­º­¶ | ·j´M

¡D­ì¸ü©ó¼Æ¾Ç¶Ç¼½²Ä¤@¨÷²Ä¤T´Á
¡D§@ªÌ·í®É¥ô±Ð©ó²M¤j¼Æ¾Ç¨t

¡EµùÄÀ
 

²Õ¦X¼Æ¾Ç¤¤ªº¥Í¦¨¨ç¼Æ

®L©v¶×

 
 

¦b´£¥X¡u¥Í¦¨¨ç¼Æ¡vªº¼Æ¾Ç©w¸q¤§«e¡A§Ú­Ì¥ý¦Ò¼{´X­Ó²³æªº±Æ¦C²Õ¦X°ÝÃD¡C

[¨Ò a.1]¦Ò¼{«íµ¥¦¡

(1+ax)(1+bx)(1+cx)=1+(a+b+c)x+(ab+bc+ac)x2+abcx3

¦p±N a,b,c ¬Ý§@¥Nªí¤Tª«¥ó¡A¥¦ªº¥kÃä¬O¤@¦h¶µ¦¡¡A¨ä«Y¼Æ«ê¥Nªí¤F±N a,b,c §@²Õ¦Xªº¦UºØ¥i¯à¡C±`¼Æ¶µ 1 ªí¥Ü¦b¤Tª«¥ó¤¤¤@­Ó³£¤£¨ú¡Fx ªº«Y¼Æ a+b+c ªí¥Ü¦b a,b,c ¤¤¨ú¤@­Óªº¦UºØ²Õ¦X¡A§Y©Î¨ú a¡A©Î¨ú b¡A©Î¨ú c¡Fx2 ªº«Y¼Æ ab+bc+ac ªí¨ú¤G­Óªº¦UºØ²Õ¦X¡Fx3 ¤§«Y¼Æªí¥Ü¤F¤T­Ó¬Ò¨úªº°ß¤@¤èªk¡C¦b³oùØ¥i¯à²£¥Í¦UºØ±¡§Î¬O¥Î + ¸¹³s±µ¡A¦P®Éµo¥Í¤§¨Æ¥ó«h¥Î­¼ªk¡]§Y²Å¸¹¨Ö¦C¡^ªí¥Ü¡C

[¨Ò a.2]³]¦³ 5 ­Ó²y a,a,a,b,c¡A¨ä¤¤¤T­Ó²y a §¹¥þ¤@¼Ë¡A«h«íµ¥¦¡

\begin{eqnarray*}
\lefteqn{(1+ax+a^2x^2+a^3x^3)(1+bx)(1+cx)} \\
&=& 1+(a+b+c)x+...
...a^3+a^2b+a^2c+abc)x^3 \\
& & {} + (a^3b+a^3c+a^2bc)x^4+a^3bcx^5
\end{eqnarray*}


¨ä¤¤ xr ¤§«Y¼Æªí¥Ü¤F¿ï¨ú r ­Óªº¦UºØ¥i¯à²Õ¦X ($1\leq r\leq 5$)¡C

¦b±Æ¦C²Õ¦X°ÝÃD¤¤¡A¥[ªk­ì«h»P­¼ªk­ì«h¬O¤j®a¼ôª¾ªº¨â­Óªk«h¡C¥[ªk­ì«h¬OÁ¿¦p¤@¨Æ¥ó¥i¯àµo¥Í±¡ªp¦³ m ºØ¡A¥t¤@ºØ¨Æ¥ó¥i¯àµo¥Í±¡ªp¦³ n ºØ¡A«h³o¨âºØ¨Æ¥ó¨ä¤@µo¥Í±¡ªp¦³ m+n ºØ¡C­¼ªk­ì«h¬OÁ¿¦p¤@¨Æ¥ó¥i¯àµo¥Í±¡ªp¦³ n ºØ¡A¥t¤@¨Æ¥ó¥i¯àµo¥Í±¡ªp¦³ m ºØ¡A«h³o¨â¨Æ¥ó¦P®Éµo¥Í±¡ªp¦³ nm ºØ¡C§Ú­Ì¦b¤W­±¨â¨Ò¥Î¨ìªº¬O¤@ºØ²Å¸¹¹Bºâ¡A¥¦¿í±q³o¨âªk«h¡C¦b [¨Ò a.2]¡A¦]¤l 1+ax+a2x2+a3x3 ªí¥Ü¤F©Î¤£¨ú a¡A©Î¨ú¤@­Ó a¡A©Î¨ú 2 ­Ó a¡A©Î¨ú¤T­Ó a ªº¦UºØ±¡ªp¡F¦Ó¦b [¨Ò a.1] ¤¤¡A(1+ax)(1+bx) ªí¥Ü¤F¦pªG a,b ³Q¤¹³\¦P®É¿ï¨ú®É¥i¯à²£¥Í¤§¦UºØ±¡ªp¡C

¦b«Ü¦h³õ¦X¤¤¡A§Ú­Ì¥u¹ï¨Æ¥óµo¥Í¥i¯à¤§­Ó¼Æ¦³¿³½ì¡A¦Ó¤£¦b¥G¨Æ¥óµo¥Íªº¨ãÅé§Î¦¡¡C³o®É§Ú­Ì¥i¥H¨ú¥Nªí¤£¦Pª«¥óªº²Å¸¹ a,b,c µ¥§¡¬° 1¡A¨Ò¦p¦b [¨Ò a.1] ¤¤¡A¥O a=b=c=1¡A«h

(1+x)(1+x)(1+x)=1+3x+3x2+x3

¨ä¤¤ xr ¤§«Y¼Æ¬°¦b¤T­Óª«¥ó¤¤¨ú r ­Óªº²Õ¦X¼Æ¡C

[¨Ò a.3] §Ú­Ì©Ò¼ôª¾ªº¨â¶µ¤½¦¡

\begin{displaymath}
(1+x)^n = {n \choose 0} + {n \choose 1}x + \cdots + {n \choose r}x^r + \cdots
+ {n \choose n}x^n
\end{displaymath}

¤¤¤§ xr «Y¼Æ«ê¬O¦b n ­Ó¤¤¨ú r ­Ó²Õ¦X¼Æ¡C·íµM¦pªG r>n «h ${n \choose r} = 0$.

²{¦b§Ú­Ì´£¥X¡u¥Í¦¨¨ç¼Æ¡vªº¼Æ¾Ç©w¸q¡C

©w¸q
³] $\{a_r\}_{r=0}^{\infty}=\{a_0,a_1,\cdots a_r\cdots\}$ ¬O¤@¼Æ¦C¡A«h¨ç¼Æ

\begin{displaymath}f(x)=\sum_{r=0}^{\infty}a_rx^r=a_0+a_1x+\cdots+a_rx^r+\cdots\end{displaymath}

ºÙ¬°¼Æ¦C $\{a_r\}_{r=0}^{\infty}$ ¤§¡]´¶³q¡^¥Í¦¨¨ç¼Æ (ordinary generating function) ©Î²Õ¦X¥Í¦¨¨ç¼Æ (generating function for combination)¡C

¦b [¨Ò a.3] ¤¤¡A(1+x)n ¬O¼Æ¦C $\left\{ {n \choose r} \right\}_{r=0}^{\infty}$ ¤§¥Í¦¨¨ç¼Æ¡C§Ú­Ì¬Ý¨ì­n±q n ­Óª«¥ó¤¤¨ú r ­Óªº²Õ¦X¼Æ°ÝÃD»P¨ä¥Í¦¨¨ç¼Æ (1+x)n ªº«Y¼Æ¦³¤@ºØ¹ïÀ³Ãö«Y¦s¦b¡C

[¨Ò a.4] ³]¦³ n ­Óª«¥ó¡A¨Ã³] n(r) ¬O¥Ñ n ­Ó¤£¦Pª«¥ó¤¤¥i¥ô·N­«½Æ¦a¨ú r ­Óª«¥ó¥Í¦¨¨ç¼Æªº²Õ¦X¼Æ ­ì½sµù 1 ¡C³o­Ó²Õ¦X°ÝÃDªº¥Í¦¨¨ç¼Æ§Y¬O¡uxr ¤§«Y¼Æµ¥©ó n(r)¡v¤§¥Í¦¨¨ç¼Æ¡C¹ï¤@­Óª«¥ó¨Ó»¡¡A§Ú­Ì¥i¥H¤£¿ï¨ú¡A¿ï¨ú¤@¦¸¡A¿ï¨ú¤G¦¸µ¥µ¥¡A¨ä¤èªk¥i¥Î¦¡¤l

\begin{displaymath}1+x+\cdots+x^r+\cdots\end{displaymath}

ªí¥Ü¡C¹ï²Ä¤G­Ó¡A²Ä¤T­Óµ¥ª«¥ó¤]¦³¦P¼Ë§@ªk¡C¬G¨ä¥Í¦¨¨ç¼Æ¬O

\begin{displaymath}
(1+x+x^2+\cdots)^n = (\frac{1}{1-x})^n
= \sum_{r=0}^{\infty}{-n \choose r}(-x)^r
\end{displaymath}

§Ú­Ì¥²¶·±N¥¦¼g¦¨¼Ð·Ç§Î¦¡¡C¦]¬°

\begin{eqnarray*}
{-n \choose r} &=& \frac{-n(-n-1)\cdots(-n-r-1)}{r!} \\
&=& ...
... \frac{n(n+1)\cdots(n+r-1)}{r!} \\
&=& (-1)^r{n+r-1 \choose r}
\end{eqnarray*}


¬G

\begin{eqnarray*}
(\frac{1}{1-x})^n
&=& \sum_{r=0}^{\infty}(-1)^r { n+r-1 \cho...
...r } (-x)^r \\
&=& \sum_{r=0}^{\infty} { n+r-1 \choose r } x^r
\end{eqnarray*}


§Ú­Ì±o

\begin{displaymath}
n(r) = { n+r-1 \choose r }
\end{displaymath}

[¨Òa.5] ³] n(r) ¬O¥Ñ n ­Ó¤£¦Pª«¥ó¤¤¥i¥ô·N­«½Æ¦a¨ú r ­Ó¡A¨Ã¦b¨C¤@¿ï¨ú¤¤¡A¨C­Óª«¥ó¥²¶·¦Ü¤Ö¥]§t¤@¦¸ªº²Õ¦X¼Æ ­ì½sµù 2 ¡C¼Æ¦C {n(r)} ªº¥Í¦¨¨ç¼Æ¬O

\begin{eqnarray*}
(x+x^2+\cdots)^n &=& x^n(1+x+\cdots)^n = x^n(\frac{1}{1-x})^n ...
...se r-n } x^r \\
&=& \sum_{r=n}^{\infty}{ r-1 \choose n-1 } x^r
\end{eqnarray*}


¬G±o $n(r)={ r-1 \choose n-1 }$¡CÅãµM¦pªG r<n¡A¥»°ÝÃDµL¸Ñ¡C

²³æ±À¼s¤W­z°ÝÃD¡A­Y¦b¨C¤@¿ï¨ú¤¤¨C­Óª«¥ó¥²¶·¦Ü¤Ö¿ï¨ú q ¦¸¡A«h

\begin{displaymath}
n(r)= { r-nq+n-1 \choose r-nq }
\end{displaymath}

¤@¯ë±Æ¦C²Õ¦X°ÝÃD¥i¥HÂk¯Ç¦¨±N²y©ñ¤J²°¤¤ªº°ÝÃD¡C¨ä¤¤¥i±N²y»P²°¤l¬Ý¦¨¥i°Ï¤Àªº©Î¤£¥i°Ï¤Àªº¡A¦Ó¨C¤@²°¤l¤S¥i³Q¤¹³\©ñ³Ì¦h¤@­Ó²y¡A©Î¶W¹L¤@­Ó²y¦Ó²£¥Í¦UºØ±¡ªp¡C²Õ¦X°ÝÃD¥i¬Ý¦¨±N¤£¥i°Ï¤Àªº²y©ñ¤J¥i°Ï¤Àªº²°¤¤¤§°ÝÃD¡C¨Ò¦p [¨Ò a.4] ªº°ÝÃD¬Û·í©ó·Q¨D±o±N r ­Ó¬Û¦Pªº²y¡A¥i¥ô·N­«½Æ¦a©ñ¤J n ­Ó¤£¦P²°¤¤¤§¤èªk­Ó¼Æ¡C[¨Ò a.5] ªº°ÝÃD¬Û·í©ó­n¨D¥X±N r ­Ó¬Û¦Pªº²y©ñ¤J n ­Ó¤£¦P²°¤¤¤§¤èªk­Ó¼Æ¡A¨ä¤¤¨C¤@²°¥²¶·¦Ü¤Ö©ñ¤@­Ó²y¡C©ñ²y¤J²°ªº¦UºØ±¡ªp¥i¦Cªí¦p¤U¡G

  a b c d
²y ¤£¥i°Ï¤À(r) ¥i°Ï¤À(r) ¥i°Ï¤À(r) ¤£¥i°Ï¤À(n)
²° ¥i°Ï¤À(n) ¥i°Ï¤À(n) ¤£¥i°Ï¤À(n) ¤£¥i°Ï¤À(r)
¨å«¬°ÝÃD ²Õ¦X ±Æ¦C ¶°¦X¤§¤À³Î ¾ã¼Æ¤§¤À¸Ñ

¨ä¤¤ n ©Î r ªí¥Ü²°¤lªº­Ó¼Æ¡A©Î²yªº­Ó¼Æ¡C¤U­±§Ú­Ì±N§Q¥Î¥Í¦¨¨ç¼Æªº¤èªk°Q½×³o¥|Ãþ°ÝÃD¡C

[¨Ò a.6] ³]±N¬Û¦Pªº²y©ñ¸m©ó n ­Ó¤£¦P²°¤¤¡A¨ä¤¤¨C¤@²°¦Ü¤Ö©ñ q ­Ó²y¡A¨Ã¦Ü¦h©ñ q+z-1 ­Ó²y¡C¦¹°ÝÃD¤§¥Í¦¨¨ç¼Æ¬O

\begin{eqnarray*}
\lefteqn{ (x^q+x^{q+1}+\cdots+x^{q+z-1})^n } \\
&=& x^{qn}(2+x+\cdots+x^{z-1})^n = x^{qn}(\frac{1-x^z}{1-x})^n .
\end{eqnarray*}


¨Ï°ÝÃD¨ãÅé¨Ç¡C³]¦³¥|¤HÂY»ë¡A¨C¤H¦UÂY¤@¦¸¡A°Ý·í©Ò±oÂI¼Æ¤§©M¬° 17 ®É¦@¦³¦h¤ÖºØ¥i¯à¤è¦¡¡C¥|¤H¥i¬Ý§@¥|­Ó¬Û²§ªº²°¤l¡A17 ÂI¥i¬Ý§@ 17 ­Ó¬Û¦Pªº²y¡C³o°ÝÃD¬O·í n=4,r=17,q=1,z=6 ¤§¯S§O±¡ªp¡C¬Gµª®×¬° ${\displaystyle (\frac{1-x^6}{1-x})^4 }$ ®i¶}¦¡¤¤ x13 ¶µ¤§«Y¼Æ¡A§Y¦@ 104 ºØ¡C

¤W­±§Ú­Ì§Q¥Î²Õ¦X¥Í¦¨¨ç¼Æ¨D¸Ñ¤F¤@¨Ç²Õ¦X°ÝÃD¡CÅãµM²Õ¦X¥Í¦¨¨ç¼Æ¨Ã¤£¾A¥Î©ó±Æ¦C°ÝÃD¡C¨Ò¦p³] a,b ¬°¨âª«¥ó¡A¨ä¥þ±Æ¦C¬O {ab,ba} ª½±µÀ³¥Î¤W­±¨D²Õ¦X°ÝÃDªº¤èªk¡A§Ú­Ì¥²¶·¦³

(1+ax)(1+bx)=1+(a+b)x+(ab+ba)x2

¦¹¦¡¦b§Ú­Ì¼ôª¾ªº¼Æ¾Ç¹Bºâªk«h¤¤ÅãµM¤£¦¨¥ß¡C¦ý¦b¨D±Æ¦C¼Æ°ÝÃD¤¤¡A§Ú­Ì¤´µM¥i¥H«O¯d¤W­±¥Î¨ìªº«ä¦Ò¤èªk»P¨BÆJ¡A¥u­n±N´¶³q¥Í¦¨¨ç¼Æ¥Î©Ò¿×«ü¼Æ¥Í¦¨¨ç¼Æ¨Ó¥N´À¡C

©w¸q
³] $\{a_r\}_{r=0}^{\infty}=\{a_0,a_1\cdots.a_r,\cdots\}$ ¬O¤@¼Æ¦C¡A«h¨ç¼Æ

\begin{displaymath}f(x)=\sum_{r=0}^{\infty}\frac{a_r}{r!}x^r=a_0+a_1x+\frac{a_2}{2!}x^2+\cdots+\frac{a_r}{r!}x^r+\cdots\end{displaymath}

ºÙ¬° $\{a_r\}_{r=0}^{\infty}$ ¤§«ü¼Æ¥Í¦¨¨ç¼Æ (exponential generating function) ©Î±Æ¦C¥Í¦¨¨ç¼Æ (generating function for permutation)¡C

[¨Ò b.1] ³] p(n,r) ¬°¦b n ­Óª«¥ó¤¤µL­«½Æ¦a¨ú r ­Óªº±Æ¦C¼Æ¡C¦]¬°

\begin{eqnarray*}
(1+x)^n &=& {n \choose 0}+{n \choose 1}x + \cdots + {n \choose...
...p(n,r)\frac{x^r}{r!} + \cdots \\
& & {} + p(n,n)\frac{x^n}{n!}
\end{eqnarray*}


(1+x)n ¬O¼Æ¦C $\{p(n,r)\}_{r=1}^{\infty}$ ¤§±Æ¦C¥Í¦¨¨ç¼Æ¡CÅãµM r>n¡A§Ú­Ì¦³ p(n,r)=0¡C§Ú­Ìª`·N¨ì³o°ÝÃD¬Û±`©ó¡u±N r ­Ó¤£¦Pªº²y©ñ¸m©ó n ­Ó¤£¦P²°¤¤¡vªº°ÝÃD¡A¨ä¤¤¨C²°³Ì¦h©ñ¸m¤@­Ó²y¡C

[¨Ò b.2] ¦³ p+q ­Óª«¥ó¡A¨ä¤¤ p ­Ó¬°¬Û¦P¡Aq ­Ó¥ç¬°¬Û¦P¡A¨ú¥þ±Æ¦C¡C¦¹°ÝÃD¬Û·í©ó p+q ¬Û²§¤§²y©ñ¸m©ó¨â²§²°¤¤¡A²Ä¤@²°«ê¦n©ñ p ­Ó²y¡A²Ä¤G²°«ê¦n©ñ q ­Ó²y¡C¨ä±Æ¦C¥Í¦¨¨ç¼Æ

\begin{displaymath}\frac{x^p}{p!}\cdot\frac{x^q}{q!}=\frac{(p+q)!}{p!q!}\frac{x^{p+q}}{(p+q)!}\end{displaymath}

±o¨ä±Æ¦C¼Æ¬O $\frac{(p+q)!}{p!q!}$¡C¦¹¬°¤j®a©Ò¼ôª¾ªº¡C

¨ãÅé¤@¨Ç¡A¥O a,a,a,b,b ¬°¤­ª«¥ó¡A¨ä¤¤¤Tª«¬Û¦P¡A¤Gª«¬°¬Û¦P§@±Æ¦C¡C¹ï a ¨¥¥i¥H¤£¿ï¨ú¡A¨ú 1 ­Ó¡A¨ú 2 ­Ó©Î¨ú 3 ­Óµ¥¡C¹ï b ¨¥¥i¥H¤£¿ï¨ú¡A¨ú 1 ­Ó©Î¨ú 2 ­Óµ¥¡C¨ä±Æ¦C¥Í¦¨¨ç¼Æ¬°

\begin{eqnarray*}
\lefteqn{ (1+\frac{x}{1!}+\frac{x^2}{2!}+\frac{x^3}{3!})(1+\fr...
...\frac{1}{1!3!}+\frac{1}{2!2!})x^4+(\frac{1}{2!}+\frac{1}{3!})x^5
\end{eqnarray*}


¥Ñ¦¹±o¦b a,a,a,b,b ¤¤§@ 4 ­Ó±Æ¦C¤§­Ó¼Æ¬° $(\frac{1}{1!3!}+\frac{1}{2!2!})4!=10$¡C

[¨Ò b.3] ¦b n ­Ó¬Û²§ª«¥ó¤¤§@¥i¥H¥ô·N­«½Æ¤§±Æ¦C¡C¨ä±Æ¦C¥Í¦¨¨ç¼Æ¬°

\begin{displaymath}(1+\frac{x}{1!}+\frac{x^2}{2!}+\cdots)^n=e^{nx}=\sum_{r=0}^{\infty}\frac{n^r}{r!}x^r\end{displaymath}

¬G±o¦b n ­Ó¬Û²§ª«¥ó¤¤¨ú r ­Ó§@¥i¥H¥ô·N­«½Æ¤§±Æ¦C¼Æ¬° nr¡C

[¨Ò b.4] ±N¾ã¼Æ 0,1,2,3 ¨ú¨Ó§@ r ¦ì¼Æ¦r¡A¨Ã³] p(r) ¬O¦b¨C¤@¼Æ¦r¤¤ 1,2 »P 3 ¨C¤@­Ó¦Ü¤Ö¥X²{¤@¦¸¤§ r ¦ì¼Æ¦r­Ó¼Æ¡A¹ï©ó¾ã¼Æ 0 ¦Ó¨¥¥i¥H¤£¨ú¡A¨ú¤@­Ó¡A¨ú¤G­Ó¡K¡Kµ¥µ¥¡A¦¹¤èªk¥i¥Î¦¡

\begin{displaymath}1+\frac{x}{1!}+\frac{x^2}{2!}+\cdots=e^x\end{displaymath}

ªí¥Ü¡C¹ï©ó 1,2,3 ¨C­Ó¦Ó¨¥¡A«h¥²¶·¦Ü¤Ö¨ú¤@­Ó¡A¦¹¤èªk¥i¥Î¤U¦¡

\begin{displaymath}
\frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots = e^{x} - 1
\end{displaymath}

ªí¥Ü¡C¬G¼Æ¦C {p(r)} ¤§±Æ¦C¥Í¦¨¨ç¼Æ¬°

\begin{eqnarray*}
\lefteqn{ (1+\frac{x}{1!}+\frac{x^2}{2!}+\cdots)
(\frac{x}{1!...
...}+\cdots)^3 } \\
&=& e^x(e^x-1)^3 = e^{4x}-3e^{3x}+3e^{2x}-e^x
\end{eqnarray*}


¦]¦¹ $p(r)=4^r-3\cdot3^r+3\cdot2^r-1$¡C

[¨Ò b.5] ±N r ­Ó¤£¦Pªº²y©ñ¤J n ­Ó¤£¦Pªº²°¤¤¡A¨C²°¦Ü¤Ö©ñ¤@­Ó¡C¥»°ÝÃDªº±Æ¦C¥Í¦¨¨ç¼Æ¬°

\begin{eqnarray*}
(\frac{x}{1!}+\frac{x^2}{2!}+\frac{x^3}{3!}+\cdots)^n
&=& (e^...
...um_{i=0}^n (-1)^i {n \choose i} (n-i)^r \right)
\frac{x^r}{r!}
\end{eqnarray*}


¬G±o©Ò¨D¤§±Æ¦C¼Æ¬°

\begin{displaymath}
\sum_{i=0}^n (-1)^i {n \choose i} (n-i)^r
\end{displaymath}

ÅãµM¦pªG r<n¡A¥»°ÝÃD«h¨S¦³¸Ñ¡C

²{¦b§Ú­Ì²µu°Q½×²Ä¤TÃþ¦³Ãö¶°¦Xªº¤À³Î°ÝÃD¡C¤@¶°¦X¤§¤À³Î¬O±N¦¹¶°¦Xªí¹F¦¨¨ä½Ñ¨â¨â¤£¬Û¥æ¤§¤l¶°¦Xªº¨Ö¶°¡C¤À³Î¤¤ªº¨C¤@¤l¶°¦XºÙ¬°¤@Ãþ¡C¨Ò¦p¦b¤@¯Z¾Ç¥Í¤¤¡A«ö¦~ÄÖ¤À²Õ«K¬O¤@­Ó¯Z¯Åªº¤À³Î¡A¦P¦~ªº¾Ç¥Í«K§Î¦¨¤F¤@Ãþ¡C

[¨Ò c.1]³]¬Y¤@¶°¦X¦³ r ­Ó¤¸¯À¡A¨Ã³] $r\geq n$¡A±N³o¶°¦Xªí¹F¦¨ n ­Ó«DªÅ¤l¶°¦X¤§¤À³Î¬Û·í©ó±N r ­Ó¥i°Ï¤Àªº²y©ñ¸m©ó n ­Ó¤£¥i°Ï¤Àªº²°¤¤¡A¨ä¤¤¨C²°¦Ü¤Ö§t¦³¤@²y¡CÅãµM¦pªG r<n¡A«h¥»°ÝÃD¨S¦³¸Ñ¡C±N r ­Ó¤¸¯Àªº¶°¦X¤À³Î¦¨ n ­Ó«DªÅ¤l¶°¦Xªº¤èªk¼Æ¬O¥Î S(n,r) ªí¥Ü¡A¦b¼Æ¾Ç¤W¬O¤@­Ó«Ü­«­n¼Æ¦r¡AºÙ¬°²Ä¤GÃþ Stirling ¼Æ¡A¥»¨Ò»P [¨Ò b.5] ¤£¦P³B¬O±N²°¤l¬Ý¦¨¬Û¦P¤F¡A¬G±o

\begin{displaymath}
S(n,r) = \frac{1}{n!} \sum_{i=0}^{n} (-1)^i {n \choose i } (n-i)^r
\end{displaymath}

¦pªG¦b¤À³Î®É¤¹³\¦³ªÅÃþ¦s¦b¡A«h·í $r\geq n$ ®É¡A¥¦ªº¤èªk¼Æ¬O

\begin{displaymath}
S(1,r)+S(2,r)+\cdots + S(n,r) ;
\end{displaymath}

·í r<n ®É¡A¨ä¤èªk¼Æ¬O

\begin{displaymath}
S(1,r)+S(2,r)+\cdots + S(r,r) .
\end{displaymath}

³Ì«á§Ú­Ì¤¶²Ð¤@¨Ç¾ã¼Æ¤À¸Ñªº°ÝÃD¡C¤@ºØ¾ã¼Æ n ªº¤À¸Ñ¡A¬O¤@ºØ±N n ªí¹F¦¨¾ã¼Æ©Mªº¤èªk¡G

\begin{displaymath}
n=a_1+a_2+\cdots+a_r \: .
\end{displaymath}

¦]¶È¬O³Q¥[¼Æ¦¸§Ç¤£¦Pªº©M¬O¬Ý§@¬Û¦Pªº¤À¸Ñ¡A§Ú­Ì¥i¥H°²©w $a_1 \geq a_2 \geq a_3$ ¡K $\geq a_r \geq 0$¡C¨C¤@³Q¥[¼Æ ai ºÙ¬°³o¤À¸Ñªº¤@­Ó³¡¤À¡C¤@ºØ¾ã¼Æ n ªº¤À¸Ñ¦¨ r ³¡¥÷ªº©M¬Û·í©ó±N n ­Ó¬Û¦Pªº²y©ñ¸m©ó r ­Ó¬Û¦Pªº²°¤¤¡]¬°¤F²ßºD¤W¥Îªk¡A§Ú­Ì¥æ´«¤F n »P r ©Ò¥Nªíªº·N¸q¡^¡C¦]²y¬O¬Ý§@¤£¥i°Ï¤Àªº¡A§Ú­Ì»Ý¥Î²Õ¦X¥Í¦¨¨ç¼Æ±´°Q¦¹Ãþ°ÝÃD¡C

[¨Ò d.1] ¹ï¾ã¼Æ§@¤À¸Ñ¡A¨ä¨C¤@³¡¥÷¤£±o¶W¹L r¡A¦b¨ä¤À¸Ñ¤§³¡¥÷¤¤¡A¾ã¼Æ 1 ¥i¤£¥X²{¡A©Î¥X²{ 1 ¦¸¡A©Î¥X²{ 2 ¦¸¡K¡Kµ¥µ¥¡A¨ä¤èªk¥i¥Î¦¡¤l

\begin{displaymath}1+x+x^2+\cdots\end{displaymath}

ªí¥Ü¡C¦P¼Ë¾ã¼Æ 2 ¥i¤£¥X²{¡A©Î¥X²{ 1 ¦¸¡A©Î¥X²{ 2 ¦¸¡A¡K¡Kµ¥µ¥¡A¨ä¤èªk¥i¥Î¦¡

\begin{displaymath}1+x^2+x^4+\cdots\end{displaymath}

ªí¥Ü¡C¨Ì¦¹Ãþ±À¡A¹ï¾ã¼Æ r ¦P¼Ë¥i¤£¥X²{¡A©Î¥X²{ 1 ¦¸¡A©Î¥X²{ 2 ¦¸¡A¡K¡Kµ¥µ¥¡A¨ä¤èªk¥i¥Î¦¡

\begin{displaymath}1+x^r+x^{2r}+\cdots\end{displaymath}

ªí¥Ü¡A¬G¾ã¼Æ¤§³¡¥÷¤£¶W¹L r ¤§¤À¸Ñ¤§¥Í¦¨¨ç¼Æ¬O

\begin{eqnarray*}
\lefteqn{ (1+x+x^2+\cdots)(1+x^2+x^4+\cdots) \cdots
(1+x^r+x^{2r}+\cdots) } \\
&=& \frac{1}{(1-x)(1-x^2)\cdots(1-x^r)}
\end{eqnarray*}


¤W¦¡®i¶}¦¡¤¤ xn ¤§«Y¼Æ«K¬O¾ã¼Æ n ¤§³¡¥÷¤£¶W¹L r ªº¤À¸Ñ­Ó¼Æ¡CÅãµM¦pªG $n\leq r$¡A¦b¥ô·N n ªº¤À¸Ñ¤¤³£¤£·|¥X²{¤j©ó r ªº³¡¥÷¡A¬G¥¦´N¬O©Ò¦³¾ã¼Æ n ¤§¤À¸Ñ¤§­Ó¼Æ¡C

[¨Ò d.2] ¥ô·N¤@ºØ¾ã¼Æ¤§¤À¸Ñ§¡¥i¥ÎFerrers ¹Ï¥Ü¨Óªí¥Ü¡A³] n=14¡A«h§Ú­Ì¦³¤U­±¨âºØ 14 ªº¤À¸Ñ©M»P¨ä¹ïÀ³ªº Ferrers ¹Ï¥Ü¡G



¨ä¤¤¦æ¼Æªí¥Ü³¡¥÷¤§­Ó¼Æ¡A³Ì¤jªº¦C¼Æªí¥Ü³Ì¤jªº³¡¥÷¡C¦pªG§Ú­Ì±N¤W¨â¹Ïªu¹ï¨¤½uÂàºP¡A¥ª¥k¨â¹Ï«K¤¬´«¦ì¸m¡C³oºØ¤¬´««Ø¥ß¤F¤@ºØ³¡¥÷¤£¶W¹L r ªº¤À¸Ñ»P³¡¥÷¤§­Ó¼Æ¤£¶W¹L r ªº¤À¸Ñ¶¡¤@¤@¹ïÀ³Ãö«Y¡A¬G±o¡G¤@¾ã¼Æ¤§³¡¤À¤£¶W¹L r ¤§¤À¸Ñ­Ó¼Æµ¥©ó³¡¥÷­Ó¼Æ¤£¶W¹L r ªº¤À¸Ñ­Ó¼Æ¡C

§Q¥Î [¨Ò d.1] ¤§µ²ªG§Ú­Ì±o¨ì¤@¾ã¼Æ¤§«ê¦³ r ­Ó³¡¥÷¤§¤À¸Ñ¤§¥Í¦¨¨ç¼Æ¬O

\begin{eqnarray*}
\lefteqn{ \frac{1}{(1-x)(1-x^2)\cdots(1-x^r)}
- \frac{1}{(1-x...
...dots(1-x^{r-1})} }\\
&=& \frac{x^r}{(1-x)(1-x^2)\cdots(1-x^r)}
\end{eqnarray*}


[¨Ò d.3] §Q¥Î Ferrers ¹Ï¥Ü¶¡ªºÂàºP¹ïÀ³Ãö«Y¡A§Ú­ÌÁÙ¥i¥H±o¨ì¦p¤Uµ²½×¡G¤À¸Ñ¤@­Ó¾ã¼Æ n ®É¡A¥H r ¬°³Ì¤j³¡¥÷ªº¤À¸Ñ¤èªk©M¥H r ¬°³¡¥÷­Ó¼Æªº¤À¸Ñ¤èªk¤@¼Ë¦h¡C¬G±o¾ã¼Æ¤§«ê¦³ r ­Ó³¡¥÷¤§¤À¸Ñªº¥Í¦¨¨ç¼Æ¬O

\begin{eqnarray*}
\lefteqn{ (1+x+x^2+\cdots)(1+x^2+x^4+\cdots) \cdots
(x^r+x^{2r}+\cdots) } \\
&=& \frac{x^r}{(1-x)(1-x^2)\cdots(1-x^r)}
\end{eqnarray*}


¦¹µ²ªG»P¥Ñ [¨Ò d.2] ©Ò±o§¹¥þ¤@¼Ë¡C

[¨Ò d.4] ¦pªG $n\leq 2r+1$¡A«h xn ¦b

\begin{displaymath}\frac{1}{(1-x)(1-x^3)\cdots(1-x^{2r+1})}\end{displaymath}

¤¤ªº«Y¼Æ¬O±N n ¤À¸Ñ¦¨©_¼Æ³¡¥÷ªº¤À¸Ñ­Ó¼Æ¡F¦pªG n>2r+1¡A«h xn ªº«Y¼Æ¬O n ªº³¡¥÷¬O©_¼Æ¥B¤£¶W¹L 2r+1 ªº¤À¸Ñ­Ó¼Æ¡C

¦pªG $n\leq 2r$¡A«h xn ¦b

\begin{displaymath}\frac{1}{(1-x^2)(1-x^4)\cdots(1-x^{2r})}\end{displaymath}

¤¤ªº«Y¼Æ¬O±N n ¤À¸Ñ¦¨°¸¼Æ³¡¥÷ªº¤À¸Ñ­Ó¼Æ¡F¦pªG n>2r «h xn ªº«Y¼Æ¬O n ªº³¡¥÷¬O°¸¼Æ¥B¤£¶W¹L 2r ªº¤À¸Ñ¤§­Ó¼Æ¡C

¦pªG $n\leq r$¡A«h xn ¦b

\begin{displaymath}(1+x)(1+x^2)\cdots(1+x^r)\end{displaymath}

¤¤ªº«Y¼Æ¬O¾ã¼Æ n ¤§³¡¥÷¦U¤£¬Û¦Pªº¤À¸Ñ­Ó¼Æ¡F¦pªG n>r¡A«h xn ªº«Y¼Æ¬O n ¤§³¡¥÷¦U¤£¬Û¦P¥B¤£¶W¹L r ªº¤À¸Ñ­Ó¼Æ¡C

¦]¬°§Ú­Ì¦³«íµ¥¦¡

\begin{eqnarray*}
\lefteqn{ (1+x)(1+x^2)\cdots(1+x^r)\cdots } \\
&=& \frac{1-x...
...}{1-x^r}\cdots \\
&=& \frac{1}{(1-x)(1-x^3)\cdots(1-x^{2r+1})}
\end{eqnarray*}


¬G¤@¾ã¼Æ¤À¸Ñ¦¨³¡¥÷¨â¨â¬Û²§¤§­Ó¼Æµ¥©ó¤À¸Ñ¦¨©_¼Æ³¡¥÷¤§­Ó¼Æ¡C

[¨Ò d.5] «íµ¥¦¡

\begin{eqnarray*}
\lefteqn{ 1+x+x^2+\cdots = \frac{1}{1-x} } \\
& = & (1+x)(1+x^2)(1+x^4)+\cdots+(1+x^{2^r})+\cdots
\end{eqnarray*}


ªí¥Ü¥ô·N¾ã¼Æ§¡¥i°ß¤@¦aªí¥Ü¦¨ 2 ªº¾­ªº©M§Î¦¡¡A¨ä¤¤¦U¶µ§¡¬Û²§¡C

¾ã¼Æ¤À¸Ñªº°ÝÃD±`¥H¨D¤@¦¸¤£©w¤èµ{¤§¾ã¼Æ¸Ñ­Ó¼Æ§Î¦¡¥X²{¡A¤U­±«K¬O¤@­Ó²³æªº¨Ò¡C

[¨Ò d.6] ¨D¤@¦¸¤£©w¤èµ{ x+y+z=15 ¥Bº¡¨¬ $x\leq 5$,$y\leq 6$,$z\leq8$ ¤§¥¿¾ã¼Æ¸Ñ¤§­Ó¼Æ¡C

º¡¨¬¤W­±±ø¥óªº¥¿¾ã¼Æ¸Ñ¤§­Ó¼Æ¬O x15 ¦b¥Í¦¨¨ç¼Æ

\begin{eqnarray*}
\lefteqn{ (x+x^2+x^3+x^4+x^5)(x+x^2+\cdots+x^6)(x+x^2+\cdots+x...
...x(1-x^5)}{1-x}\cdot\frac{x(1-x^6)}{1-x}\cdot\frac{x(1-x^8)}{1-x}
\end{eqnarray*}


¤¤ªº«Y¼Æ¡A¨äµª®×¬O 15¡C

§@¬°¥»¤å³Ì«áªº¤@­Ó¨Ò¡A§Ú­Ì§Q¥Î²Õ¦X°ÝÃD»P¨ä¥Í¦¨¨ç¼Æ¤§¹ïÀ³Ãö«YÃÒ©ú¤U­±µÛ¦Wªº Euler «íµ¥¦¡¡G

\begin{displaymath}(1-x)(1-x^2)(1-x^3)\cdots=1+\sum_{n=1}^{\infty}a_nx^n=1-x-x^2+x^5+x^7-\cdots\end{displaymath}

¨ä¤¤¡A

\begin{displaymath}
a_n=
\left\{
\begin{array}{lll}
0 &,& \mbox{{\fontfamily{cwM...
...electfont \char 139}} n=\frac{3k^2\pm k}{2}
\end{array}\right.
\end{displaymath}

­º¥ý§Ú­Ì­n¦³¤U­±µ²ªG¡G

[¨Ò d.7] ³] n ¬O¤@¥¿¾ã¼Æ¡A¥OE(n) ªí¥Ü±N n ¤À¸Ñ¦¨°¸¼Æ­Ó³¡¥÷§¡¤£µ¥¤§¤À¸Ñ­Ó¼Æ¡FF(n) ªí¥Ü±N n ¤À¸Ñ¦¨©_¼Æ­Ó³¡¥÷§¡¤£µ¥¤§¤À¸Ñ­Ó¼Æ¡A«h§Ú­Ì¦³

\begin{displaymath}
E(n)=
\left\{
\begin{array}{lll}
F(n) &,& \mbox{{\fontfamily...
...electfont \char 139}} n=\frac{3k^2\pm k}{2}
\end{array}\right.
\end{displaymath}

¤W¦¡¬O§Q¥Î Ferrers ¹Ï¥Ü©Ò²£¥Íªº¹ïÀ³¨ÓÃÒ©ú¡C³]¬Y¤@ n ¤§³¡¥÷¬Û²§¤§¤À¸Ñªº¹Ï¥Ü¦³¦p¥ª¹Ï¡]§Ú­Ì¥Î 23=7+6+5+3+2 ¬°¨Ò¡^¡G



¥O b °O§@©³½u¤W¤è®Ø­Ó¼Æ¡Ad °O§@ 45¢X±×½u¤W¤è®Ø­Ó¼Æ¡C³oùئ³¤TºØ±¡ªp¡G

¦pªG b<d¡A «h©³½u¤W b ­Ó¤è®Ø¥i²¾¦Ü±×½u¤WºÝ¦p¥k¹Ï©Ò¥Ü¡C³o¼Ë n ¤§¤À¸Ñ¤¤³¡¥÷­Ó¼Æ«h´î¤Ö¤F¤@­Ó¡A¥B¦U³¡¥÷¤´«O«ù¬Û²§¡C

¦pªG b=d¡A «h©³½u¤è®Ø¤´¥i²¾¦Ü±×½u¤WºÝ¡A°ß¤@¨Ò¥~¬O±×½u©M©³½u¬Û¥æ¦p¤U­±¥ª¹Ï¡G



¦b³o±¡ªp¤U¡A³o¤À¸Ñ¦³§Î¦¡

\begin{displaymath}n=b+(b+1)+\cdots+(2b-1)=\frac{3b^2-b}{2}\end{displaymath}

¦pªG b>d¡A «h±×½u¤W¤è®Ø¥i²¾¦Ü©³³¡¦Ó¥O¤À¸Ñ¤§³¡¥÷­Ó¼W¥[¤@­Ó¨Ã¦U³¡¥÷¤´«O«ù¬Û²§¡A°ß¤@¨Ò¥~¬O±×½u©M©³½u¬Û¥æ¦p¤W­±¥k¹Ï¥B b=d+1 ¦b³o±¡ªp¤U¡A³o¤À¸Ñ¦³§Î¦¡

\begin{displaymath}n=(d+1)+(d+2)+\cdots+(2d)=\frac{3d^2+d}{2}\end{displaymath}

·í $n \neq (3k^2 \pm k) / 2$ ®É¡A¤W­±¹ïÀ³¨Ï E(n) »P F(n) ¬Ûµ¥¡F·í $n = (3k^2 \pm k) / 2$ ®É¡A«h k ¬O°¸¼Æ¨Ï E(n) ¤ñ F(n) ¦h¤@­Ó¡Fk ¬O©_¼Æ¨Ï E(n) ¤ñ F(n) ¤Ö¤@­Ó¡C¥»¨ÒÃÒ²¦¡C

¦^¨ì§Ú­Ì¤W­±´£¨ì¤§ Euler «íµ¥¦¡¡C¥¦ªº¥ªÃä¬O¤@µL½a­¼¿n¡A«ê¬O¼Æ¦C {E(n)-F(n)} ªº¥Í¦¨¨ç¼Æ¡C¥Ñ [¨Ò d.7] §Ú­ÌÃÒ©ú¤F Euler «íµ¥¦¡¡C

¥Í¦¨¨ç¼Æ¦b¼Æ¾Ç¦U¤ÀªK¤Î¨ä¥¦¦U¾Ç¬ì¤¤¦³¼sªxÀ³¥Î¡A¥»¤å¶È´N¥¦¦b±Æ¦C²Õ¦X°ÝÃD¤WÀ³¥Î§@¤@²Ê²L¤¶²Ð¡C¦b³o¸Ì¡A¥Í¦¨¨ç¼Æ¬O¬Ý¦¨¤@¥N¼Æ¹ï¶H¡A§Ú­ÌµL¶·ÅU¼{¥¦ªº¦¬ÀÄ©Ê¡A¨ä²z½×°ò¦½Ð°Ñ¾\°Ñ¦Ò¸ê®Æ4¡C¥Í¦¨¨ç¼Æ¦b·§²v½×¤¤À³¥Î¦b1¤¤¦³°Q½×¡A¶i¤@¨B¦³Ãö¾ã¼Æ¤À¸Ñªº¸ê®Æ¥i¦b2¤¤§ä¨ì¡C¦³Ãö¤@¯ë©Ê¥Í¦¨¨ç¼Æ¦b²Õ¦X¾Ç¤¤ªºÀ³¥Î½Ð°Ñ¾\3,5¡C

1. Feller, E.F., ¡mAn Introduction to Probability Theory and Its Application¡n, Vol.I, John Wiley & Sons, 1968.
2. Hardy, G. H. & Wright, E.M., ¡mAn Introduction to Theory of Numbers¡n, Oxford Univerdity Press, 1960.
3.Liu, C.L., ¡mIntroduction to Combinatorial Mathematics¡n, McGraw-Hill, 1968.
4. Niven, I, ¡mFormal Power Series¡n, Amer. Math. Monthly, 76 (1969), 871-889.
5. Riodan, J.,¡mAn Introduction to Combinatorial Analysis¡n, John Wiley & Sons, 1958.

 
¹ï¥~·j´MÃöÁä¦r¡G
¡D¥Í¦¨¨ç¼Æ
¡D²Ä¤GÃþStirling¼Æ

¦^­¶­º
 
¡]­Y¦³«ü¥¿¡BºÃ°Ý¡K¡K¡A¥i¥H¦b¦¹ ¯d¨¥ ©Î ¼g«H µ¹§Ú­Ì¡C¡^
EpisteMath

EpisteMath (c) 2000 ¤¤¥¡¬ã¨s°|¼Æ¾Ç©Ò¡B¥x¤j¼Æ¾Ç¨t
¦Uºô­¶¤å³¹¤º®e¤§µÛ§@Åv¬°­ìµÛ§@¤H©Ò¦³


½s¿è¡G§õ´ô¤Ñ ¢A ø¹Ï¡G²¥ßªY ³Ì«á­×§ï¤é´Á¡G4/26/2002