «hzj=yj¡A¬G(2)¦¨¥ß¡C¦]X»PZ°£i¡Aj ¦ì¸m¥~§¡¬Û¦P¡A(3)¥ç¦]¦¹ÃÒ±o¡C

¨t²z:
¨Ì¤W­±©w²z¡A§Ú­Ì¥i¥H§ä¨ì z1,z2,¡K,$z_s(s\leq n)$ ­Ó¼Æ¦C¡A¨Ï±o

(1) $Y=z_0<z_1<z_2<\cdots <z_s<z_{s+1}=X$

(2)©Ò¦³zi»Pzi+1¤§¶¡( $i=0,1,2,\cdots\cdots,s$)¦Ü¦h¦³¨â­Ó¤£¦Pªº¤¸¯À¡C

ÃÒ:
¦] X »P Y ¦Ü¦h¦³ªº n ­Ó¤£¦Pªº¤¸¯À¡A¥Ñ¤W©w²z(2)¤¤ª¾ $s\leq n$¡C

²{¦b§Ú­Ì¥i¥H±Ô­z¤ÎÃÒ©ú¥»½g³Ì¥D­nªºµ²ªG¤F¡C

©w²z6(¿½º¸©w²zSchur's Theorem)
³] f(x) ¬°°Ï¶¡ [a,b] ¤Wªº¤@¥Y¨ç¼Æ¡A¤S X=(x1,x2,¡K,xn), Y=(y1,y2,¡K,yn) ¬°¨â¼Æ¦C¡A ¨ä¤¸¯À¬Ò¦b [a,b] ¤¤¡A­Y Y<X «h

\begin{displaymath}\sum_{k=1}^n f(y_n)\leq \sum_{k=1}^n f(x_n)\eqno{(9)}\end{displaymath}

ÃÒ:
¥Ñ©w²z5ªº¨t²z¡A§Ú­Ì¥u»ÝÃÒ©ú Y »P X ¥u¦³¨â­Ó¤¸¯À¤£¬Û¦Pªº±¡§Î´N¦æ¤F¡C¡]§_«h§Ú­Ì¥i¥Ñ z1,z2,¡K,zs ¤@ª½±À¤U¥h¡^ ¥O xi,xj »P yi,yj ¦U¤£¬Û¦P¦Ó¨ä¾lªº x,y ¬Ò¬Û¦P¡A«h(9)Åܦ¨¤F

\begin{displaymath}f(y_i)+f(y_j)\leq f(x_i)+f(x_j)\eqno(10)\end{displaymath}

¦] Y<X¡A¬G¥Ñ©w²z4ª¾¡A§Ú­ÌÁ`¥i§ä¨ì¤@­Ó £\, $0<\alpha <1$¥B

\begin{displaymath}y_i=\alpha x_i+(1-\alpha )x_j\end{displaymath}


\begin{displaymath}y_j=(1-\alpha )x_i+\alpha x_j\end{displaymath}

¥Ñ f ªº¥Y©Ê½è¡A§Ú­Ì¦³

\begin{displaymath}\begin{array}{rcl}
f(y_i)+f(y_j)&=&f(\alpha x_i+(1-\alpha )x_...
...\alpha )f(x_i)+\alpha f(x_j)\\
&=&f(x_i)+f(x_j)\\
\end{array}\end{displaymath}

¬G(10)¦¡¦¨¥ß¡C©w²z6¦]¦¹±oÃÒ¡C

²{¦b§Ú­Ì¬Ý¬Ý©w²z6ªº¤@¨Ç¥Î³~¡C

¨Ò1¡G
¥O $g(x)=-\log x$, $0<x<\infty$ ¬°¤@¥Y¨ç¼Æ¡A¤S¥Ñ¨Æ¹ê

\begin{displaymath}
\begin{eqalign}
& (\overline{x},\overline{x},\cdots,\overlin...
...\overline{x}=\frac{x_1+x_2+\cdots +x_n}{n},x_i>0)
\end{eqalign}\end{displaymath}

¬G¥Ñ©w²z6¥i±o

\begin{displaymath}\sum_{i=1}^n(-\log\overline{x})\leq\sum_{i=1}^n(-\log x_i)\end{displaymath}

§Y

\begin{displaymath}\overline{x}\geq (x_1x_2\cdots x_n)^{\frac{1}{n}}\end{displaymath}

³o´N¬Oºâ³N¥­§¡¤j©ó´X¦ó¥­§¡ªºÃÒ©ú¡C

¨Ò2¡G
x1,x2,¡K,xn ¬° n ­Ó¥¿¼Æ¡A $\overline{x}=\frac{x_1+x_2+\cdots+x_n}{n}$¡A«h¦] $f(x)=\frac{1}{x}$¬°$(0,\infty)$¤Wªº¤@¥Y¨ç¼Æ¡A¬G¥Ñ $(\overline{x},\overline{x},\cdots,\overline{x})< (x_1,x_2,\cdots,x_n)$¤Î©w²z6¥i±o

\begin{displaymath}\sum_{i=1}^n\frac{1}{\overline{x}}\leq \sum_{i=1}^n\frac{1}{x_i}\end{displaymath}

§Y

\begin{displaymath}\sum \frac{1}{x_i}\geq\frac{n}{\overline{x}}=\frac{n^2}{x_1+x_2+\cdots\cdots +x_n}\end{displaymath}

¨Ò3¡G
³] x1,x2,¡K,xn ¬°º¡¨¬ 0<xi<1; $i=1,2,\cdots,n$ ¤§ n ­Ó¼Æ¡A¥B $\sum_{i=1}^nx_i=1$¡A«h $\sum_{i=1}^n\frac{x_i}{1-x_i}\geq\frac{n}{n-1}$
ÃÒ:
§Ú­Ì¥ýÃÒ $f(x)=\frac{x}{1-x}$ ¦b (0,1) ¶¡¬°¥Y¨ç¼Æ¡A§Ú­Ì¥u»ÝÅçÃÒ $\forall x_1,x_2 \in (0,1)$

\begin{displaymath}f(\frac{x_1+x_2}{2})\leq \frac{1}{2}f(x_1)+\frac{1}{2}f(x_2)\end{displaymath}

¦¹¬Ûµ¥©ó

\begin{displaymath}\frac{\frac{x_1+x_2}{2}}{1-\frac{(x_1+x_2)}{2}}\leq\frac{1}{2}(\frac{x_1}{1-x_1}+\frac{x_2}{1-x_2})\end{displaymath}

¤Æ²±o

\begin{displaymath}(x_1+x_2)^2-4x_1x_2\geq 0\end{displaymath}

¦¹¦¡ùÚ¦¨¥ß¡A¬G f ¬°¤@¥Y¨ç¼Æ¡C

¤S¦] $\frac{1}{n}=\overline{x}$ ¤Î $(\frac{1}{n},\frac{1}{n},\cdots,\frac{1}{n}) < (x_1,x_2<\cdots,x_n)$ ¥Ñ©w²z6¥i±o

\begin{displaymath}n\frac{\frac{1}{n}}{1-\frac{1}{n}}\leq\sum_{i=1}^n\frac{x_i}{1-x_i}\end{displaymath}

§Y

\begin{displaymath}
\sum_{i=1}^n\frac{x_i}{1-x_i}\geq\frac{n}{n-1}
\end{displaymath}

¨Ò4¡G
³] xi, $i=1,2,\cdots,n$ ¬° n ­Ó¹ê¼Æ¡Aa ¬°¤@©w¼Æ¡C¥O $\overline{x}=\frac{\sum_{i=1}^nx_i}{n}$ ¸ÕÃÒ

\begin{displaymath}\sum_{i=1}^n\vert x_i-a\vert\geq n\vert\overline{x}-1\vert\end{displaymath}

ÃÒ:
ÅãµM¥Ñ¹Ï§Î¥iª¾f(x)=|x-a|¬°¤@¥Y¨ç¼Æ¤Î $(\overline{x},\overline{x},\cdots,\overline{x})< (x_1,x_2,\cdots,x_n)$ ¡A¨Ì¾Ú©w²z6­ì¦¡¥ß§Y±oÃÒ¡C

¨Ò5¡G
¦] $-\sin x$ ¦b°Ï¶¡ (0,£k) ¤§¶¡¬°¥Y¨ç¼Æ¡A¤S¦b¤@¤T¨¤§Î¤¤¡A­Y¥H A,B,C ªí¤T³»¨¤¡A«h«Ü®e©ö±oª¾

\begin{displaymath}(\frac{3}{\pi},\frac{3}{\pi},\frac{3}{\pi})<(A,B,C)<(\pi,0,0)\end{displaymath}

¬G¥Ñ©w²z6¥i±o

\begin{displaymath}-3\sin \frac{\pi}{3}\leq -(\sin A+\sin B+\sin C)\leq 0\end{displaymath}

§Y

\begin{displaymath}0\leq \sin A+\sin B+\sin C \leq 3\frac{\sqrt{3}}{2} \end{displaymath}

¦P²z¥iÃÒ±o

\begin{displaymath}1\leq \sin \frac{A}{2}+\sin \frac{B}{2}+\sin \frac{C}{2} \leq 3\sin\frac{\pi}{6}=\frac{3}{2}\end{displaymath}

¨Ò6¡G
¥O $f(x)=-\log \sin x$, $0<x<\pi$ «h f(x) ¬°¥Y¨ç¼Æªºµ²½×¥i¥Ñ

\begin{displaymath}\sin x_1\sin x_2\leq \sin^2\frac{x_1+x_2}{2},\quad x_1,x_2\in(0,\pi)\end{displaymath}

§Y¨Æ¹ê

\begin{displaymath}
\cos (x_1-x_2)\leq 1 \mbox{ {\fontfamily{cwM0}\fontseries{m}...
...\char 41}{\fontfamily{cwM0}\fontseries{m}\selectfont \char 1}}
\end{displaymath}

¤S¥Ñ©ó $(\frac{\pi}{3},\frac{\pi}{3},\frac{\pi}{3})<(A,B,C)$¨Ì©w²z6¥i±o

\begin{displaymath}-\log (\sin\frac{\pi}{3})^3\leq-(\log\sin A+\log\sin B+\log\sin C)\end{displaymath}

§Y

\begin{displaymath}\sin A\sin B\sin C\leq\frac{3\sqrt{3}}{8}\end{displaymath}

¿½º¸©w²zªºÀ³¥Î¥i¥H±À¼s¨ì«Ü¦h¶W¥X¥»½gµ{«×ªº¤£µ¥¦¡¡A¦³³\¦h¬O¦b²Î­p¡B¯x°}µ¥¤è­±ªºÀ³¥Î¡C§Ú­Ì¤£¦b¦¹¦h§@¤¶²Ð¡C§Æ±æŪªÌ¯à±q¥»½g±o¨ì¶}±Ò»\²z½×Ä_®wªºÆ_°Í¡A¶i¦Ó¯à¹ï¤£µ¥¦¡²z½×§@§ó²`¤JªºÂsÄý¤Î°^Äm¡C

1. G.H. Hardy, J.E. Littlewood, and G. Polya,¡mInequalities¡n, Cambridge University Press,1934.
2. A. Marshall and I. Olkin,¡mInequalities: Theory of Majorization and its Applications¡n, Academic Press, 1979.

   

¤W­¶¡@1¢x2¢x3¡@¤w¦b³Ì«á¤@­¶

¦^­¶­º
 
¡]­Y¦³«ü¥¿¡BºÃ°Ý¡K¡K¡A¥i¥H¦b¦¹ ¯d¨¥ ©Î ¼g«H µ¹§Ú­Ì¡C¡^
EpisteMath

EpisteMath (c) 2000 ¤¤¥¡¬ã¨s°|¼Æ¾Ç©Ò¡B¥x¤j¼Æ¾Ç¨t
¦Uºô­¶¤å³¹¤º®e¤§µÛ§@Åv¬°­ìµÛ§@¤H©Ò¦³


½s¿è¡G¾H´f¤å ³Ì«á­×§ï¤é´Á¡G5/26/2002