­º­¶ | ·j´M

¡D­ì¸ü©ó¬ì¾Ç¤ë¥Z²Ä¤Q¤»¨÷²Ä¤»´Á
¡D§@ªÌ·í®É¥ô±Ð©ó¥x¤j¼Æ¾Ç¨t

¡EµùÄÀ
 

¤G¶µ¤À¥¬»P¤j¼Æªk«h
²z½×»P¹ê»Ú¬Û³s

±ä«G¦N

 
 

¦b¡qÃĮĦp¦ó¡r¡]¡m¬ì¾Ç¤ë¥Z¡n²Ä¤Q¤»¨÷²Ä¤­´Á¡^¤@¤åùØ¡A§Ú­Ì°²³]¬YÃĪºªvÀø²v¬° 0.6¡AµM«áºâ¥X 10 ¤H¤¤¦³ x ¤H²¬Â¡ªº¾÷²v¬° C10x(0.6)x(0.4)10-x¡C³o¬O¤@ºØ¾÷²v¤À¥¬¡F§Ú­Ìªº¥Øªº¬O§â¸ÕÅ窺µ²ªG®³¨Ó©M¦¹¾÷²v¤À¥¬¼Ò«¬¬Û¹ï·Ó¡A¥H¨M©wªv¡²v¬° 0.6 ªº°²»¡¬O§_¦X²z¡C

¤W­±³oºØ¾÷²v¤À¥¬ºÙ¬°¤G¶µ¤À¥¬¡C¤@¯ëªº¤G¶µ¤À¥¬¬O³o¼Ëªº¡G °²³]¬Y¨Æ¥óªºµo¥Í²v¬° p¡A¦Ó¸ÕÅç°µ¤F n ¦¸¡C«h n ¦¸¤¤¡A¬Y¨Æ¥óµo¥Í x ¦¸ªº¾÷²v¬°

b(x;n,p)=Cxnpx(1-p)n-x

³q±`§Ú­Ì§â n¡Bp ©T©w¡AÅý x ÅÜ°Ê¡A¥H¬ã¨s¨ä¾÷²vÅܰʪº±¡§Î¡C³oºØ¾÷²v¤À¥¬¤§ºÙ¬°¤G¶µ¤À¥¬¡C¦]¬°¥¦¥i¸g¥Ñ¤G¶µ¦¡ (p+(1-p))n ªº®i¶}¦¡¦Ó±o¡G

\begin{displaymath}
(p+(1-p))^n=\sum_{x=0}^{n}C_x^np^x(1-p)^{n-x}=\sum_{x=0}^n b(x;n;p)
\end{displaymath}

¡]¤W¦¡ªº¥ªÃäµ¥©ó 1¡F³o¥¿ªí¥Ü¦UºØ¥i¯àªº x ­È¡A¨äµo¥Íªº¾÷²v¤§©M¬° 1¡C¡^ ¦]¦¹¦³Ãö¤G¶µ¤À¥¬ªº²z½×»P­pºâ©M¤G¶µ«Y¼Æ Cxn ªº©Ê½è¦³±K¤ÁªºÃö«Y¡C

Åý x ÅÜ°Ê¡A«h b(x;n,p) Åܤƪº±¡§Î¦p¦ó¡H§Ú­Ì¥H n=10,p=0.6 ¬°¨Ò¡A¦C¦¨¤Uªí

x b(x;10,0.6) x b(x;10,0.6)
0 0.0001 5 0.2007
1 0.0026 6 0.2508
2 0.0106 7 0.2150
3 0.0425 8 0.1209
4 0.1125 9 0.0060

§Ú­Ìµo²{ b(x;10,0.6) ¤§­ÈÀHµÛ x ¤§­È³vº¥¤É°ª¡A¨ì¤F x=6 ®É³Ì¤j¡AµM«á¤S³vº¥Åܤp¡C³oºØ²{¶H¤ð¹ç»¡¬O¹w´Áªº¡A¦]¬° n=10¡Ap=0.6¡A©Ò¥H¹w´Á x=np=6 ³Ì¥i¯àµo¥Í¡A¦Ó x Â÷¶} 6 ·U»··U¤£¥i¯àµo¥Í¡C

¤@¯ëªº n,p ¤]¦³Ãþ¦üªº²{¶H¡Cª½±µ±q¤½¦¡¨Ó¬Ý¡A§Ú­Ì¥i¥H³o¼Ë¸ÑÄÀ¡G$x \leq 1$®É

\begin{displaymath}
\frac{b(x;n,p)}{b(x-1;n,p)}=\frac{n-x+1}{x}\cdot\frac{p}{1-p}
\end{displaymath}

·í x ¤pªº®É­Ô¡A³o­Ó¤ñ­È·|¤j©ó 1¡A¦Ó·í x ¤j¹L¬YºØµ{«×«á¡A³o­Ó¤ñ­È·|¤p©ó 1¡A³o¥uªí¥Ü b(x;n,p) ¤§­È¥Ñ¤pÅܤj¡AµM«á¦AÅܤp¡C¤°»ò®É­Ô¹F¨ì³Ì¤j­È¡H·í¤W­z¤ñ­È¥Ñ¤j©ó 1 Åܦ¨¤p©óµ¥©ó 1 ªº®É­Ô¡C°²³]

\begin{displaymath}
\frac{n-x+1}{x}\cdot\frac{p}{1-p}>1\quad \mbox{{\fontfamily{...
...\char 55}}\quad\frac{n-(x+1)+1}{x+1}\cdot
\frac{p}{1-p} \leq 1
\end{displaymath}

«h np-x>-p ¦Ó $np-x\leq 1-p$¡C¨â¦¡¦X¨Ö±o $1-p \geq np-x>-p$¡C¦]¬° 0<p<1¡A©Ò¥H·í x ¬°¨â­Ó³Ì±µªñ np ¦Vªº¾ã¼Æ¤§¤@®É¡]np ¤£¤@©w¬O¾ã¼Æ¡^¡Ab(x;n,p) ¹F¨ì³Ì¤j­È¡C

§Ú­Ì¥i¥H±q¥t¤@­ÓÆ[ÂI¨Ó¬Ý np ³o­Ó­È¡C¥Ñ©ó§Ú­Ì¦³ b(x;n,p) ªº¾÷²v±o¨ì x ­È¡A©Ò¥H¥­§¡°_¨Ó±o¨ìªº x ­ÈÀ³¬°

\begin{eqnarray*}
& &\sum_{x=0}^{n} xb(x;n,p)\\
&=&\sum_{x=0}^{n} x \frac{n!}{x...
...m_{x=1}^{n-1} \frac{(n-1)!}{x!(n-1-x)!}p^x(1-p)^{n-1-x}\\
&=&np
\end{eqnarray*}


$\mu=np$ ´NºÙ¬°¤G¶µ¤À¥¬ b(x;n,p) ªº´Á±æ­È©Î¥­§¡­È¡C

ÁöµM x ªº´Á±æ­È¬O np¡A¦ý³o¤£´Nªí¥Ü x ­È±`¥X²{¦b £g ­Èªþªñ¡C¤]³\¦³«Ü¦h x ­È¤ñ £g ¤p±o¦h¡A¦Ó¥¿¦n¦³«Ü¦h x ­È¤ñ £g ¤j±o¦h¡A¨â¬Û©è®ø¡A¥­§¡°_¨Ó¡Ax ­È´N¦b £g ªþªñ¡C¬°¤F¦ô­p £g »P p ®t¦h¤Ö¡A¤S­ÝÅU x ­Èµo¥Íªº¾÷²v¡A§Ú­Ì­n¤Þ¶i¤è®t µù1 $\sigma^2=\sum_{x=0}^n(x-\mu)^2 b(x;n,p)$¡A¥¦­nµ¥©ó

\begin{eqnarray*}
&&\sum_{x=0}^n(x(x-1)-(2\mu-1)x+\mu^2)b(x;n,p)\\
&=&\sum_{x=0...
...p)^{n-2-(x-2)}+\mu-\mu^2\\
&=&n(n-1)p^2+np-n^2p^2\\
&=&np(1-p)
\end{eqnarray*}


­Y c ¬°¥¿¼Æ¡A§Ú­Ì­n¦ô­p¦³¦h¤jªº¾÷·|¡A$\vert x-\mu\vert$ ·|¤j©ó c¡C¥Ñ £m ªº©w¸q¡A§Ú­Ì±o

\begin{eqnarray*}
\sigma^2&=&\sum_{\vert x-\mu\vert>c}(x-\mu)^2b(x;n,p)+\sum_{\v...
...c}(x-\mu)^2b(x;n,p)\\
&>&c^2 \sum_{\vert x-\mu\vert>c} b(x;n,p)
\end{eqnarray*}


¦]¦¹§Ú­Ì´N±o¨ì Chebyshev ¤£µ¥¦¡¡G

\begin{displaymath}
(\vert x-\mu\vert>c \mbox{ {\fontfamily{cwM1}\fontseries{m}\...
...}) = \sum_{\vert x-\mu\vert>c} b(x;n,p) < \frac{\sigma^2}{c^2}
\end{displaymath}

°²³] $\epsilon$ ¬°¥¿¼Æ¡A¥O $c=n\epsilon$¡A«h¤W¦¡¥i§ï¼g¦¨

\begin{displaymath}
(\vert\frac{x}{n}-p\vert>\epsilon \; \mbox{{\fontfamily{cwM1...
...2}
=\frac{np(1-p)}{n^2 \epsilon^2}
=\frac{p(1-p)}{n\epsilon^2}
\end{displaymath}

¦]¬°¤W¦¡ªº¥kÃä¤]ÀHµÛ n ¼W¤j¦ÓÁͪñ©ó 0¡A©Ò¥HµL½× $\epsilon$ ­ì¨Ó¦³¦h¤p¡A¥u­n n °÷¤j¡A$\frac{x}{n}$ »P p ¤§®t­n¤j©ó $\epsilon$ ªº¾÷²v´N·|¥ô·N¤p¡A¥ç§Y

\begin{displaymath}
\lim_{n \longrightarrow \infty}(\vert\frac{x}{n}-p\vert> \ep...
...1pt{\fontfamily{cwM7}\fontseries{m}\selectfont \char 48}}) = 0
\end{displaymath}

³o´N¬O©Ò¿×ªº¤j¼Æªk«h¡G¦b¤G¶µ¤À¥¬ªº¾÷²v¼Ò«¬°²©w¤§¤U¡A¥u­n¹êÅ窺¦¸¼Æ n °÷¤j¡A«h¨Æ¥óµo¥Íªº¦¸¼Æ¤ñ $\frac{x}{n}$¡A±q¾÷²vªºÆ[ÂI¨Ó¬Ý¡A´N·|«Ü±µªñ p ­È¡C³o¬O¾÷²v½×µÞªÞªì´Áªº¤@­Ó­«­n©w²z¡A¥¦¥Ñ Jakob Bernoulli¡]1654¡ã1705¦~¡^­º¥ýÃÒ±o§¹¾ã¡A¦Ó¦b¥L¦º«áµoªí©ó1713¦~¡C¥iª`·NªÌ¡AChebyshev¡]1824¡ã1894¦~¡^¬O¤Q¤E¥@¬öªº¼Æ¾Ç®a¡A¥Í¦b Bernoulli ¤§«á¡A§Ú­Ì¥Î¥Lªº¤£µ¥¦¡¤Ï±À Bernoulli ªº¤j¼Æªk«h¬O¦³¹H¾ú¥v¶¶§Çªº¡C¤£¹L Chebyshev ¤£µ¥¦¡«D±`²³æ¡A¦Ó¥B«Ü®e©ö±À¼s¨ì¨ä¥Lªº¾÷²v¤À¥¬¡A¥¿¨¬¥H»¡©ú¤j¼Æªk«hªº°ò¥»©Ò¦b¡C

¤G¶µ¤À¥¬ b(x;n,p) ªº p ¬O­Ó«D±`­«­n¡A¦ý¤£®e©ö²z¸Ñªº·§©À¡CÄ´¦p§Ú­Ì»¡¤@­Ó¡u¤½¥¿¡vªº»ë¤l¨ä¥X²{ 1 ªº¾÷²v¬° $p\frac{1}{6}$¡A¨º¬O°²©w§ëÂY¡u¤½¥¿¡vªº»ë¤l®É¡A1¡B2¡B3¡B4¡B5¡B6 ¥X²{ªº¾÷·|³£¤@¼Ë¡F¤Ï¹L¨Ó»¡¡A¥X²{ªº¾÷·|¤@¼Ë¦h¡A§Ú­Ì¤~»¡»ë¤l¬O¤½¥¿ªº¡C©Ò¥H¡u¤½¥¿¡vªº»ë¤l¬O²z·Qªº¡B¼Æ¾Ç¦¡ªº²£ª«¡A¦]¬°¥u¦³µ¥«Ý¦h¦¸ªº§ëÂY¡A¤~¯à½T©w¬Y­Ó»ë¤l¥X²{¦U¼Æªº¾÷·|¬O§_³£¤@¼Ë¡C

¤SÄ´¦p»¡¡A¬YÃĪºªv¡²v¬O¤°»ò©O¡H§Ú­Ì¤U¯à¸Õ§¹©Ò¦³ªº¤H¥H¨M©w p ­È¡A§Ú­Ì¥u¯à°²©w¦³­Ó p ­È¡A¨Ï±oÃĮĪº¼Æ¾Ú¿í¦æ¤G¶µ¤À¥¬ b(x;n,p)¡C©Ò¥H³o­Ó p ­È¬O©â¶Hªº¡B¥¼ª¾½T­Èªº°²©w­È¡C

Bernoulli ªº¤j¼Æªk«h­º¥ý§â³oºØ°ò©ó©w¸q¡B²z·Q¤¤ªºªº¼Æ¾Ç²£ª« p ©M¹ê»Úªº¡B¹êÅ窺µ²ªG $\frac{x}{n}$ ¬Û³s°_¨Ó¡FÁöµM¤j¼Æªk«h¨Ã¤£«OÃÒªø´Á¹êÅ窺¤ñ­È $\frac{x}{n}$ ¤@©w·|·U¨Ó·U¾aªñ­ì¥ý°²©wªº¾÷²v p¡A¦ý¦Ü¤Ö«OÃÒ³o­Ó¤ñ­È¾aªñ p ­Èªº¾÷²v¡A·|ÀHµÛ¹êÅ禸¼Æ¼W¥[¦Ó¾aªñ 1¡C¤]´N¦]¬°¦³¦¹«OÃÒ¡A§Ú­Ì±`±`¥Hªø´Á¹êÅç©Ò±oªº¤ñ­È¥N´À²z·Q¤¤ªº p ­È¡C§Ú­Ì»¡¬YÃĪºªv¡²v¬° 0.6¡A¨ä©Ò¥Nªíªº·N¸q¥¿¬O¦p¦¹¡C

¤G¶µ¤À¥¬ªº°_·½»P½ä³Õ¦³±K¤ÁªºÃö«Y¡C·íµM¤G¶µ¤À¥¬ªºÀ³¥Î¦Û¤£­­©ó½ä³Õ¡AÃĮĪºÀË©w¡B²£«~¦nÃaªºÀË©wµ¥µ¥²ö¤£¯A¤Î¡C¦¹¥~¤G¶µ¤À¥¬ÁÙ¥i¥H¾É¥X¨ä¥Lªº¾÷²v¤À¥¬¡AµÛ¦Wªº Poisson ¤À¥¬´N¬O¡C³o¥¿¬O§Ú­Ì¤U¦¸ªº¸ÜÃD¡C

 
¹ï¥~·j´MÃöÁä¦r¡G
¡D¤G¶µ¤À¥¬
¡DChebyshev¤£µ¥¦¡
¡D¤j¼Æªk«h
¡DJakob Bernoulli
¡DChebyshev
¡DPoisson¤À¥¬

¦^­¶­º
 
¡]­Y¦³«ü¥¿¡BºÃ°Ý¡K¡K¡A¥i¥H¦b¦¹ ¯d¨¥ ©Î ¼g«H µ¹§Ú­Ì¡C¡^
EpisteMath

EpisteMath (c) 2000 ¤¤¥¡¬ã¨s°|¼Æ¾Ç©Ò¡B¥x¤j¼Æ¾Ç¨t
¦Uºô­¶¤å³¹¤º®e¤§µÛ§@Åv¬°­ìµÛ§@¤H©Ò¦³


½s¿è¡G¦¶¦w±j ³Ì«á­×§ï¤é´Á¡G2/17/2002