¤W­¶¡@1¢x2¡@¤w¦b³Ì«á¤@­¶

¤T¨¤§Î¤º¨¤¤§©M¡×180¢X¡H ¡]²Ä 2 ­¶¡^

§d©w»·

 

­º­¶ | ·j´M

¡D­ì¸ü©ó¼Æ¾Ç¶Ç¼½²Ä¤G¨÷²Ä¥|´Á
¡E¹ï¥~·j´MÃöÁä¦r
 
¤A¡B°ª´µªº¹êÅçÃÒ©ú

°ÇÁ¸¯SªºÃÒ©ú¡A¨ä¥Øªº¦b±´¨s¡A¬O§_¥i¥H¹B¥Î¬Y¥L¤½²z±N¥­¦æ¤½³]ºtö¥X¨Ó¡C¦ý¬O¹ï©ó¥­¦æ¤½³]ªº¯u¹ê©Ê¡A¥ç§Y¡A¥­¦æ¤½³]¬O§_»P¯u¹êªÅ¶¡ªº©Ê½è¬Û²Å¦X¡A°ÇÁ¸¯S¬O¨S¦³¥ô¦óÃhºÃªº¡C¦b¤Q¤E¥@¬öªº³Ìªì¤G¤Q¦~¤¤¡A°¶¤jªº¼w°ê¼Æ¾Ç®a°ª´µ¡]Gauss, 1777¡ã1855¡^¡A³Ì¥ý«ù¦³³o­Ó¨ã¦³¡u­²©R©Êªº¡vÆ[©À¡F¦b¥L¬Ý¨Ó¡A¥­¦æ¤½³]ªº¯u¹ê©Êªº°ÝÃD¡A¨ã¦³¦ÛµM¬ì¾Ç¤Wªº·N¸q¡A´«¨¥¤§¡A¥¦¯A¤Î¯u¹êªºÂI»Pª½½u¡A¦p¹³¦b¤j¦a´ú¶q©ÒÀ³¥ÎªºÂI»Pª½½u¡A¬O§_¿í´`¥­¦æ¤½³]ªº°ÝÃD¡C

§Ú­Ìª¾¹D¡A¥­¦æ¤½³]ªº³¯­z¯A¤Îª½½uªº¥þªø¡A¥ç§Y¯A¤Î¨ä¨âºÝ¦b·Q¹³¤¤µL­­©µ¦ùªº¾ã±øª½½u;¦]¬°¡A»¡¨â±øª½½u¬O¥­¦æªº¡A·N«ä´N¬O»¡¡AµL½×±N¥¦­Ì©µªø¦h»·¡A¥¦­Ì¥Ã¤£¬Û¥æ¡C¥i¬O§Ú­Ì¹êÅç©Ò¯àÆ[¹î¨ìªº½d³ò¡AµL½×¦p¦ó¤j¡AÁ`¬O¦³­­ªº¡A¦]¦¹¥­¦æ¤½³]¥»¨­¤£¥i¯àÂǹêÅç¨ÓÃÒ©ú¡C¤£¹L¡A§Ú­Ì¤w¸g½Í¨ì¹L¡A¥­¦æ¤½³]»P¤º¨¤©M©w²z¦bÅÞ¿è¤W¬Oµ¥­Èªº³¯­z¡A¦Ó«áªÌ¬O¥i¥H¦b¦³­­½d°é¤º¹ê¬IÅçÃÒªº¡C©Ò¥H¡A§Ú­Ì¥u­n´ú¶q¥ô¦ó¤@­Ó¤T¨¤§Îªº¦U¨¤¤§©M¡A¦pªG¬O 180$^\circ$¡A¨º¥½¥­¦æ¤½³]´N¦¨¥ß¤F¡C·íµM¡A³o­Ó»¡ªkÁÙ¤£°÷ÂÔÄY¡A§Ú­ÌÀ³¸Ó¥ýÃÒ©ú¡u¦pªG¦Ü¤Ö¦³¤@­Ó¤T¨¤§Î¦s¦b¡A¨ä¦U¨¤¤§©M¬° 180$^\circ$¡A¨º¥½¥ô¦ó¨ä¥L¤T¨¤§Îªº¦U¨¤¤§©M¥ç¬° 180$^\circ$¡v¡F³o¬O«Ü®e©öÃÒ©úªº¡A¦ý¬°¸`¬Ù½g´T¡A©Ò¥H¦b¦¹²¤¥h¤F¡C

°ª´µ´¿¸g¦b­ô§Ê®Ú¤j¾Çªºªþªñ¡A¥H¤T®y¤s®p¬°³»ÂI¡A´úø¤@­Ó¤T¨¤§Î¡A¨ä¦UÃ䤧ªø¤j¬ù¬°¤T¤Q­ù¡C¥L¥H³Ì¤jªººë±K«×¨Ó´ú¨ä¦U¨¤¡C©Ò±o¦U¨¤¤§©M»P 180$^\circ$ ªºª[Â÷¡A¦ü¥G¬O¦b´ú¶q©Ò¤£¥iÁקKªº»~®t½d³ò¥H¤º;¦]¦Ó¡A¬O§_³o­Ó©M¬Oºë½Tªº 180$^\circ$¡A©Î¬O¥¦»P 180$^\circ$ ¤§¶¡ªº®t¸û´ú¶q©Ò¤£¥iÁקKªº»~®t§ó¤p¡A³o­Ó°ÝÃD¤´«Ý¸Ñ¨M¡C

¨ä¹ê¡A³o­Ó¥ø¹Ïªº¥¢±Ñ¬O¥i¥H¨Æ¥ý¹w¨£ªº¡C¬°»¡©ú³o¤@ÂI¡A§Ú­Ì±N¤T¨¤§Î¦U¨¤¤§©M»P 180$^\circ$ ¤§¶¡ªº®tºÙ¬°¸Ó¤T¨¤§Îªº¡u¨¤®t¡v(defect)¡CµM«á§Ú­Ì±N¤@­Ó¤T¨¤§Î ABC ¤À¬°¤T¨¤§Î ABD ©M BCD¡A¦p¹Ï¥|¡C©ó¬O§Ú­Ì¦³

\begin{eqnarray*}
\triangle ABD\mbox{{\fontfamily{cwM1}\fontseries{m}\selectfont...
...electfont \char 207}} &=& 180^\circ-\angle C -\angle 3-\angle 4,
\end{eqnarray*}


±N¥H¤W¨â¦¡¥[°_¨Ó¡A§Ú­Ì±o

\begin{eqnarray*}
&&\triangle ABD\mbox{{\fontfamily{cwM1}\fontseries{m}\selectfo...
... -\angle A -\angle C -(\angle 1 + \angle 4)-(\angle 2 +\angle 3)
\end{eqnarray*}


¦ý¬O $\angle 2+\angle 3=180^\circ$, $\angle 1+ \angle 4=\angle B$¡A©Ò¥H§Ú­Ì±o

\begin{eqnarray*}
&&\triangle ABD\mbox{{\fontfamily{cwM1}\fontseries{m}\selectfo...
...inus0.1pt{\fontfamily{cwM4}\fontseries{m}\selectfont \char 207}}
\end{eqnarray*}




¹Ï¥|

©ó¬O§Ú­Ì±o¨ì¤@­Ó©w²z¡G¡u¤T¨¤§Îªº¨¤®t¬Oµ¥©ó²Õ¦¨¸Ó¤T¨¤§Î¤§½Ñ¤À¤T¨¤§Îªº¨¤®t¤§©M¡C¡v

²{¦bÅý§Ú­Ì·Q¹³¡A¤@­Ó¥H¤Ó¶§¡A¦a²y©M¤õ¬P¬°³»ÂIªº¤T¨¤§Î¡A¨ä¨¤®t¬° 1$^\circ$¡A¥ç§Y¨ä¦U¨¤¤§©M¬° 179$^\circ$¡CµM«á§Ú­Ì±N³o­Ó¤T¨¤§Î¹º¤À¦¨»P°ª´µ©Ò´úøªº¤T¨¤§Î®t¤£¦h¤j¤pªº³\¦h¤T¨¤§Î¡C¤Ó¶§¡A¦a²y©M¤õ¬P¶¡ªº¶ZÂ÷¨ì¹F´X¸U¸U­ù¡A¬G§Ú­Ì¥i¥H«Ü®e©öªº­pºâ¥X¨Ó¡A¨ä¦¨¤À¤T¨¤§Î±N­n¶W¹L¤@¸U¸U¸U­Ó¡C©ó¬O¤@­ÓÃäªø¤T¤Q­ùªº¤À¤T¨¤§Î¡A¨ä¨¤®t®t¤£¦h¥uµ¥©ó¤@«×ªº¤@¸U¸U¸U¤À¤§¤@¡CÅãµM¡A¤µ¤ÑÁÙ¨S¦³¥ô¦ó»ö¾¹¯à°÷ÀËÅç¥X³o¼Ë²Ó·Lªº¨¤¡C³o­Ó¥H¨¤®t©w²z¬°°ò¦ªº­pºâ¡A¨Ï§Ú­Ì¤£±o¤£¬Û«H¡A·í¦b¦a²y¤W´ú¶q¤T¨¤§Î®É¡A±N¤£¥i¯à¹J¨ì¥ô¦óÅãµÛªº¨¤®t¡C¦b¦a²y¤W¡A¤T¨¤§Îªº¨¤®t½è»Ú¤W¬O¹s¡A¬G¤T¨¤§Î¦U¨¤¤§©M¬O180$^\circ$¡F´«¨¥¤§¡A¼Ú´X¨½±oªº¥­¦æ¤½³]¤Î¥Ñ¨äºtö¥X¨Óªº¤@¤Áµ²½×¡A¦b¦a²y¤W§¡¯à¦¨¥ß¡C¬°¤HÃþ©Ò¥¿½Tª¾¹Dªº³Ì¤j¤T¨¤§Î¡A¬O¨º¨Ç¥Î¨Ó¨M©w«í¬Pµø®t (parallaxes of fixed stars) ªº¤T¨¤§Î¡C

©R G ªí¤@«í¬P¡AA ©M B ªí¦a²y¦b¨ä¶¤é­y¹D¤¤¨â­Ó¬Û¹ïªº¦ì¸m¡]¦p¹Ï¤­¡^¡C½u¬q AB ¬°¦a²y­y¹Dªºª½®|¡A¨äªø¬ù 186 ¦Ê¸U­ù¡C¨¤ GAB »P GBA §¡¥i´ú±o¡A¦]¨ä³»ÂI§¡¦b¦a²y¤W¡C·íµM¡A§Ú­Ì¥i¥H¿ï¾Ü A »P B¡A¥H¨Ï AB ««ª½©ó GM¡A«h¤W­z¨â¨¤¬Ûµ¥¡C $\frac{1}{2}(180^\circ -\angle GAB-\angle GBA)$ ³o­Ó¶q¡A¥ç§Y $90^\circ-\angle GAB$¡AºÙ¬°«í¬PGªº¡uµø®t¡v¡C



¹Ï¤­

¦pªGª½¨¤¤T¨¤§Î GAM ªº¦U¨¤¤§©M¬O 180$^\circ$¡A«h«í¬P G ªºµø®t±N¬O $\angle AGM$¡A¥ç§Y¦a²y­y¹Dªº¥b®| AM ¹ï«í¬P G ©Ò±iªº¨¤¡C¦pªG¤T¨¤§Î AGM ªº¦U¨¤¤§©M¤p©ó180$^\circ$¡A«h«í¬Pªºµø®t±N¤£¬Oµ¥©ó¦Ó¬O¤j©ó¨¤ AGM¡C

¤T¨¤§Î AGM ªº¨¤®t¬O $180^\circ-90^\circ -\angle GAM-\angle AGM$¡A¥¦ÅãµM¸ûµø®t $90^\circ-\angle GAB$ ¬°¤p¡C©ó¬O§Ú­Ì¥i¥H¦ô­p

\begin{displaymath}
\triangle AGM \mbox{{\fontfamily{cwM1}\fontseries{m}\selectf...
...us0.1pt{\fontfamily{cwM4}\fontseries{m}\selectfont \char 207}}
\end{displaymath}

¤Ñ¯T¬P (Sirius)ªºµø®t¤w´ú±o¬°0.38"¡A´¤k¬P(Vergo)¬°0.08"¡C¨ä¹ïÀ³ªº¨¤®t¸ûµø®t¬°¤p¡A¥i¨£¤]¬O«D±`·L¤p¡C´ú¶qµø®t©Ò¥Îªº¤T¨¤§Î¬O«D±`¯Uªº¡A¬G¶È¦³¨º¨Ç¸û»·ªº¤j¤T¨¤§Î¤~¥i¯à¦³¸û¤jªº¨¤®t¡A´N¤Ñ¯T¬P¦Ó¨¥¡AÃäªøAG¬ù¬°AM¤§ªøªº¤­¤Q¸U­¿¡C³o¼Ëªº±¡§Î¡A§Y¨Ï¥¼¨Ó¤HÃþ¹ê²{¤F¤ÓªÅ®È¦æ¡A¯à¨ì¹F¤õ¬P©Î®ü¤ý¬P¡A¤]¤£¥i¯à¦³¤°»ò§ïÅÜ¡C¦]¬°´N¾ã­Ó¤Ó¶§¨tªºª½®|¦Ó¨¥¡A¨ä»P«í¬P¶¡ªº¶ZÂ÷¤ñ¸û°_¨Ó¡A¤´µM¬O¤Ó¤p¡C

¦]¦¹¡A¼Ú´X¨½¼wªº¥­¦æ¤½³]¬O§_¦b¾ã­ÓªÅ¶¡¤¤§¡¯à¦¨¥ßªº°ÝÃD¡A¤´¥¼¯à¸g¥Ñ¹ï¨¤ªºª½±µ´ú¶q¦Ó¸Ñ¨M¡C¤£¹L¡A§Ú­Ì¥²¶·¦b¤ßùØ°O¦í¡AÁöµM®Ú¾Ú¦a²y¬Æ©Î¤Ó¶§¦Ó´ú±oªº¤T¨¤§Î¡A¨ä¦U¨¤¤§©M¬O«D±`ºë½Tªºµ¥©ó 180$^\circ$¡A¦ý¬O¦b¥H¡u¦t©zªº¡v¤j¤p¬°·Çªº¤T¨¤§Î¤¤¡A¨ä¦U¨¤¤§©M´N¥i¯à¤£µ¥©ó³o­Ó¼Æ¦r¡C

1.Kulczyck: ¡mNon-Euclidean Geometry¡n, chapter 1,$\S$5 - $\S$6¡C
2.Struik: ¡mA Concise History of Mathematics¡n, Chapter VIII, 18.

   

¤W­¶¡@1¢x2¡@¤w¦b³Ì«á¤@­¶

¦^­¶­º
 
¡]­Y¦³«ü¥¿¡BºÃ°Ý¡K¡K¡A¥i¥H¦b¦¹ ¯d¨¥ ©Î ¼g«H µ¹§Ú­Ì¡C¡^
EpisteMath

EpisteMath (c) 2000 ¤¤¥¡¬ã¨s°|¼Æ¾Ç©Ò¡B¥x¤j¼Æ¾Ç¨t
¦Uºô­¶¤å³¹¤º®e¤§µÛ§@Åv¬°­ìµÛ§@¤H©Ò¦³


½s¿è¡G¾H´f¤å ³Ì«á­×§ï¤é´Á¡G5/2/2002