­º­¶ | ·j´M

¡D­ì¸ü©ó¬ì¾Ç¤ë¥Z²Ä¤Q¤­¨÷²Ä¥|´Á
¡D§@ªÌ·í®É¥ô±Ð©ó¥x¤j¼Æ¾Ç¨t
 

Â\½u
´X¦ó¤¤ªº®ü­Û

±ä«G¦N

 
 

µe®aµe©b¹£¤¤ªº°¨¨®¡AÁ`¬O§â¨®½ü½ü¶b¤W¤èªº½ü¿çµe¦¨¼Ò½k¤@¤ù¡A¦Ó¤À¶}¥i¨£ªº½ü¿ç­n¦b½ü¶b¤U¤è¤~¥i¯à¥X²{¡C³o¬O¤°»ò¹D²z©O¡H½ü¿ç¬Oµ¥¶¡¹jªº¡A³oºØµøı¤Wªº¦L¶Hªí¥Ü¡G¨®½üÂà°Ê®É¡A¤W¤è½ü½tªº¤ô¥­¤è¦V«e¶i³t«×­n¤ñ¤U¤èªº¨Ó±o§Ö¡C³oºØ²{¶H¥i¥H¥Î¤U­±³o­Ó¸ûÀRºAªº¤èªk¨Ó¸ÑÄÀ¡C

Åý¤@­Ó¶êªuª½½u±q A ÂIºu¤@°é«á¨ì B ÂI¡A«h­ì¥ý¶ê¤Wºò¶K A ³Bªº¨ºÂI·|µe¥X¹Ï¤@¤¤ºÙ¬°Â\½uªº¦±½u¡C



¹Ï¤@

¹Ï¤¤°£ A¡BB ¨âÂI¥~¡A¦bÂ\½u¤Wªº¤T­Ó¶ÂÂI¥¿¬O·í¶êÂà¤F $\frac{1}{4}$¡B$\frac{1}{2}$¡B$\frac{3}{4}$ °é®Éªº¦ì¸m¡C¥Ñ¹Ï¥iª¾¡A·í P ÂI¶K¦a®É¡A¥¦¦b¾î¤è¦Vªº³t«×¬° 0¡AµM«á³vº¥¥[§Ö¡AÂà¨ì $\frac{1}{2}$ °é®É¡A¤]´N¬O·í P ÂI¦b¤W¤è®É¡A³t«×³Ì§Ö¡AµM«á³vº¥´îºC¡Aª½¨ì¸I¦a¶K¦b B ÂI®É¡A³t«×¤S«ì´_¬° 0¡C

¦b¤Q¤C¥@¬ö¥H«e¡A¼Æ¾Ç®a¥¼´¿»{¯u¦Ò¼{¹LÂ\½u³oºØ¦±½u¡C¤Q¤C¥@¬öªº«e¤T¤À¤§¤G¡A¥¿¬O·L¿n¤ÀÁßÆCªº®É­Ô¡A¨D¤Á½u¡B³æ­±¿n¡B¦±½uªø¡B­«¤ßµ¥´X¦ó°ÝÃDªº¤èªk¤j¿³¡A¤S­È¸ÑªR´X¦ó¤èªkªº¤Þ¤J¡A©ó¬OÂ\½u¾A®É¦¨¬°³o¨Ç¤èªkªº¹êÅç«~¡A¦¨¬°¼Æ¾Ç¬É½Í½×³Ì¦hªº¦±½u¤§¤@¡C

1599 ¦~¡AGalileo¡]1564¡ã1642¦~¡^´¿¸g¸Õ¹Ï¥Î¤Ñ¯¯¨Ó¶qÂ\½u»Pª½½u AB¤§¶¡©Ò³ò¦¨¤}§Îªº­±¿n¡C¥L¥Î¦P¼Ëªº§÷®Æ°µ¤FÂ\½u¤}§Î¤Î¶ê½L¡F¥Lµo²{¤@­ÓÂ\½u¤}§Î©M¤T­Ó¶ê½L¦b¤Ñ¯¯¤W¤j¬ù¯à°÷¥­¿Å¡C©Ò¥H¤}§Î­±¿n¤j¬ù¬O¶ê½L¬ù¤T­¿¤j¡CÁöµM³o­Óµª®×¬O¥¿½Tªº¡AGalileo Á`¥H¬°¨âªÌ¤§¤ñÀ³¸Ó¬OµL²z¼Æ¡A¦]¦¹²q´ú¬O £k ­¿¡C¥¿½Tªºµª®×ª½¨ì1634¦~¤~¥Ñªk°ê¼Æ¾Ç®a Roberval¡]1602¡ã1675¦~¡^¥Î²z½×©Êªº­pºâ¨D±o¡C

Roberval ©ó1628¦~¨Ó¨ì¤Ú¾¤¡A¦¨¬° Mersenne¡]1588¡ã1648¦~¡^°Q½×·|ªº¤@­û¡C¨º®É­Ô¨S¦³¾Ç³N©Êªº¥Zª«¡A¤]¨S¦³°ê»Ú¾Ç³N·|ij¡CMersenne «o¤@­Ó¤H¬D°_¤F¬ï°w¤Þ½uªº¤u§@¡C¥L©M¼Ú¬w¥D­nªº¬ì¾Ç®a³£¦³«H¥ó¨Ó©¹¡A§â¤@­Ó¤Hªº·Qªk»P¶i®iÂાµ¹¥t¤@­Ó¤H¡A¤S¤@¬P´Á¨â¦¸Áܽзí¦a¬ì¾Ç®a»E¦b®aùؽͽצ@¦³ªº¿³½ì¡C Roberval ´N¬O¦b³oºØ¶°·|¤¤±q Mersenne ±oª¾¤FÂ\½u³o¼Ëªº¦±½u¡C

1629¦~¡A¸q¤j§Q¼Æ¾Ç®a Cavalieri¡]1598¡ã1647¦~¡^¬°¤Fª§¨ú Bologna ¤j¾Çªº±Ð¾¡A´£¥X¥L¦b¡uµL½a¤p¡v¤è­±ªº¬ã¨s¦¨ªG¡C³o´N¬O·L¿n¤À¤¤ºâ­±¡]Åé¡^¿n¤j¤j¦³¦Wªº¥d¤ó­ì²z¡C³o­Ó­ì²z»¡¡Gµ¥°ª¨â­±¡]©ÎÅé¡^¿n¡A¦pªG¶Z©³½u¡]©Î­±¡^µ¥°ª³BªººI½u¡]©Î­±¡^ªø«×¡]©Î­±¿n¡^¦¨©w¤ñ¡A«h¾ã­Ó­±¡]©ÎÅé¡^¿n¤§¤ñ­nµ¥©ó¸Ó©w¤ñ¡C



¹Ï¤G

1634¦~¡ARoberval ¥Î¥d¤ó­ì²z¯u¥¿ºâ¥X¤FÂ\½u¤}§Îªº­±¿n¡C¥Lªº¤èªk¬O³o¼Ëªº¡G¦p¹Ï¤G¡A³] APD ¬°Â\½uªº¤@¥b¡C¹L P ÂI§@ FG ¥­¦æ©ó AC¡A¥æ¶êª½®|©ó F¡A¥æ¶ê©ó G ¡A¤S¨ú PQ¡C¦±½u AQD ºÙ¬°Â\½uªº¬Û¦ñ¦±½u¡A¥¦¹ê»Ú¬O­Ó¥H AD ¤§¤¤ÂI¬°¤¤¤ßªº¥¿©¶¦±½u¡A¦]¦¹±N¯x§Î ACDE ¥­¤À¦¨¨â¶ô¡C¥t¤@¤è­±¡A¦]¬°¥b¶ê½L AEGA ©MÂ\½u»P¨ä¬Û¦ñ¦±½u¶¡©Ò§¨ªº­±¿n APDQA µ¥°ª¡A¦Ó¥Bµ¥°ª³BªººI½uªø¬Ûµ¥¡A©Ò¥H¥¦­Ì¦³¬Û¦Pªº­±¿n¡C¦]¦¹¡A¦pªG¶ê¥b®|¬° a ¡A«h


\begin{eqnarray*}
\mbox{{\fontfamily{cwM5}\fontseries{m}\selectfont \char 214}\h...
...} \cdot \pi a \cdot 2a + \frac{1}{2} \pi a^2)\\
& = & 3 \pi a^2
\end{eqnarray*}


Roberval ÁöµM¦b1634¦~´Nºâ¥X³o­Óµ²ªG¡A¦ý¦¹µ²ªG«o¿ð¦Ü1693¦~¤è¤~µoªí¡C·í®É Roberval ¦b¬Ó®a¾Ç°|ªº±Ð¾¨C¤T¦~´N­n¥X¯Ê¡A­«·sÅý¤j®aÄvª§¡CRoberval ¬°¤Fª§¨ú¡AÁ`§â¬ã¨s¤èªk¯µ¦Ó¤£«Å¡AÁÙ®³¥X¬ã¨s¹Lªº°ÝÃD¦VÄvª§ªÌ´£¥X¬D¾Ô¡C³oºØ§@­·¾É¦Ü¤é«á±`¬°³Ð§@ªºÀu¥ý©Ê¦Ó»P¤Hª§§n¡A¦Ó©Ò±oªº¬ã¨sµ²ªG¤]¿ð¿ð¥¼¯à¤½½Ñ©ó¥@¡C¨ì¤F1638¦~ Roberval¡BFermat¡]1601¡ã1665¦~¡^¡BDescartes ¡]1596¡ã1650¦~¡^µ¥¤H³£¦¨¥\¦a°µ¥X¤FÂ\½uªº¤Á½u¡A¤j®a¤S¬°¤F½Ö¥ý½Ö«á½Ö§Û½Öªº°ÝÃD¤j§n¤@¬[¡C¥iª`·NªÌ¡A·í®É·L¿n¤À©|¥¼¦¨§Î¡A©Ò¿×¡u°µ¥X¡v¤Á½u¡A«üªº¬O¥Î¶Ç²Îªº¥­­±´X¦ó¤èªk¡C

Descartes ¬O³o¼Ë·Qªº¡G¦p¹Ï¤T¡A­Y¤@¥|Ãä§Î ABCD ¦b¤@ª½½u¤Wºu°Ê¡A«h¤KÂIªº­y¸ñ¬O¥Ñ´X¬q¶ê©·©Ò²Õ¦¨ªº¡A¦Ó¨C¬q¶ê©·¬O¥H B¡BC¡BD »Pª½½uªº±µÄ²ÂI B'¡BC'¡BD' ¬°¶ê¤ß¡ABA¡BCA¡BDA ¬°¥b®|©Òµe¦¨ªº¡C¦pªG¤ÁÂI P ¦b¥H C' ¬°¶ê¤ßªº¶ê©·¤W¡A³s½u PC'¡A§@ PC' ªº««½u´N±o¦±½uªº¤Á½u¡C¥Î¦P¼Ëªº¹D²z¡A§â¶ê·Q¦¨¬OÃä¼ÆµL½aªº¦hÃä§Î¡ADescartes ´N±o¥X¤FÂ\½uªº¤Á½uªº§@ªk¡C¦p¹Ï¥|¡A³] P ¬°Â\½u¤Wªº¤@ÂI¡C¹L P ÂI¡A§@¥­¦æ©ó AC ªºª½½u¡A¥æ¥H CD ¬°ª½®|ªº¶ê©ó E¡C³s EC¡A§@ PF' ¥­¦æ©ó EC¡A¦A§@ PF' ªº««½u´N±o¤Á½u¡C³o´N¬O»¡¡A·í¥kÃ䪺¶ê©¹¦^ºu®É¡A­Y¶ê¤Wªº F ÂI»P F' ÂI§k¦X¡A«h FD »P F'P §¹¥þ§k¦X¡C



¹Ï¤T



¹Ï¥|

»¡§¹¤F¤Á½u¡A§Ú­Ìªº¬G¨Æ¤S­nÂà¨ì¥t¤@¦ìªk°ê¼Æ¾Ç®a Pascal¡]1623¡ã1662¦~¡^¨­¤W¡CPascal ¬O­Ó¦­¼ôªº¼Æ¾Ç®a¡A¤Q¤»·³®É´N±o¨ì´X¦ó¾Ç¤¤µÛ¦Wªº Pascal ©w²z¡AÀH«á¤S¦P Fermat ¦@¦P¶}³Ð¤F¾÷²v³oªù¼Æ¾Ç¡CÁöµM¦b¼Æ¾Ç¤è­±¦³¦p¦¹½÷·×ªº¦¨´N¡APascal ¤£¤[´NÂà¦Ó¬ã¨s¯«¾Ç¡C1658¦~ªº¬Y¤@­Ó±ß¤W¡APascal ±w¤úµh¡AÁÓÂण¯à¦¨¯v¡A©ó¬O­ß·QÂ\½uªº©Ê½è¥H¥´µo®É¶¡¡F·Q¤£¨ì¤ú¾¦©~µM´N¤£µh¤F¡C¥L·Q³o¬O¤W«Òªº·N¦®¡A©ó¬OºÆ¨g¤u§@¤F¤K¤Ñ¡A¥þ¤ß¬ã¨sÂ\½uªº©Ê½è¡C¥Lªº¬ã¨sµ²ªG¥ý¥H°ÝÃD§Î¦¡´£¥X¬D¾Ô»PÄa½à¡AµM«á¤~¤½¶}µoªí¡C¦b¦¹¦P®É¡A¨º¦ì¥H³]­p­Û´°¸t«Où±Ð°ó¥X¦Wªº­^°ê«Ø¿v®v C. Wren¡]1632¡ã1723¦~¡^¤]§¹¦¨¤F­pºâÂ\½uªøªº¤u§@¡Aµª®×¬O¡G±q A ¨ì B¡AÂ\½uªºªø¬° 8a¡C

¨ì¦¹¬°¤î¡AÂ\½uªº´X¦ó©Ê½èª¾¹D±o®t¤£¦h¤F¡CÀH«á¡A¸ÑªR´X¦ó§ó¥[¦¨¼ô¡A·L¿n¤À¤]¥¿¦¡µn³õ¡A³o¨Ç©Ê½èªºÃÒ©ú¤]´NÅܱo»´¦Ó©öÁ|¡C¦b²{¤µªº·L¿n¤À½Òµ{¡A¥¦¦¨¤F¼Ð·Çªº¨ÒÃD¡B¼Ð·Çªº²ßÃD©Î¼Ð·Çªº¦ÒÃD¡A¦Ó¦³¡u¾Ç¥Í¦±½u¡v¤§ºÙ¡C

Â\½u¦b¤O¾Ç¤è­±¤]¦ûµÛ¤@­Ó«D±`­«­nªº¦a¦ì¡CÁöµM Galileo ´N½T¥ß¤FÂ\ªºµ¥®É©Ê¡]¥ç§Y¶g´Á»P®¶´TµLÃö¡^¡A¦ý¨ä¹ê·í®¶´T¤j¤@¨Çªº®É­Ô¡A¶g´Á´N·|¦³¨Ç¥X¤J¡C¬JµMÂ\´`µÛ¶ê©·­y¸ñÂ\°Ê¤£¯àÄY®æ¿í¦æµ¥®É©Ê¡A¨º»òÀ³¸Ó´`µÛ¤°»ò¼Ëªº¦±½u¤~¯à©O¡H1672¦~¡A²üÄõª«²z¾Ç®a C. Huygens¡]1629¡ã1695¦~¡^´£¥X¤F¥Lªºµª®×¡GÂ\½u¡C¦p¹Ï¤­¡A¤@­ÓÂ\ªº¤WºÝ©T©w¦b¦P¼Ë¤j¤pªº¡B­Ë¥ßµÛªº¨â­ÓÂ\½uªº¥æÂI¤W¡C·íÂ\¦b³o¨â­ÓÂ\½u¶¡Â\°Ê®É¡A¥Ñ©óÂ\÷¨ü¨î©óÂ\½u¡AÂ\ªº¹B°Ê­y¸ñ¤£¬O­Ó¶ê©·¡A¦Ó¬O¤@­ÓÂ\½u¡C±q´X¦óªºÆ[ÂI¨Ó»¡¡A·sªºÂ\½u´N¬O­ì¦³Â\½uªº¤@­Óº¥¦ù½u¡C²z½×¤W¡A³o¼Ë³]¸mªºÂ\¨ã¦³µ¥®É©Ê¡C



¹Ï¤­

1696¦~¡AJohann Bernoulli¡]1667¡ã1748¡^¦~´£¥X³Ì³t¤U­°¦±½uªº°ÝÃD¡G³]¦³ A¡BB ¨âÂI¡AB ÂIªº°ª«×¸û A ÂIªº¬°§C¡A¦ý¤£¦b A ÂIªº¥¿¤U¤è¡C°²©w A¡BB ¤§¶¡Áp¦³¤@¦±½u­y¹D¡A¦ÓÅý¤@Áû¼u¯]ªuµÛ­y¹D¥Ñ A ­°¨ì B ÂI¡C¦pªG¤£¦Ò¼{¼¯À¿¤O¡A¨º»ò¤°»ò¼Ëªº¦±½u·|¨Ï±o¤U­°©Ò»Ýªº®É¶¡¬°³Ìµu¡Hµª®×ÁÙ¬OÂ\½u¢w¢w¥H A ¬°°_ÂI¡A³q¹L B ÂI¦Ó­Ë¥ßµÛªºÂ\½u¡C

µ¹¤F A¡BB ¨âÂI¡A§Ú­Ì«ç»ò¥Î´X¦óªº¤è¦¡§@³o¼ËªºÂ\½u©O¡H¦p¹Ï¤»¡A¥ô¨ú¤@¶ê¡AÅý¨ä¤Á©ó A ÂI¡AµM«áÅý¶êºu°Ê¡A³] A ÂIªº­y¸ñ¥æª½½u©ó AB ©ó B'¡C¥t¨ú¤@¶ê¡A¨ä¥b®|»P²Ä¤@­Ó¶êªº¥b®|¤§¤ñ¬° AB:AB'¡C«h¥Ñ·s¶ê©Ò±oªºÂ\½u·|³q¹L B ÂI¡C¦b¹Ï¤»³oºØ±¡§Î¤U¡A¼u¯]±q A ¨ì B ªº³Ì³t¤U­°¦±½u©~µM­n¥ý¤U­°¨ì BÂIªº¤U¤è¡A¦A¤W©Y¨ì¹F B ÂI©O¡I



¹Ï¤»

Bernoulli ªº°ÝÃD¥»¨­¤£¦ýÄǦ³½ì¨ý¡A¦Ó¥B¥Ñ¦¹¤Þ°_¼Æ¾Ç®aÄvª§§ë¤J©Ò¿×ÅܤÀªkªº¬ã¨s¡C³o¬O¨D·¥­Èªº°ÝÃD¡A¦ý¥¦©Mªìµ¥·L¿n¤À©Ò³B²zªº¤£¤@¼Ë¡C¦bªìµ¥·L¿n¤À¤¤¡A§Ú­Ì¨Dªº¬O¤@­Ó¨ç¼Æªº·¥­È¡A´M§äÅܼƤ§­È¨Ï±o¬ÛÀ³ªº¨ç¼Æ­È¬°·¥¤j©Î·¥¤p­È¡C¦Ó Bernoulli ´M§äªº¬O¦UºØ¥i¯à¦±½u¤¤ªº¤@­Ó¦±½u¡A¨Ï±o¬ÛÀ³ªº¼Æ­È¬°·¥¤j©Î·¥¤p­È¡C¦b¼s¸qªº¨ç¼Æ¨Ó»¡¡A¥L©Ò´M§äªº¬O¥H¦±½u¬°Åܼƪº¨ç¼Æªº·¥­È¡C¬ã¨s³oÃþ°ÝÃDªº¤èªk´NºÙ¬°ÅܤÀªk¡A¥¦¤ñ´¶³qªº·¥­È¨Dªk­nÃø±o«Ü¦h¡C

Â\½u´¿¤Þ°_³\¦h¼Æ¾Ç®aªºÄvª§»Pª§§n¡A¥¦¦³«Ü¦nªº´X¦ó©Ê½è¡A¤S¦³µ¥®É©Ê¡B³Ì³t¤U­°¦±½u³o¨Çº}«Gªº¤O¾Ç©Ê½è¡AÃø©Ç¦³¤H§â¥¦¤ñÀÀ¬° Troy ¾Ôª§¤¤ªº®ü­Û¡A¦Ó¨Ï¨ä¾Ö¦³¡u´X¦ó¤¤ªº®ü­Û¡v³o¼Ëªº¶®¸¹¡C

 
¹ï¥~·j´MÃöÁä¦r¡G
¡DÂ\½u
¡DGalileo
¡DMersenne
¡DCavalieri
¡D¥d¤ó­ì²z
¡DRoberval
¡DFermat
¡DDescartes
¡DPascal
¡DHuygens
¡Dº¥¦ù½u
¡DJohann Bernoulli
¡DÅܤÀªk
 
ªþµù

Â\½uªº°Ñ¼Æ¤èµ{¦¡«Ü§Ö¥i¥Ñ¥¦ªº©w¸q¨D±o¡C¦p¹Ï¤C¡A³]°_ÂI A ªº¬°­ìÂI(0,0)¡A¤ô¥­½u¬°¾î¶b¡C³]¶êºu¨ì R ÂI®É¡AA ÂIªº­y¸ñ°±¦b P ³B¡C§Ú­Ì¥i¥H¿ï PR ©·¦b¶ê¤ß C ©Ò±iªº¨¤ t¡]©·«×¡^¬°°Ñ¼Æ¡C



¹Ï¤C

¦pªG§â¶êºu¦^­ìÂI¡A«h PR ©·»P½u¬q AR ­«¦X¡A¥H AR ªº¶ZÂ÷¬° at ¡A ¦Ó C ªº§¤¼Ð¬° (at, a)¡F¥B¦] P ÂI¬Û¹ï©ó C ÂIªº§¤¼Ð¬°

\begin{eqnarray*}
&&[a \cos (\frac{3}{2}\pi -t) \; , \; a \sin(\frac{3}{2}\pi -t)]\\
&=&(-a \sin t \; , \; -a \cos t)
\end{eqnarray*}


¦]¦¹ P ÂI¡]¬Û¹ï©ó­ìÂIªº¡^§¤¼Ð¬°

\begin{displaymath}x=a(t- \sin t) \; , \; y=a(1 - \cos t) \end{displaymath}

¥Ñ¦¹°Ñ¼Æ¤èµ{¦¡¡A¥Î·L¿n¤À«Ü§Ö¥i¨D±oÂ\½u¤}§Î­±¿n¤ÎÂ\½uªø¡C¥Î¸ÑªR´X¦óªº¤èªk¤]¥i¥H½Tª¾ Roberval ¨DÂ\½u¤}§Î­±¿nªº¤èªk¬O¥¿½Tªº¡ADescartes ªº¤Á½u§@ªk¤]¬O¥¿½Tªº¡A¹Ï¤»¤¤Â\½uªº§@ªk¤]¬O¥¿½Tªº¡C¦]¬°Â\½u¸¹ºÙ¡u¾Ç¥Í¦±½u¡v¡A§Ú­Ì´N§â³o¨ÇÃÒ©úªº¹Lµ{¯dµ¹ÅªªÌ°µ¬°²ßÃD§a¡I

   

¦^­¶­º
 
¡]­Y¦³«ü¥¿¡BºÃ°Ý¡K¡K¡A¥i¥H¦b¦¹ ¯d¨¥ ©Î ¼g«H µ¹§Ú­Ì¡C¡^
EpisteMath

EpisteMath (c) 2000 ¤¤¥¡¬ã¨s°|¼Æ¾Ç©Ò¡B¥x¤j¼Æ¾Ç¨t
¦Uºô­¶¤å³¹¤º®e¤§µÛ§@Åv¬°­ìµÛ§@¤H©Ò¦³


½s¿è¡G±d©ú°a ¢A ø¹Ï¡G²¥ßªY ³Ì«á­×§ï¤é´Á¡G2/17/2002