­º­¶ | ·j´M

¡D­ì¸ü©ó¼Æ¾Ç¶Ç¼½²Ä¤G¨÷²Ä¥|´Á
¡D§@ªÌ·í®É¥ô±Ð©ó²MµØ¤j¾Ç¼Æ¾Ç¨t
 

¥Í¦¨¨ç¼Æ»P®t¤À¤èµ{

®L©v¶×

 
 

²Õ¦X¼Æ¾Ç¬O¤@ªù¦³¼sªxÀ³¥Î¥B»á¤Þ¤H¤J³Óªº¼Æ¾Ç¤ÀªK¡C¬ãŪ²Õ¦X¼Æ¾Ç¨Ã¤£»Ý­n¤Ó¦h¼Æ¾Ç­I´º;¦b°ª¤¤¼Æ¾ÇùØ«K¤w¤¶²Ð¤F³\¦h¦³½ì¥B§xÃøªº±Æ¦C²Õ¦X°ÝÃD¡C¦ý¦b¨ºùةҥΪº¤èªk«o¬Oªìµ¥ªº¡F¦³¦p¸Ñºâ³NÃD¡A¨C¤@°ÝÃD¦³¦U¦Û«ä¦Ò¤èªk»P§Þ¥©¡C¦b¥»¤å¤¤§Ú­Ì±N°Q½×¤@Ãþ±Æ¦C²Õ¦X°ÝÃD¡A¥¦­Ì¥i¥H¥Î¦C½u©Ê¦^Âk¤èµ{ (linear recurrence) ªº¤èªk¨Ó¨D¸Ñ¡A¨Ã¥Î¨ÒÃD¨Ó»¡©ú¨âºØ¦^Âk¤èµ{¨D¸Ñªº¨BÆJ¡C§Ú­Ì©Ò§@¶È¬°¤@²Ê²L¤¶²Ð¡A©Ò¿ï¨úªº§÷®Æ¥i¬°Åª¹L·L¿n¤ÀªºÅªªÌ©Ò±µ¨ü¡C¦³¿³½ìªºÅªªÌÀ³¶i¤@¨B°Ñ¾\¥»¤å«á©Ò¦C°Ñ¦Ò¸ê®Æ¡C

§Ú­Ì¥ý¥Î¨ÒÃD¨Ó»¡©ú¦^Âk¤èµ{ªº¼Æ¾Ç·N¸q©M¥¦»P±Æ¦C²Õ¦X°ÝÃD¤§Ãö«Y¡C

[¨Ò1] ³]¦³ n ­Ó¥b®|»¼¼Wªº¶êÀô¨Ì¤j¤p®M¦b¤@¶ê¬W¤W¡A³Ì¤jªºÀô¦b³Ì¤U­±¡C§Ú­Ì­n±N³o¨ÇÀô²¾¸m¦Ü¥t¤@¶ê¬W¤W¡A¥t¦³²Ä¤T­Ó¶ê¬W§@¼È®É©ñ¸m¶êÀô¥Î¡A¦ý²¾¸m®É³W©w¤jÀô¥Ã¤£¥i©ñ¦b¤pÀô¤W­±¡A¨C¦¸²¾°Ê¤@­ÓÀô¡A°Ý³Ì¤Ö­n²¾°Ê´X¦¸¤~¥i±N n ­ÓÀô¥Ñ¤@¶ê¬W²¾¦Ü¥t¤@¶ê¬W¡H³o«K¬OµÛ¦Wªº¡uªe¤º¤§¶ð¡v°ÝÃD (The tower of Hanoi problem)¡CÅ㨣·í n=1 ®É¡A§Ú­Ì¥u»Ý 1¨B¡F·í n=2 ®É¡A§Ú­Ì»Ý­n 3 ¨B¡C¦ý·í n «Ü¤j®É¡A¨Ò¦p¡A n=64¡A°ÝÃDªºµª®×«K¤£ÅãµM¤F¡C³] an (n=1,2,3,¡K) ¬°²¾°Ê n ­ÓÀôªº³Ì¤Ö¦¸¼Æ¡A«h a1=1, a2=3¡C¦pªG n>2¡A§Ú­Ì¥i¥ý¥Î an-1 ¨B±N²Ä¤@¬W¤W­±¤§ n-1 ­ÓÀô²¾¦Ü²Ä¤T¬W¤W¡AµM«á±N³Ì¤jÀô²¾¦Ü²Ä¤G¬W¡A³Ì«á¦A¥Î an-1 ¨B±N²Ä¤T¬W¤W¤§ n-1 ­ÓÀô©ñ¦b²Ä¤G¬W³Ì¤jÀô¤§¤W­±¡C³o¼Ë«K§¹¦¨¥H³Ì¤Ö¨B¼Æ²¾¸m³o n ­ÓÀô¡A¬G±o

an = $\displaystyle 2a_{n-1}+1 \; , \quad (n \geq 2)$ (1)
a1 = 1 (2)

¼Æ¦C $\{ a_n \}_{n=1}^\infty$ ¥i¬Ý¦¨¬O©w¸q¦b¥¿¾ã¼Æ¶°¤Wªº¨ç¼Æ¡C (1)¦¡ªí¥Ü¤F¨â¬Û³s¥¿¾ã¼Æ¶¡¸Ó¨ç¼Æ­È¤§Ãö«Y¡AºÙ¬°¦^Âk¤èµ{¡A¤SºÙ®t¤À¤èµ{ (difference equation)¡C (2)¦¡ºÙ¬°¤èµ{(1)¤§Ãä¬É±ø¥ó (boundary condition)¡C¦p©Òµ¹ n ¤§­È¤£¤j¡A§Ú­Ì¥i¥ÎÃä¬É±ø¥ó (2)¥N¤J (1)¦¡¤§¥kÃä¦Ó³v¨B±o¥X an¤§­È¡C¤èµ{ (1)¤§¸Ñ¬O¤@¥Î n ªí¹F an ªº¤@¯ë§Î¦¡¡C§Ú­Ì¥ý°Q½×À³¥Î¥Í¦¨¨ç¼Æ (generating function) ªº¤èªk¨Dº¡¨¬Ãä¬É±ø¥ó(2)¤§¤èµ{ (1)ªº¸Ñ¡C

§Ú­Ì¥ý´£¥X¥Í¦¨¨ç¼Æªº©w¸q¡C³] $\{ a_n \}_{n=0}^\infty$ $= \{ a_0,a_1,\cdots,a_n,\cdots \}$ ¬O¤@¼Æ¦C¡A«h¨ç¼Æ

\begin{displaymath}
f(x)=\sum_{n=0}^\infty a_nx^n=a_0+a_1x+\cdots +a_nx^n+\cdots
\eqno{(3)}
\end{displaymath}

ºÙ¬°»P¼Æ¦C $\{ a_n \}_{n=0}^\infty$ ¹ïÀ³¤§¥Í¦¨¨ç¼Æ¡C¥Í¦¨¨ç¼Æ¤SºÙ§Î¦¡¾­¯Å¼Æ (formal power series)¡A¬O¬Ý¦¨¤@¥N¼Æ¹ï¶H¡A§Ú­ÌµL»ÝÅU¼{¨ä¦¬ÀÄ©Ê¡C¥Í¦¨¨ç¼Æ¥i¥H¬Û¥[»P¬Û­¼¡A¤]¥i¥H§Î¦¡¦a¨D¨ä¾É¼Æ»P¤Ï¾É¼Æ ³o¨Ç¹Bºâªk«h«ê¦p¾­¯Å¼Æªº¹ïÀ³¹Bºâ¡C³]

\begin{displaymath}g(x)=\sum_{n=0}^\infty b_nx^n=b_0+b_1x+\cdots +b_nx^n+\cdots \end{displaymath}

¬O»P¼Æ¦C $\{ b_n \}_{n=0}^\infty$ ©Ò¹ïÀ³¤§¥Í¦¨¨ç¼Æ¡A«h¥Í¦¨¨ç¼Æªº¬Û¥[»P¬Û­¼¬O©w¸q¬°

\begin{displaymath}
(f+g)(x)=\sum_{n=0}^\infty (a_n+b_n)x^n \; , \;
(fg)(x)=\sum_{n=0}^\infty d_nx^n
\end{displaymath}

¨ä¤¤

\begin{displaymath}
d_n=\sum_{k=0}^{n} a_kb_{n-k}
\end{displaymath}

¥Í¦¨¨ç¼Æ f(x) ¤§¾É¼Æ¬O

\begin{eqnarray*}
f'(x)&=&\sum_{n=0}^\infty (n+1)a_{n+1}x^n\\
&=&a_1+2a_2x+\cdots +(n+1)a_{n+1}x^n+\cdots
\end{eqnarray*}


¥»¤å©Ò¦Ò¼{ªº¥Í¦¨¨ç¼Æ§¡¬°¾ã«Y¼Æ¡C¦pªG¥Ñ(3)µ¹¥X¤§¥Í¦¨¨ç¼Æ f(x) ¬O¾ã«Y¼Æªº¥B­º¶µ«Y¼Æ a0 ¬° 1¡A«h f(x) ÁÙ¥i¥H°£¥t¤@¾ã«Y¼Æªº¥Í¦¨¨ç¼Æ¡A©Ò±o¤§°Ó¤´¬°¤@¾ã«Y¼Æ¥Í¦¨¨ç¼Æ¡C¨â­Ó¥Í¦¨¨ç¼Æ¬Ûµ¥¶È·í¥¦­Ì¹ïÀ³¤§«Y¼Æ§¡¬Ûµ¥¡C§Ú­Ì±N¦b¨ÒÃD¤¤¥Î¹ê»Ú­pºâ¨Ó»¡©ú³o¨Ç¹Bºâ¡A¤£¦A¦b²z½×¤W§@¸Ô²Ó»¡©ú¡A¨ä²z½×°ò¦½Ð°Ñ¾\°Ñ¦Ò¸ê®Æ[3]¡C¦³Ãö¥Í¦¨¨ç¼Æ¦b²Õ¦X¼Æ¾Ç¤¤¤§¨ä¥¦À³¥Î¥i°Ñ¾\[2,4]¡C

¦^¨ì¦^Âk¤èµ{(1)¡AÅ㨣¥i¥O a0=0¦Ó¤´«O«ù¥Ñ¦¡(1)¤Î(2)©Ò«Ø¥ß¤§Ãö«Y¡C±Nº¡¨¬(1)»P (2)¤§¦U¼Æ¥Î¼Æ¦C $\{ a_n \}_{n=0}^\infty$ °O¥X¡A¨Ã³] g(x) ¬°»P¤§¹ïÀ³ªº¥Í¦¨¨ç¼Æ¡A«h§Ú­Ì¦³

\begin{eqnarray*}
g(x) &=& a_0 + a_1x + a_2x^2 + \cdots + a_nx^n + \cdots \\
-2...
...ots \\
-\frac{1}{1-x}
&=& -1 - x - x^2 - \cdots - x^n - \cdots
\end{eqnarray*}


¦p±N¤W­±¤T­Ó¥Í¦¨¨ç¼Æ¬Û¥[¡A«h¥Ñ¦¡(1)¤Î a0 ¤§©w¸q¥iª¾©Ò±o¤§¥Í¦¨¨ç¼Æªº«Y¼Æ¥Ñ²Ä¤G¶µ°_§¡¬°¹s¡Fg(x) ¤U­±ªº¤G¥Í¦¨¨ç¼Æ«K¬O¨Ì¾Ú¦¹¤@­ì«h©Ò©w¥X¡C¬G±o

\begin{displaymath}g(x)-2xg(x)-\frac{1}{1-x} =-1\end{displaymath}

¸Ñ¥X g(x) ¦³

\begin{eqnarray*}
g(x)&=&(\frac{1}{1-x} -1)(\frac{1}{1-2x}) =\frac{x}{(1-x)(1-2x...
... &=&\frac{1}{1-2x} +\frac{-1}{1-x} =\sum_{n=0}^\infty (2^n-1)x^n
\end{eqnarray*}


¦]±oº¡¨¬Ãä¬É±ø¥ó(2)¤§¤èµ{(1)ªº¸Ñ¬°

\begin{displaymath}
a_n=2^n-1 \,\, (n \geq 1)
\end{displaymath}

·í n=64 ®É¡A²¾°Ê 64 ­ÓÀôªº³Ì¤p¨B¼Æ an=264-1 ¬O­Ó«Ü¤j¼Æ¦r¡C

[¨Ò2] ¦b¥­­±¤Wµe n ­Ó¾ò¶ê¡A¨C¨â­Ó¥²«ê¦n¥æ©ó¨âÂI¡A¦ý¨C¤T­Ó¤S¤£¯à¥æ©ó¦P¤@ÂI¡A°Ý³o¨Ç¾ò¶ê±N¥­­±¤À¹j¦¨¦h¤Ö°Ï°ì?

³] an (n=1¡A2¡A¡K)¬° n ­Ó¾ò¶ê±N¥­­±¤À¹j¤§°Ï°ì­Ó¼Æ¡A«hÅ㨣 a1=2, a2=4¡C·í $n \geq 5$ ®É¡A¥ÎÆ[¹îªk¨D an «K¦³§xÃø¤F¡C³]¦b¥­­±¤W¦³ n-1 ­Ó¾ò¶ê¡A±N¥­­±¥÷¬° an-1 ­Ó°Ï°ì¡A¦p¦A¦b¥­­±¤Wµe¤J²Ä n ­Ó¾ò¶ê¡A«h¥¦»P­ì¦³ n-1 ­Ó¾ò¶ê¤¤¨C¤@­Ó§¡«ê¥æ©ó¨âÂI¡C³o 2(n-1) ­Ó¥æÂI±N²Ä n ­Ó¾ò¶ê¤À¦¨ 2(n-1) ­Ó©·¬q¡A¦Ó¨C¤@©·¬q¤S±N©Ò¦bªº 2(n-1) ­Ó­ì¦³°Ï°ì¤@¤À¬°¤G¡A¬G±o¦^Âk¤èµ{

\begin{displaymath}\left\{
\begin{array}{rcl}
a_n & = & a_{n-1}+2(n-1)\, , (n \geq 2) \\
a_1 & = & 2
\end{array}\right. \eqno{(4)}
\end{displaymath}

©w¸q a0=2 ¨Ã³] g(x) ¬°¼Æ¦C $\{ a_n \}_{n=0}^\infty$ ¤§¥Í¦¨¨ç¼Æ¡A«h

\begin{displaymath}
\begin{array}{rllllll}
g(x)&=a_0&+a_1x&+a_2x^2&+\cdots &+a_n...
...(1-x)^2}&= & &-2x^2&-\cdots &-2(n-1)x^n&-\cdots \\
\end{array}\end{displaymath}

¨ä¤¤¡A¤W­±²Ä¤T­Óµ¥¦¡¥i¥Ñ¤Uªk¾É¥X:

\begin{eqnarray*}
\sum_{n=2}^\infty (n-1)x^n&=&x^2\sum_{n-2}^\infty (n-1)x^{n-2}...
...&x^2(\frac{1}{1-x} +\frac{x}{(1-x)^2} )=x^2\frac{1}{(1-x)^2} \\
\end{eqnarray*}


±N¤W¤T¦¡¬Û¥[±o

\begin{displaymath}g(x)-xg(x)-\frac{2x^2}{(1-x)^2} =2\end{displaymath}

§Y

\begin{displaymath}
g(x)=\frac{1}{1-x} (2+\frac{2x^2}{(1-x)^2})
= \frac{1}{(1-x)^3} (2-4x+4x^2)
\end{displaymath}

¦]¬°

\begin{eqnarray*}
\frac{1}{(1-x)^3}&=&\frac{1}{2} (\frac{1}{(1-x)^2})'=\frac{1}{...
...n=0}^\infty x^n)''=\frac{1}{2} (\sum_{n=0}^\infty (n+1)(n+2)x^n)
\end{eqnarray*}


¬G

\begin{displaymath}
g(x)=(1-2x+2x^2)(\sum_{n=0}^\infty (n+1)(n+2)x^n)
\end{displaymath}

³Ì«á±o¦^Âk¤èµ{(4)¤§¸Ñ¬°

\begin{eqnarray*}
a_n&=&(n+1)(n+2)-2n(n+1)+2(n-1)n \\
&=&n^2-n+2
\end{eqnarray*}


[¨Ò 3] °Ý¦b¥Î¾ã¼Æ 0 »P 1 ²Õ¦¨ªº n ¦ì¼Æ¤¤¡A¦³¦h¤Ö¤£§t¨â­Ó¬Û³sªº 0?

Å㨣¦³ 2 ­Ó¤@¦ì¼Æ¡F3 ­Ó¤G¦ì¼Æ¡G01,10 »P 11¡C³] an ¬°¥Ñ 0 »P 1 ©Ò²Õ¦¨¤£§t¨â­Ó¬Û³sªº 0 ¤§ n-1 ¦ì¼Æ¤§­Ó¼Æ¡]¨ä¤¤ n ¿ù¶}¤@¦ì¬O¥Ñ©ó¾ú¥v¤W­ì¦]¡^¡A«h±o¦^Âk¤èµ{

\begin{displaymath}
\left\{
\begin{eqalign}
a_n &= a_{n-1}+a_{n-2} \quad (n \ge...
...\\
a_2 &= 2 \; , \quad a_3=3
\end{eqalign}\right.
\eqno{(5)}
\end{displaymath}

³o¬O¦]¬°¦b¤£§t¨â­Ó¬Û³sªº¹s¤§¥Ñ 0 »P 1 ²Õ¦¨ n-1 ¦ì¼Æ¤¤¡A³Ì«á¤@¦ì¼Æ¦p¬O¹s¡A«h³Ì«á²Ä¤G¦ì¼Æ´N¤£¯à¬O¹s¡A³o¼Ëªº¼Æ¤@¦@¦³ an-2 ­Ó¡F³Ì«á¤@¦ì¼Æ¦p¬O 1¡A«h«e­± n-2 ­Ó¼Æ¥i¥ô·N¿ï¨ú 0 ©Î 1¡A¥u­n¨â­Ó¹s¤£¬Û³s«K¥i¡A³o¼Ëªº¼Æ¤@¦@¦³ an-1 ­Ó¡C¦¡(5)µ¹¥X¤T­Ó¬Û³sªº an ¤§­ÈÃö«Y¡AºÙ¬° 2 ¶¥¦^Âk¤èµ{¡A»Ý­n 2 ­ÓÃä¬É±ø¥ó¡C¥Ñ(5)§Ú­Ì¥i©w¸q a1=1, a0=1¡C¨Ì«eªk¡A¥O g(x) ¬O¼Æ¦C $\{ a_n \}_{n=0}^\infty$ ¤§¥Í¦¨¨ç¼Æ¡A«h±o

\begin{eqnarray*}
g(x) &=& a_0 + a_1x + a_2x^2 + \cdots + a_nx^n + \cdots \\
-x...
... \cdots \\
-x^2g(x)
&=& -a_0x^2 - \cdots - a_{n-2}x^n - \cdots
\end{eqnarray*}


¬G±o

g(x)(1-x-x2) = 1

§Q¥Î³¡¤À¤À¦¡±o

\begin{displaymath}
g(x)=\frac{1}{1-x-x^2} =\frac{1+\sqrt{5}}{2\sqrt{5}} (\frac{...
...-\alpha x})-\frac{1-\sqrt{5}}{2\sqrt{5}} (\frac{1}{1-\beta x})
\end{displaymath}

¨ä¤¤

\begin{displaymath}\alpha =\frac{1+\sqrt{5}}{2} \, ,\,\beta =\frac{1-\sqrt{5}}{2}\end{displaymath}

¬G±o¦^Âk¤èµ{(5)¤§¸Ñ¬O

\begin{eqnarray*}
a_n&=&\frac{1+\sqrt{5}}{2\sqrt{5}} (\frac{1+\sqrt{5}}{2})^n -\...
...t{5}}((\frac{1+\sqrt{5}}{2})^{n+1}-(\frac{1-\sqrt{5}}{2})^{n+1})
\end{eqnarray*}


¹ê»Ú¤W¼Æ¦C $\{ a_n \}_{n=0}^\infty$ªº«e´X¶µ¥i«Ü®e©ö±o¥X¡A¥Ñ¦¡ (5)ª¾ a0=1¡A a1=1°_«á­±¨C¤@¶µ§¡µ¥©ó¨ä«e­±¨â¶µ¤§©M¡A¬G¸Ó¼Æ¦Cªº«e´X¶µ¬O

\begin{displaymath}1,\, 1,\, 2,\, 3,\, 5,\, 8,\, 13,\, 21,\, 34,\cdots\end{displaymath}

³o¨Ç¼ÆºÙ¬° Fibonacci¼Æ¡A¥¦­Ì­I«áÂ泤@¬q¾ú¥v±y¤[¥B»á¨ã½ì¨ýªº¼Æ¾Ç¬G¨Æ¡C¦ý³o¨Ç¤w¤£¦b¥»¤å½d³ò¤º¤F¡C

«e­±§Ú­Ì´£¥X¤F´X­Ó²³æªº¦^Âk¤èµ{ªº¨Ò¤l¡A¨Ã»¡©ú¥Î¥Í¦¨¨ç¼Æ¨D¸Ñªº¹Lµ{¡C¦b¤U­±§Ú­Ì±N¦^Âk¤èµ{¬Ý¦¨¬O¤@ºØ®t¤À¤èµ{¡A¨Ã¤¶²Ð¥t¤@ºØ¤èµ{¨D¸Ñªº¤èªk¡C§Ú­Ì¤w´£¹L¤@­Ó¼Æ¦C a= $\{ a_n \}_{n=0}^\infty$¥i¬Ý¦¨¬O©w¸q¦b«D­t¾ã¼Æ¶°¤Wªº¨ç¼Æ¡A¨ä©ó¾ã¼Æ $n\geq 0$¤§­È´N¬O an¡C®t¤Àºâ¤l £G(difference operator)¬O¤@¦b³o¨Ç¨ç¼Æ²Õ¦¨ªº¶°¦X¤W¤§ÅÜ´«¡A¨ä©w¸q¬°

\begin{displaymath}
\Delta a_n=a_{n+1}-a_n
\end{displaymath}

°ª¶¥®t¤Àºâ¤l $\Delta^k$ (k=2,3,¡K)¬O©w¸q¬°

\begin{displaymath}
\Delta^ka_n=\Delta(\Delta^{k-1}a_n)
\end{displaymath}

§Ú­Ì¨Ã©w¸q $\Delta^{0}=I$¡A¨ä¤¤ I ¬O«íµ¥ºâ¤l¡A§Y Ian=an (n=0,1,2,¡K)¡C»P®t¤Àºâ¤l¦³±K¤ÁÃö«Yªº¬O¦ì²¾ºâ¤l E (Translation operator)¡A¨ä©w¸q¬°

Ean=an+1

°ª¶¥¦ì²¾ºâ¤l Ek (k=2,3,¡K) ¬O©w¸q¬°

Ekan=E(Ek-1an)=an+k

§Ú­Ì¨Ã©w¸q E0=I¡AÅ㨣¦³ $E=\Delta +I$¡C¥ô¦ó¤èµ{§t¦³®t¤Àºâ¤l©Î»P¨äµ¥»ù¤§¦ì²¾ºâ¤lªººÙ¬°®t¤À¤èµ{ (difference equation)¡C¤@­Ó k¶¥±`«Y¼Æ½u©Ê®t¤À¤èµ{ (©Î¦^Âk¤èµ{)¦³¤@¯ë§Î¦¡

\begin{displaymath}
C_0a_{n+k}+C_1a_{n+k-1}+\cdots +C_ka_n=b_n \, ,\eqno{(6)}
\end{displaymath}

¨ä¤¤ $\{ b_n \}_{n=0}^\infty$ ¬O¤@µ¹©w¼Æ¦C¡AC0, C1, ¡K, Ck ¬Oµ¹©w¤§±`¼Æ¡C¦pªG¦³ k ­Ó¬Û³sªº­È¬°µ¹¥X¡AºÙ¬°Ãä¬É±ø¥ó¡A«h¤èµ{(6)¦³°ß¤@ªº¸Ñ¡C»P (6)¹ïÀ³¤§»ô¦¸®t¤À¤èµ{¬O

\begin{displaymath}
C_0a_{n+k}+C_1a_{n+k-1}+\cdots +C_ka_n=0 \, ,
\eqno{(7)}
\end{displaymath}

«e­z¤§¤èµ{ (1)»P (4)§¡¬O¤@¶¥«D»ô¦¸®t¤À¤èµ{;¤èµ{ (5)¬O¤G¶¥»ô¦¸®t¤À¤èµ{¡C§Q¥Î¦ì²¾ºâ¤l¡A¤èµ{ (6)»P (7)¤S¥i°O¬°

\begin{displaymath}
(C_0E^k+C_1E^{k-1}+\cdots +C_{k-1}E+C_kI)a_n=b_n
\eqno{(8)}
\end{displaymath}

¤Î

\begin{displaymath}
(C_0E^k+C_1E^{k-1}+\cdots +C_{k-1}E+C_kI)a_n=0 \ ,
\eqno{(9)}
\end{displaymath}

¤èµ{ (9)¤§¸ÑºÙ¬°»ô¦¸¸Ñ¡F¥ô·Nº¡¨¬¤èµ{ (8) ¤§¸ÑºÙ¯S§O¸Ñ¡CŪªÌ¤w¥iÆ[¹î¨ì k¶¥±`«Y¼Æ½u©Ê®t¤À¤èµ{»P·L¿n¤À¤¤ªº k ¶¥±`«Y¼Æ½u©Ê·L¤À¤èµ{¤§¶¡¬Û¦ü©Ê¡F¹ê»Ú¤W¥¦­Ì¤§¶¡¦³³\¦h¬Û¥­¦æªº©Ê½è¡C¨Ò¦p©Ò¦³»ô¦¸¸Ñ§Î¦¨ªº¶°¦X¬O¤@¦V¶qªÅ¶¡¡F¤èµ{(8)¤§¸Ñ¥²¬°¤@­Ó»ô¦¸¸Ñ¤Î¬Y­Ó¯S§O¸Ñ¤§©M¡C³o¨Ç©Ê½èªºÃÒ©ú»P·L¤À¤èµ{¤¤¬ÛÀ³©Ê½èªºÃÒ©ú¬Û¦ü¡A§Ú­Ì¤£¦b¦¹¸Ô²Ó»¡©ú¡C¦³Ãö®t¤À¤èµ{¤@¯ë©Ê½è½Ð°Ñ¾\°Ñ¦Ò¸ê®Æ[1]¡C

¤U­±§Ú­Ì°Q½× k¶¥»ô¦¸±`«Y¼Æ½u©Ê®t¤À¤èµ{ (9)¤§¨D¸Ñ¨BÆJ¡C¦b (9)¤¤¥O an=rn¡A§Ú­Ì¦³

\begin{displaymath}
(C_0r^k+C_1r^{k-1}+\cdots +C_{k-1}r+C_k)r^n=0
\end{displaymath}

§Ú­Ì¤£¦Ò¼{ r=0ªº±¡ªp¡A¬G¤S¦³

\begin{displaymath}
C_0r^k+C_1r^{k-1}+\cdots +C_{k-1}r+C_k=0
\eqno{(10)}
\end{displaymath}

¤èµ{ (10)¬O¤@¦¸¥N¼Æ¤èµ{¦¡¡AºÙ¬°»P (9)¹ïÀ³¤§¯S¼x¤èµ{¦¡;¥¦¦³ k­Ó®Ú¡AºÙ¬°¤èµ{ (9)¤§¯S¼x®Ú¡C¦pªG (10)¦³ k­Ó¤£¦Pªº®Ú r1¡A r2¡A ¡K¡A rk¡A«h¥ô¤@¤èµ{ (9)¤§¸Ñ¦³§Î¦¡

\begin{displaymath}
a_n=A_1r_1^n+A_2r_2^n+\cdots +A_kr_k^n
\end{displaymath}

¨ä¤¤ A1, A2, ¡K, Ak ¬O¥¼©w«Y¼Æ¡A¥Ñ©Òµ¹¥XªºÃä¬É±ø¥ó©Ò¨M©w¡C¦pªG¤@¯S¼x®Ú r¬O (10)¤§ m ­«®Ú¡A«h»P¤§¹ïÀ³ªº»ô¦¸¸Ñ¬O

\begin{displaymath}
(A_0+A_1n+\cdots +A_{m-1}n^{m-1})r^n
\end{displaymath}

¦pªG¤èµ{ (10)¦³¤@¹ï¦@³m½Æ®Ú p+qi ¤Î p-qi¡A«h»P¤§¹ïÀ³¤§»ô¦¸¸Ñ¤S¥i¼g¦¨

\begin{displaymath}
A_1(p+qi)^n+A_2(p-qi)^n = \rho^n(B_1\cos n\theta +B_2\sin n\theta)
\end{displaymath}

¨ä¤¤ $\rho=\sqrt{p^2+q^2}$¡A $\theta=\tan^{-1}(q/p)$¡AB1=A1+A2 ¤Î B2=i(A1-A2)¡C¤U­±§Ú­Ì¦b¥Î¨ÒÃD¨Ó»¡©ú»ô¦¸®t¤À¤èµ{¤§¨D¸Ñ¨BÆJ¡C

[¨Ò4]
¸Ñ¨Ò3¤¤ªº»ô¦¸®t¤À¤èµ{ (5):

\begin{displaymath}\left\{
\begin{array}{l}
a_{n+2}-a_{n+1}-a_n=0 \\
a_0=1\,\mbox{,}\, a_1=1 \\
\end{array}\right. \eqno{(11)}
\end{displaymath}

¤èµ{ (11)¤§¯S¼x¤èµ{¬O

r2-r-1=0

¥¦¦³¨â­Ó¤£¦Pªº¯S¼x®Ú $(1+\sqrt{5})/2$»P $(1-\sqrt{5})/2$¡A¬G¨ä»ô¦¸¸Ñ¦³§Î¦¡

\begin{displaymath}
a_n=A_1(\frac{1+\sqrt{5}}{2})^n+A_2(\frac{1-\sqrt{5}}{2})^n
\eqno{(12)}
\end{displaymath}

¬°¤F¨M©w¥¼©w«Y¼Æ A1 »P A2¡A§Ú­Ì±N(11)¤¤¤§Ãä¬É±ø¥ó¥N¤J(12)±o

\begin{displaymath}\left\{
\begin{array}{rcl}
1&=&A_1+A_2 \\
1&=&A_1(\frac{1+\s...
...)+A_2(\frac{1-\sqrt{5}}{2}) \\
\end{array}\right. \eqno{(13)}
\end{displaymath}

¸ÑÁp¥ß¤èµ{ (13)±o

\begin{displaymath}
A_1=\frac{1+\sqrt{5}}{2\sqrt{5}}\,\mbox{,}\, A_2=-\frac{1-\sqrt{5}}{2\sqrt{5}}
\end{displaymath}

¦]¦¹¤èµ{ (11)¤§¸Ñ¬O

\begin{eqnarray*}
a_n&=&\frac{1+\sqrt{5}}{2\sqrt{5}} (\frac{1+\sqrt{5}}{2})^n -\...
...t{5}}((\frac{1+\sqrt{5}}{2})^{n+1}-(\frac{1-\sqrt{5}}{2})^{n+1})
\end{eqnarray*}


[¨Ò5] ­pºâ n ¶¥¦æ¦C¦¡

\begin{displaymath}
\begin{array}{\vert cccccccccc\vert}
1&1&0&0&0&\cdots&0&0&0&...
...&1&1&1 \\
0&0&0&0&0&\cdots&0&0&1&1 \\
\end{array}\eqno{(14)}
\end{displaymath}

³] (14)¤¤¤§ n¶¥¦æ¦C¦¡¤§­È¬° an¡A¥Ñ²Ä¤@¦C±N (14)®i¶}±o®t¤À¤èµ{

\begin{displaymath}\left\{
\begin{array}{l}
a_n=a_{n-1}-a_{n-2} \\
a_1=1\,\mbox{,}\, a_2=0 \\
\end{array}\right.\eqno{(15)}
\end{displaymath}

¥¦ªº¯S¼x¤èµ{¬O r2-r+1=0¡A¬G¦³¨â­Ó¦@³m½Æ®Ú

\begin{displaymath}
r_1=\frac{1}{2} +i\frac{\sqrt{3}}{2}
= \cos\frac{\pi}{3} +i\sin\frac{\pi}{3} \; ,
\end{displaymath}


\begin{displaymath}
r_2=\frac{1}{2} -i\frac{\sqrt{3}}{2} =\cos\frac{\pi}{3} -i\sin\frac{\pi}{3}
\end{displaymath}

±o¤èµ{ (15)¤§»ô¦¸¸Ñ¦³§Î¦¡

\begin{displaymath}a_n=B_1\cos\frac{n\pi}{3} +B_2\sin\frac{n\pi}{3}\eqno{(16)}\end{displaymath}

±N (15)¤¤¤§Ãä¬É±ø¥ó¥N¤J (16)¦³

\begin{displaymath}
\begin{array}{ccccc}
1&=&B_1\cos\frac{\pi}{3} +B_2\sin\frac{...
...2\pi}{3} &=&-\frac{1}{2} B_1+\frac{\sqrt{3}}{2} B_2
\end{array}\end{displaymath}

±q¦Ó±o¥¼©w«Y¼Æ B1=1¡A $B_2=\frac{1}{\sqrt{3}}$¡C¤èµ{(15)¤§¸Ñ¬O

\begin{displaymath}
a_n=\cos\frac{n\pi}{3} +\frac{1}{\sqrt{3}}\sin\frac{n\pi}{3}
\end{displaymath}

¥Ñ¤èµ{ (15)¥i¨£¥Ñ n=1°_ an¤§­Èªº­º´X¶µ¬O

\begin{displaymath}1\, ,\, 0\, ,\, -1\, ,\, -1\, ,\, 0\, ,\, 1\, ,\, 1\, ,\, 0\, ,\cdots\end{displaymath}

³Ì«á§Ú­Ì¤¶²Ð¤@ºØ«D»ô¦¸®t¤À¤èµ{ (8)ªº¨D¸Ñ¨BÆJ¡C¥Ñ¤W­±°Q½×ª¾¥u»Ý¨D¥X¤èµ{ (8)ªº¬Y­Ó¯S§O¸Ñ¡C§Ú­Ì©Ò¥Îªº¬O¤@ºØ¸gÅçªk¡A¬O¥Ñ¤èµ{ (8)¤§¥kÃä bn¤§§Î¦¡¨Ó§PÂ_¯S§O¸Ñ¥i¯à¦³ªº§Î¦¡¡AµM«á¦A¨M©w¨ä¤¤¥¼©w«Y¼Æ¡C¤Uªí¦C¥X´XºØ±`¹J¨ìªº bn§Î¦¡

\begin{displaymath}
\begin{array}{c\vert c}
b_n & \mbox{{\fontfamily{cwM2}\fonts...
...\cos a_n & B_1\sin a_n +B_2\cos a_n \\
\end{array}\eqno{(17)}
\end{displaymath}

¨ä¤¤ªí¤§¥k¦C¤¤ B,B1,B2,¡K,Bp ¬°¥¼©w«Y¼Æ¡C³oºØ¸Ñªk¤]¬O¨D±`·L¤À¤èµ{¤§«D»ô¦¸¸Ñ®É±`¥Î¤èªk¤§¤@¡AŪªÌÀ³¹ï³o¨âºØ±¡ªp¤§²§¦P§@¤@¤ñ¸û¡C

[¨Ò6] °Ý¦b¥Ñ 0,1,2,3 ©Ò²Õ¦¨ªº n ¦ì¼Æ¤¤¦³¦h¤Ö§t¦³°¸¼Æ­Ó¹s¡H

³] an ¬O¥Ñ 0,1,2,3 ©Ò²Õ¦¨ªº n ¦ì¼Æ¤¤§t°¸¼Æ­Ó 0 ªº­Ó¼Æ¡A«h¦b³o¨Ç¼Æ¤¤¡A³Ì«á¤@¦ì¼Æ©ÎªÌ¤£¬°¹s¡A³o¼Ëªº¼Æ¦³ 3an-1 ­Ó¡F©ÎªÌ³Ì«á¤@¦ì¼Æ¬°¹s¡A«h¥¦«e­± n-1¦ì¤¤¥²¦³©_¼Æ­Ó¹s¡A³o¼Ëªº¼Æ¤@¦@¦³ 4n-1-an-1 ­Ó¡A¬G±o an=3an-1+4n-1-an-1¡CÅãµM¦³ a1=3¡A¬G©Ò¨Dªº®t¤À¤èµ{¥i¼g¦¨

\begin{displaymath}\left\{
\begin{array}{rcl}
a_{n+1}-2a_n&=&4^n \\
a_1&=&3
\end{array}\right.\eqno{(18)}
\end{displaymath}

¤èµ{ (18)¤§¯S¼x¤èµ{¦¡ r-2=0¡A¥¦¦³°ß¤@ªº¯S¼x®Ú r=2¡A¬G±o¤èµ{(18)¤§»ô¦¸¸Ñ¦³§Î¦¡

an=A2n

¨ä¤¤ A ¬O¥¼©w«Y¼Æ¡C¬°¤F¨D¤èµ{ªº¯S§O¸Ñ¡A¥Ñªí(17)±o¥¦¦³§Î¦¡ an=B4n¡A¨ä¤¤ B¬°¥¼©w«Y¼Æ¡C¥N¤J¤èµ{(18)±o

B4n+1-2B4n=4n

±q¦Ó $B=\frac{1}{2}$¡C¦]¦¹¤èµ{(18)¤§¥ô¤@¸Ñ§¡¦³§Î¦¡

\begin{displaymath}
a_n=A2^n+\frac{1}{2} 4^n
\eqno{(19)}
\end{displaymath}

±N(18)¤¤Ãä¬É±ø¥ó¥N¤J(19)±o $A=\frac{1}{2}$¡A¦]¦¹¤èµ{(18)¤§¸Ñ¬°

\begin{displaymath}
a_n=\frac{1}{2} (4^n-2^n)
\end{displaymath}

¥Î¸ÕÅç¸Ñªk¨D¯S§O¸Ñ¤]¦³¥¢®Äªº±¡ªp¡A¨º®É§Ú­Ì¥²»Ý§@¥²­nªº­×¥¿¡C³Ì«á§Ú­ÌÁ|¤U¨Ò¨Ó»¡©ú¦¹ÂI¡C

[¨Ò7] ¸Ñ®t¤À¤èµ{

\begin{displaymath}\left\{
\begin{array}{rcl}
a_{n+1}-a_n&=&2n \\
a_0&=&2 \\
\end{array}\right.\eqno{(20)}
\end{displaymath}

¤èµ{ (20)ªº¯S¼x¤èµ{¬O r-1=0¡A¬G¥¦¦³°ß¤@ªº¯S¼x®Ú r=1¡C¦]¦¹¤èµ{(20)ªº»ô¦¸¸Ñ¬O an=A(1)n=A¡A¨ä¤¤ A ¬O¥¼©w«Y¼Æ¡C®Ú¾Úªí(17)¤èµ{(20)ªº¯S§O¸Ñ¦³§Î¦¡

\begin{displaymath}
a_n=B_1+B_2n
\eqno{(21)}
\end{displaymath}

¦ý»ô¦¸¸Ñ»P¯S§O¸Ñ¤¤§¡¦³¤@¶µ¬O±`¼Æ¡A±N (21)¥N¤J (20)±NµLªk¨M©w¥¼©w«Y¼Æ B1¡C³o®É§Ú­Ì¥i¥H±N¯S§O¸Ñ­¼¤@³Ì§C¦¸¼Æ¤§ n ªº¾ã¼Æ¾­¡A¨Ï±o»ô¦¸¸Ñ»P¯S§O¸Ñ¤¤ªº³oºØ¬Û¦ü¶µ®ø¥¢¡C¦]¦¹§Ú­Ì¥i¥O¤èµ{(20)¤§¯S§O¸Ñ¦³§Î¦¡ an=B1n+B2n2 ¨Ã¥N¤J(20)±o

B1(n+1)+B2(n+1)2-B1n-B2n2 = 2n

¤ñ¸û¨âÃä«Y¼Æ±o B1=-1, B2=1¡C¤èµ{(20)¤§¥ô¤@¸Ñ§¡¦³§Î¦¡

\begin{displaymath}a_n=n^2-n+A \eqno{(22)}\end{displaymath}

±N(20)¤¤¤§Ãä¬É±ø¥ó¥N¤J(21)±o A=2¡A¦]¦¹¤èµ{(20)¤§¸Ñ¬°

an=n2-n+2

1. Levy, H. & F. Lessman, ¡mFinite Difference Equation¡n, Macmillian, 1961.
2. Liu, C. L., ¡mIntroduction to Combinatorial Mathematics¡n, McGraw-Hill, 1968.
3. Niven, I., ¡mFormal power series, Amer. Math. Monthly¡n, 76(1969),871-889.
4.®L©v¶×¡G¡q²Õ¦X¼Æ¾Ç¤¤ªº¥Í¦¨¨ç¼Æ¡r¡m¼Æ¾Ç¶Ç¼½¡n¡]²Ä¤@¨÷²Ä¤T´Á¡^¡A¤»¤Q¤­¦~¤Q¤G¤ë¡A51-58.

 
¹ï¥~·j´MÃöÁä¦r¡G
¡D®t¤À¤èµ{
¡D¥Í¦¨¨ç¼Æ
¡DFibonacci
¡D·L¤À¤èµ{
¡D²Õ¦X¾Ç
¡D¶O¤ó¼Æ¦C

¦^­¶­º
 
¡]­Y¦³«ü¥¿¡BºÃ°Ý¡K¡K¡A¥i¥H¦b¦¹ ¯d¨¥ ©Î ¼g«H µ¹§Ú­Ì¡C¡^
EpisteMath

EpisteMath (c) 2000 ¤¤¥¡¬ã¨s°|¼Æ¾Ç©Ò¡B¥x¤j¼Æ¾Ç¨t
¦Uºô­¶¤å³¹¤º®e¤§µÛ§@Åv¬°­ìµÛ§@¤H©Ò¦³


½s¿è¡G³¯¤å¬O ³Ì«á­×§ï¤é´Á¡G4/26/2002