¤W­¶¡@1¢x2¢x3¢x4¢x5¢x6¡@¦¸­¶

©à¤Î¨ä¦UºØÅܧιCÀ¸ ¡]²Ä 5 ­¶¡^

±iÂíµØ

 

­º­¶ | ·j´M

¡D­ì¸ü©ó¼Æ¾Ç¶Ç¼½²Ä¤T¨÷²Ä¤G´Á
¡D§@ªÌ·í®É´NŪ©ó¬ü°ê±d¤Dº¸¤j¾Ç

¡EµùÄÀ
¡E¹ï¥~·j´MÃöÁä¦r
 
(¤­)³æ°ï¹CÀ¸

¦b©Ò¦³©àªºÅÜ«¬¹CÀ¸¤¤¡A³æ°ï¹CÀ¸¦ü¥G¬O¤ñ¸û²³æªº¡C³Ì±`¨£¦Ó¬°¤j²³¼ô±xªºª±ªk¬O³o¼Ëªº¡G¡u¨â¤H½ü¬y¨ú¤@°ï¥ÛÀY¡A¨C¤H¨C¦¸³Ì¤Ö¨ú 1 ­Ó¡A³Ì¦h¨ú k ­Ó¡A³Ì«á¨ú¥ú¥ÛÀYªº¤Hűo¦¹¹CÀ¸¡C¡v½Ð°Ý¦³¦ó­P³Ó¤§¹D¡H

©M«e­±¤@¼Ë¡A©Ò¦³ªº±¡ªp¡A¥i¥H¤À¬°¦w¥þ©M¤£¦w¥þ¨âºØ¡C¦b³oùØ k+1 ³o­Ó¼Æ§êºtµÛ·¥­«­nªº¨¤¦â¡A¦]¬°¨C¦¸¬Y¤@¤H®³ªº¥ÛÀY¼Æ i¡A¦X©ó $1\leq i<k+1$¡A¥i¨£ $1\leq k+1-i\leq k$¡A¥t¤@¤HÁ`¬O¥i¥H¨ú k+1-i ­Ó¥ÛÀY¡A¨Ï³o¨â¦¸©Ò¨úªº¥ÛÀY¦@¦³ k+1 ­Ó¡A¥Ñ¬O¥i¨£ k+1 ¬O¦w¥þ´Ý§½¡A§Q¥ÎÂk¯Çªk«h k+1 ªº­¿¼Æ¥²¬°¦w¥þ´Ý§½¡C ¤Ï¤§¡A¤£¬O k+1 ­¿¼Æªº¥ô¤@¦ÛµM¼Æ n=q(k+1)+r¡A¨ä¤¤ $1\leq r\leq k$¡A¤@¦¸®³ r ­Ó¥ÛÀY´N¯à¨ì¹F q(k+1)¡A§Y¬Y¤@¦w¥þ´Ý§½¡A¥i¨£¦¹®É¬°¤£¦w¥þ´Ý§½¡C

¬Û¤Ïªº³W©w¡G¡u³Ì«á¨ú¥ú¥ÛÀYªº¤H¿é¡v¡A¤]¥i¥H¤ÀªRª¾¹D¡A¦w¥þ´Ý§½¬O q(k+1)+1 ³oºØ«¬ºAªº¼Æ¡C

¨Ã¤£¬O©Ò¦³³æ°ï¹CÀ¸³£¬O¦p¦¹®e©öªº¡A¨Ò¦p¡u©_°¸¹CÀ¸¡v«h¬O¸û½ÆÂøªº¤@ºØ¡C©Ò¿×¡u©_°¸¹CÀ¸¡v¥u¬O±N¤W­zªº°ÝÃD²¤¥[­×§ï¡A³Ì«á¨ú¥ú¥ÛÀY®Éªº¿éĹªº³W©w¤£¦P¡A§Y¡u¨â¤H½ü¬y¨ú¤@°ï¥ÛÀY¡A¨C¤H¨C¦¸³Ì¤Ö¨ú 1 ­Ó¡A³Ì¦h¨ú k ­Ó¡A¨ì³Ì«á¥ÛÀY³Q¨ú¥ú®É¡A­Y¤â¤¤©Ò¦³¥ÛÀYÁ`¼Æ¬°©_¼Æ¡A«h¦¹¤Hűo¦¹¹CÀ¸¡C¡]¤]¥i¥H³W©w¥ÛÀYÁ`¼Æ¬°°¸¼Æªº¤Hűo¦¹¹CÀ¸¡^¡C¡vÅã¦Ó©ö¨£ªº¬O¡A­ì¥ý³o°ï¥ÛÀYªºÁ`¼Æ­n¬O©_¼Æ¤~¦³·N¸q¡C ³o­Ó¹CÀ¸¸û«eªÌ§ó½ÆÂø¡A¨ä¦w¥þ´Ý§½µøkªº©_°¸©M k+1 ©Î k+2 ªº­¿¼Æ¦³Ãö«Y¡C

¥t¤@­Ó©M»ë¤l¦³Ãöªº³æ°ï¹CÀ¸¥Ñ¥j¥ý¥Í 1 ´£¥X¨Ó¡A°ÝÃD¬O³o¼Ëªº¡G¡u¦³¤@°ï¥ÛÀY¡A¼Æ¥Ø¤£©ë¡C­º¥ý¥ô·NÂY¤@»ë¤l¡A¬Ý¥X²{´XÂI¡A´N¨ú¥h´X­Ó¥ÛÀY¡CµM«á¨â¤H½ü¬y½Âà»ë¤l¨ì«e¦¸»ë¤l¥X²{¨º¤@­±ªº®ÇÃä¥|­±¤¤¥ô¤@­±¡A¦ý¤£¥i¥H½¨ì¹ï­±¡A¤]¤£¥i¥H¤£Â½¡A½¨ì´XÂI¡A´N¨ú¥h´X­Ó¥ÛÀY¡A¦p¦¹½ü¬yª±¨ì¤@¤è¨S¦³¿ìªk®³¥ÛÀY¡A¤]´N¬O»¡¡A³Ñ¤Uªº¥ÛÀY¼Æ¤ñ¥L½¨ìªº¼Æ¥ØÁÙ¤pªº®É­Ô¡A«h¥L´Nºâ¿é¤F¡C¡v

­º¥ý­AÁA¸Ñªº¤@ÂI¬O¡A»ë¤l¤W­±¤»­Ó¼Æ¥Ø¦w±Æªº¤èªk¡C±q1¨ì6ªº¦U­Ó¦ÛµM¼Æ¦b»ë¤l¤W¦U¥X²{¤@¦¸¡A 1ªº¹ï­±¬O6¡A2ªº¹ï­±¬O5¡A3ªº¹ï­±¬O4¡C

³o­Ó¹CÀ¸©M²Ä¤@­Ó³æ°ï¹CÀ¸¦³ÂIÃþ¦ü¡A«o¤£¬Û¦P¡C¦pªG»ë¤l¥X²{iªº®É­Ô¡A½ü¨ì§A¡A«h±q1¨ì6¤¤ªº¦U¼Æ¦³¨â­Ó¡A §Y¬Oi©M7-i¡A§A¤£¯à½¨ì¡A¨ä¾l¥|­ÓÀH§A°ª¿³·R½¨º¤@­Ó³£¥i¥H¡C©Ò¥H¨C¦¸§A¯à°÷¨úªº¥ÛÀY¼Æ¡A¨Ì«e¦¸¹ï¤è©Ò½¨ìªº¼Æ¥Ø¦Ó©w¡A¦Ó¹ï¤è½ªº¼Æ¤S¦]§A«e¦¸Â½ªº¦Ó©w¡A¦p¦¹¬Û¤¬¼vÅT¡A´NÅã±o«Ü½ÆÂø¤F¡C ¥J²Ó¤ÀªRªºµ²ªG¡A¥i¥Hµo²{¨ä¦w¥þ´Ý§½©M8ªº­¿¼Æ¦³±K¤ÁÃö«Y¡C¦³¿³½ìªºÅªªÌ¥i¥H¦Û¤w¸Õ¸Õ¬Ý¡C

¦pªG§â»ë¤l¥[¦¨¨â­Ó¡AµM«á³W©w¨C¦¸Â½¨â­Ó»ë¤l¡A§â½¨ìªº¨â­Ó¼Æ¦r©Mºâ¥X¨Ó¡A¨ú±¼¦P¼Ë¼Æ¥Øªº¥ÛÀY¡A «h¤S¦p¦ó©O¡H¦pªGÁÙ¬O¦³¨â­Ó»ë¤l¡A¦ý¨C¦¸¥u¥ô¿ï¨ä¤¤¤@­Ó±N¥¦Â½¨ì·s¼Æ¥Ø¡A¬Ý³o¼Æ¥Ø¬O¦h¤Ö¡A´N¨ú±¼¦h¤Ö¥ÛÀY¡A«h¤S¦p¦ó¡H ©ÎªÌ¡AÁÙ¬O¨â­Ó»ë¤l¡A¨C¦¸¥u¥ô·N½Âà¨ä¤¤¤@­Ó¨ì·s¼Æ¥Ø¡A¦ý§â³o­Ó·s¼Æ¥Ø©M¥t¤@­Ó¥¼Â½ªº»ë¤l¬Û¥[¡Aºâ¥X¨ä©M¡A¨ú±¼¦P¼Ë¼Æ¥Øªº¥ÛÀY¡A«h¤S¦p¦ó¡H ·íµM¡A¼W¥[»ë¤lªº¼Æ¥Ø¡A«h¹CÀ¸§ó½ÆÂø¡C

³Ì«á§Ú­Ì·Q¥J²Ó°Q½×ªº¤@­Ó³æ°ï¹CÀ¸¥s°µ¡uÂù­¿¹CÀ¸¡v¡C³o­Ó¹CÀ¸©M»ë¤lªº³æ°ï¹CÀ¸¦³¤@¦@¦Pªº¯S©Ê¡G¨C¦¸©Ò®³¥ÛÀYªº­Ó¼Æ¨ü¤W¦¸¹ï¤è©Ò®³¥ÛÀYªº­Ó¼Æ¼vÅT¡C

°ÝÃD¬O³o¼Ëªº¡G¡u¨â¤H½ü¬y¨ú¥Û¡A¨C¤H¨C¦¸¦Ü¤Ö¨ú 1 ­Ó¥ÛÀY¡A¦Ü¦h¨ú¤W¦¸¹ï¤è©Ò®³¥ÛÀY¼Æ¥Øªº¨â­¿¡F³Ì«á®³¥ú¥ÛÀYªº¤Hűo¦¹¹CÀ¸¡C·íµM¡A²Ä¤@­Ó¤H¤£¯à²Ä¤@¦¸´N¨ú¥ú©Ò¦³¥ÛÀY¡C¡v

[¨Ò8] 2 ¬O¦w¥þ´Ý§½¡A¦]¹ï¤è¥u¯à¨ú 1¡C

[¨Ò9] 3 ¬O¦w¥þ´Ý§½¡C¦]

\begin{displaymath}
3\stackrel{\mbox{\hskip 1.2pt plus0.4pt minus0.2pt{\fontfami...
...har 166}\hskip 1.2pt plus0.4pt minus0.2pt1}}{\longrightarrow}0
\end{displaymath}

[¨Ò10] 5 ¬O¦w¥þ´Ý§½¡C¦]

\begin{displaymath}
\begin{array}{cc}
5\stackrel{\mbox{\hskip 1.2pt plus0.4pt mi...
...ntfamily{cwM1}\fontseries{m}\selectfont \char 1})}&
\end{array}\end{displaymath}

¦p¦¹Ä~Äò±Àºt¤U¥h¡A¤@­Ó«Ü¦³·N«äªºµ²½×¬O¡A©Ò¦³¶O¤ó¯Å¼Æªº¶µ fn §¡¬O¦w¥þ´Ý§½¨ä¾l³£¬O¤£¦w¥þ´Ý§½¡C­nÃÒ©ú³o¥ó¨Æ±¡¥i¥H¤À´X¨B§¹¦¨¡A¥D­nªº·§©ÀÁÙ¬O¦b©ó¦ÛµM¼Æªº¶O¤ó¼Æ¦C¼Ð·Çªí¥Üªk¡C

(i) ¦pªG $n\geq 1$¡A«h fn<fn+1<2fn¡C
[ÃÒ©ú]¦]¬° f1=2¡Af2=3¡Af3=5¡A©Ò¥H n=1,2, ®É©öª¾¬°¹ï¡C

­Y n<k ®É©w²z¦¨¥ß¡A«h

\begin{displaymath}
\begin{array}{l}
f_{k-2}<f_{k-1}<2\cdot f_{k-2}\\
f_{k-1}<f_k<2\cdot f_{k-1}
\end{array}\end{displaymath}

¨â¦¡¬Û¥[

\begin{displaymath}
f_k<f_{k+1}<2\cdot f_k
\end{displaymath}

¥ÑÂk¯Çªk±oÃÒ¡C

(ii) ¦pªG§A¯d¤U x=fk1+fk2+ ¡K +fkn-1+fkn ­Ó¥ÛÀY¡A¨ä¤¤ $k_i\geq 2+k_{i+1}$, i=1,2,¡K,n-1¡A¦Ó¥B¹ï¤è¤U¦¸©Ò¯à¨ú¨«ªº¥ÛÀY¼Æ¥Ø¤p©ó fkn «h§A¯d¤Uªº¬O¤@¦w¥þ´Ý§½¡C

[ÃÒ©ú] °²³]¹ï¤è®³¨« $y=f_{k_{n+1}}+f_{k_{n+2}}+\cdots+f_{k_{n+m}}$ ­Ó¥ÛÀY¡A¨ä¤¤ $k_n\geq 1+k_{n+1}$, $k_{n+i}\geq 2+k_{n+i+1}$, i=1,2,¡K,m-1¡C

·í $k_n\leq 2+k_{n+1}$ ®É¡A $y\geq f_{k_{n+1}}\geq f_{k_{n-2}}$ «h

\begin{displaymath}
y'=f_{k_n}-y\leq f_{k_n}-f_{k_{n-2}}=f_{k_{n-1}}<2f_{k_n-2}\leq 2y
\end{displaymath}

©Ò¥H§A¥i¥H¨ú¨« y' ­Ó¥ÛÀY¡A¨Ï³Ñ¤U x'=fk1+fk2+ ¡K +fkn-1 ­Ó¥ÛÀY¡A¦Ó¥B

\begin{displaymath}
2y'=2(f_{k_n}-y)<2f_{k_n}<f_{k_n}+f_{k_{n+1}}=f_{k_{n+2}}\leq f_{k_{n-1}}
\end{displaymath}

¤]´N¬O¹ï¤è¤U¦¸©Ò¯à¨ú¨«ªº¥ÛÀY¼Æ¥Ø¤p©ó fkn+1 ¦p¦¹¤S¥i¥ÎÂk¯ÇªkÄ~Äò±Àºt¥»©w²z¡C ¨ä¦¸¡A¦pªG kn>2+kn+1 ¤À¸Ñ

\begin{displaymath}
f_{k_n}=f_{k_{n-1}}+f_{k_{n-2}}+f_{k_{n-5}}+\cdots
+ f_{k_n-t-2}+f_{k_n-t}+f_{k_n-t-1}
\end{displaymath}

¨ä¤¤ t ¬° $\geq 3$ ¬°©_¼Æ¡A¦Ó¥B kn-t=kn+1 ©Î 1+kn+1¡C

\begin{displaymath}
y'=f_{k_n-t}+f_{k_n-t-1}-y<f_{k_n-t}\leq f_{1+k_{n+1}}<2f_{k_{n+1}}\leq 2y
\end{displaymath}

©Ò¥H§A¥i¥H¨ú¨« y' ­Ó¥ÛÀY¡A¨Ï³Ñ¤U

\begin{displaymath}
x'=f_{k_1}+f_{k_2}+\cdots+f_{k_{n-1}}+f_{k_{n-1}}+f_{k_{n-3}}
+ \cdots + f_{k_n-t+2}
\end{displaymath}

­Ó¥ÛÀY¡A¦Ó¥B

2y'<2fkn-t<fkn-t+fkn-t+1=fkn-t+2

¤]´N¬O¤U¦¸¹ï¤è©Ò¯à¨ú¨«ªº¥ÛÀY¼Æ¥Ø¤p©ó fkn-t+2¡C¦P²z¥i¥ÎÂk¯Çªk¡C

(iii) Âù­¿¹CÀ¸¤¤ªº¦w¥þ´Ý§½¬O fn, n=1,2,¡K¡C

[ÃÒ©ú] x=fn ®É´N¦p(ii)©Ò­z¡A¹ï¤è©Ò¨úªº¥ÛÀY¤£¶W¹L $\delta_n$¡A©Ò¥H§A¬O¯d¤U¦w¥þ´Ý§½¡C

­Y¤@¶}©l x ¤£¬O fn «¬ºA¡A¤Æ¬°¶O¤ó¼Ð·Ç¦¡¡A

\begin{displaymath}
x = f_{k_1}+f_{k_2}+\cdots,
\mbox{{\fontfamily{cwM0}\fontse...
...eries{m}\selectfont \char 50}}k_i\geq 2+k_{i+1},i=1,\cdots,m-1
\end{displaymath}

¹ï¤è¥i¥H¨ú¥h fkm ³Ñ¤U $x'=f_{k_1}+\cdots+f_{k_{m-1}}$¡F½ü¨ì§A®É¤£±o¨ú¶W¹L $2f_{k_m}<f_{k_{m+2}}\leq f_{k_{m+1}}$¡A ¥Ñ(ii)¥iª¾¥L¯d¤U¤F¥Lªº¦w¥þ´Ý§½¡A©Ò¥H¤@¶}©l¬O§Aªº¤£¦w¥þ´Ý§½¡C

   

¤W­¶¡@1¢x2¢x3¢x4¢x5¢x6¡@¦¸­¶

¦^­¶­º
 
¡]­Y¦³«ü¥¿¡BºÃ°Ý¡K¡K¡A¥i¥H¦b¦¹ ¯d¨¥ ©Î ¼g«H µ¹§Ú­Ì¡C¡^
EpisteMath

EpisteMath (c) 2000 ¤¤¥¡¬ã¨s°|¼Æ¾Ç©Ò¡B¥x¤j¼Æ¾Ç¨t
¦Uºô­¶¤å³¹¤º®e¤§µÛ§@Åv¬°­ìµÛ§@¤H©Ò¦³


½s¿è¡G§õ´ô¤Ñ ³Ì«á­×§ï¤é´Á¡G4/26/2002