¼g¨ì³o¨à§ÚÌ¥i¥H¶}©l¨Ó¤¶²Ð¸³±Ð±Â²¦¥Í¥\¤O¤§©Ò¶°ªº¤@¥»©_®Ñ¤F¡A³o¥»®Ñ¦W¥s¡mµ²ºcªºÃ©w©Ê»P§ÎºA¾Ç¡n1¡C
¤@¤E¤C¤G¦~¥ý¥Hªk¤å¥X®Ñ¡A¤@¤E¤C¤¦~^Ķ§ï¨}¥»¤]¬ÛÄ~°Ý¥@¡A¥þ®Ñ¤Q¤T³¹¤¤¥u¦³²Ä¤³¹Á¿¨ì°ò¥»¼@ÅܽסA¥i¨£§â°ò¥»¼@Åܽ׮³¨Ó¥R·í¸³±Ð±Âªº¾ãÓ¼@Åܽפ¶²Ð¬O«D±`¤£«ê·íªº¡C¸³±Ð±Â´¿¸g¤Þ¤F¤@º¸Ö¨Ó«ü©ú¥L¤ß¤¤©Ò·Q³B²zªº°ÝÃD¡G
¡u¥Í¬¡¦bÁ¼¼Ëªº¥@¬ÉùØ¡A
§ÚÌ¥i¥H¬Ý¨ì;
®ü¤¤ªºªiÀÜ°_¥ñ¡A
©¤Ã䪺°é°éº§º¬
»dã骺¨FÅy
°_¥ñªº¤s¥C
¤Ñ¤Wªº¯B¶³¡A¾Å®Rªº»´·Ï¡K¡K¡C¡v
¨ä¤¤¥Rº¡¤F§ÎºA¾ÇùØ¡A§ÚÌ©Ò·Q°Q½×ªº²³¦h§Î¬Û¡C¸³±Ð±Â©Ò·Qn³B²zªº§Î¬Û¤§ºt
Åܪº°ÝÃD¡A¨ä¹ê¬O¤HÃþ¦Û¥j¥H¨Ó©Ò«ä¦Òªº¤@Ó¤¤¤ß°ÝÃD¡C¾¨ºÞ§Ṳ́´¹ï¨ä³Ì²×
ªº¥»©Ê¤£¬Æ¤FµM¡A¦ý¬OµL¥i§_»{¡A§ÚÌÂǵÛÆ[¹î©Ò¨£¨ìªº¦t©z¬O¤@Ó¥¿¦b¹B
¦æ¡A¥ÃùÚÅܰʪº¦t©z¡A¦UºØ§Î¬Û¤£°±¦a¦bÅã²{¡Aºt¤Æ²×¤SÁÍ©ó·´·À®ø¥¢¡C¦b¿ùºî¯É
¶Ãªº²{¶H¤§¤UÁôÁô§t¦³¯´§Ç»P±ø²z¡A¦ý«o¤S±`±a¦³¤£½T©w©Êªº¦¨¤À¡A©ÎªÌ
¯A¤Î¤£³sÄòªº¬ðµMªº¼@ÅÜ¡C¸³±Ð±Â©Ò³Ð¥Îªº³B²z³o¨Ç²{¶HªºªkÄ_«K¬O¥L©Ò¿×ªº§½
³¡¼Ò«¬ (local model)¡A§Ú̳o¨à¥u¥Î¤@ӳ̲³æªº¨Ò¤l¨ÓÁ¿¤@ӳ̲³æªº
§½³¡¼Ò«¬¡C
º¥ý¦pªG¥ÎRªí¥Ü©Ò¦³ªº¹ê¼Æ¡A¦Ó¥ÎL(R,R)¥Nªí©Ò¦³¥i·L¨ç¼Æf(x)¥þ
Åé¡C(¹Ï¤T)¨Ò¦p¤@Ó¦h¶µ¦¡¹³P(x)=Pa(x)=
¡A«K¬O¥i·L
¨ç¼Æ¡A¥¦ªº¾É¼Æ¬OP'(x)=x2+a¡C¦pªG¥H ¥NªíµL½a¤j«h
= ,P(0)=0, = ¡A¦]¦¹¨ç¼Æ¦±½uy=P(x)¥i¯à±q
¥¿µL½a¤j¤@ª½»¼°¨ì¹s¡A¦A¤@ª½»¼°¨ìtµL½a¤j¡A³o®É¨ç¼Æ¦±½u®Ú¥»¨S¦³¤°»ò·¥¤j
©Î·¥¤p¡C¦ý¬O¤]¦³¥i¯ày=P(x)¦³¤@Ó·¥¤p¥H¤Î¤@Ó·¥¤j¦p¹Ï©Ò¥Ü¡C¦³¤@Ó«Ü
²³æªº¤èªk¯à¤À¿ë¤Wz³o¨âºØ¤£¦Pªº±¡§Î¡A§ÚÌ¥u»Ý¸Ñ¤èµ{
¦¡P'(x)=x2+a=0¡A¥i±o¦p¤Uµ²ªG¡G
- ·í a>0 ®É x2 = -a<0¡A¬G x ¨S¦³¹ê®Ú¡A´«¨¥¤§¡A·í a>0¡Ay=P(x) ¨S¦³¥ô¦ó·¥¤j©Î·¥¤p¡C
- ·í a<0¡A«h x2 = -a>0¡A¬G
¬°¨âÓ¹ê®Ú¡A ¬O Pa(x)ªº·¥¤p¡A
¬°¨ä·¥¤j¡C
- ·í a=0 ®É x=0 ¬°«®Ú¡A´«¨¥¤§¡A·¥¤j¸ò·¥¤p¦] a Áͪñ©ó 0 ¦Ó·U¨Ó·U±µªñ¡A²×©ó¤¬¬Û¸I¼²¦Ó®ø¥¢¡C
³q±`¦b¼Æ¾Ç¤W§Ú̳ßÅw»¡ a<0 ¤§ Pa(x) »P a>0 ¤§ Pa(x) ¨ã¦³
¤£¦Pªº©Ý¾ë«¬(topological type)¡A¦]¬°«eªÌ¨ã¦³·¥¤j»P·¥¤p¡A¦ý¬O«á
ªÌ«o¨S¦³¡C¦pªGPa(x)¤¤¤§a¤p©ó¹s¡A«h¥una'»Pa¨¬°÷±µªñªº¸Ü
¡Aa'¤´¤p©ó¹s;¦]¦¹Pa'(x)¦P¼Ë¦³Ó·¥¤j»P·¥¤p¡A¦Ó»PPa(x)¨ã¦³
¦P¼Ëªº©Ý¾ë«¬¡CÃþ¦üªº¦pªGPa(x)¤¤ªºa¤j©ó¹s¡A«h¥una'»Pa¨¬°÷
±µªñªº¸Ü¡Aa'¤´¤j©ó¹s¡A¦]¦¹Pa'(x)¦P¼Ë¨S¦³·¥¤j·¥¤p¡A¦Ó»PPa(x)
¨ã¦³¦P¼Ëªº©Ý¾ë«¬¡C³o¼ËªºPa(x)´N¥s°µ(¦b§ÚÌ©Ò¦Ò¼{ªº¦h¶µ¦¡¤¤)¨ã¦³µ²ºcªºÃ©w©Ê¡C¦ý¬O·ía=0®É¡A±¡§Î«o¤j¤j¤£¦P¡A¦]¬°µL½×¨úa'¦p¦óªº±µªñ
0¡Aa'¥i¯à¬O¥¿¡A¤]¦P¼Ë¥i¯à¬Ot¡A¦]¦¹P0(x)ªþªñÁ`¦³¨ã¦³¤£¦P©Ý¾ë«¬
ªº¨ç¼ÆPa'(x)¡A§ÚÌ´N»¡P0(x)ªºµ²ºc¤£Ã©w¡A³o¼Ëªº¨ç¼Æ´N¥s°µ
¬OÓ¤Àª[¨ç¼Æ(bifurcation function)¡C¦b¥i·L¨ç¼ÆªÅ¶¡L(R,R)¤¤§Ú̦³«Ü
ºë½Tªº¤èªk¯à©w¸q¨âÓ¨ç¼Æn¦p¦ó¤~ºÙ¬°¨ã¦³¬Û¦Pªº©Ý¼³«¬¡A¤S¦p¦ó¤~¨ã¦³µ²ºcªº
éw©Ê¡A§ÚÌ´N¥i¥H§âL(R,R)¤¤©Ò¦³µ²ºc¤£Ã©wªº¨ç¼Æ¥þÅéHºÙ¬°L(R,R)ªº¤Àª[¤l
¶°¡C
¹Ï¤T
|
°²³]¬YÓ¹Lµ{(process)µo¥Í¦b®ÉªÅ¤¤ªº¤@Ó¤l¶°WùØ¡A¬°¤F´yz³oÓ¹L
µ{¡A§Ú̦Ҽ{¬M®gg:W L(R,R)¡A¹ïW¤¤¤§¨C¤@ÂIy«ü©w¤@Ó
L(R,R)¤¤ªº¨ç¼Ægy(x)¡A¦Ó¥Bn¨D³o¼Ë«ü©wªºgy(x)¹ïy¦bW¤¤ªºÅܤƦÓ
¨¥»Ýn¬O¥i·L¤Àªº¡C§ÚÌ´N»¡g¬O¤@ÓW¤WªºÀRºA³õ(static field)¡A¥¦¬OÓ
¥Î¨Ó´yz©Ò¦Ò¼{¤§¹Lµ{ªºÀRºA¼Ò«¬(static model)¡C¨Ò¦pY¨úW³æ³æ¥Nªí¤@±ø¼Æ
¶bR¡A«h¥i¥H¦Ò¼{P:R L(R,R)¡A§â¥ô·N «ü
©w¬°Pa(x)=
¡A¦]¦¹P´N¬OR¤Wªº¤@ÓÀRºA³õ¡C
¹ï©ó³oÓ¯S§OªºÀRºA³õ¦Ó¨¥¡Aa=0 ³oÂI¬OÓ¯S§OªºÂI¡A¦]¬°³o®É P ©Ò«ü©wªº¨ç¼Æ P0(x) ¬OÓ¤Àª[¨ç¼Æ¡A¥¦ªºµ²ºc¬O¤£Ã©wªº¡C§Ú̳ßÅw»¡³o¼ËªºÂI¬O§ÚÌÀRºA³õ¤¤ªº¤@Ó¼@ÅÜÂI (catastrophe point)¡Cì¦]«Ü²³æ¡A§Ú̦pªG§â P(x) ·Q¹³¦¨¬OÓ¦ì¨ç¼Æ (potential function)¡A«h¦ì¨ç¼Æªº·¥¤p±`¥Nªí¬YºØéwªº¥¿Å¦Ó¨ã¦³ª«²z·N¸q¡C´«¨¥¤§¡A¦pªG¦b¬YÂI a ©Ò«ü©wªº Pa(x) ¨ã¦³¤@Ó·¥¤p¡A¨º»ò§ÚÌ´N¸ÑÄÀ»¡¦b³o¤@ÂI§ÚÌÆ[¹î¨ì¤F¬YºØª«²z²{¶H¡A¤Ï¹L¨Ó¡A¦pªG¦b¬YÂI a ©Ò«ü©wªº Pa(x) ®Ú¥»´N¨S¦³·¥¤p¡A§ÚÌ´N¸ÑÄÀ»¡³o®É§Ú̮ڥ»¨S¦³Æ[¹î¨ì¥ô¦óª«²z²{¶H¡C¦b§Ú̳o¨Ò¤l¤¤¡A¦pªG¯S§O¥O a ¥Nªí®É¶¡¡A«h a ¸g 0 ÂIÅܨìtÈ¡A´N¥Nªí¬YºØª«²z²{¶H¦b a=0 ®É¬ðµMªº¥X²{¡A
Y a ¸g 0 ÂIÅܨ쥿ȡA´N¥Nªí¬YºØª«²z²{¶H¦b a=0 ®É¬ðµMªº®ø¥¢¡A¦]¦¹ a=0 ³oÂI´N¬O¤@Óµo¥Í¬ðµM¼@¯PÅܰʤ§ÂI¡A©ÎºÙ¬°¼@ÅÜÂI¡C
¸³±Ð±Â®Ñ¤¤ªº²Ä¤@³¹¨ì²Ä¥|³¹ùؤj¶q¦a¹B¥Î³Ì²{¥Nªº¼Æ¾Ç¤u¨ã»P³N»y¦Ò¼{ÀRºA¼Ò«¬¡AÁÙ¦³°ÊºA¼Ò«¬ (metabolic model) ¥H¤Î¦UºØªººc³y¡C¥L¤S¯S§O¹B¥Îµ²ºcéw©Êªº¦Ò¼{¨ÓÀò±o§½³¡¼Ò«¬¤¤©Ò¥²»Ý¯S§Oª`·Nªº¡AW ¤¤©Ò¦³ªº¼@ÅÜÂIªº¶°¦XK¥H¤Î¨ä©Ý¾ëµ²ºc¡C¦pªG¤@Ó¤H¨ã¦³¾A·í·L¤À©Ý¾ë (differential topology) ªºª¾ÃÑ¡A¨º»ò³o¥|³¹¨Ã¤£¤ÓÃøÀ´¡C«e±¤w¸g´£¤Î²Ä¤³¹Á¿¨ì¥|ºû®ÉªÅ¤¤°ò¥»¼@Åܽ×ùتº¤CºØ°ò¥»¼@Åܼҫ¬¡C±q²Ä¤»³¹¶}©l¸³±Ð±Âº¥º¥ªº§â¼@Åܽ×À³¥Î¨ì¥Íª«¾Ç¤§¤¤¡C¯S§O±q²Ä¤E³¹¶}©lÅܱo¤Q¤ÀÃøŪ¡A¦ý«o¤S¤Q¤À§l¤Þ¤H¡C¥L»{¬°¡A¦p¦P§ÚÌ¥i¥H§âª«½è¬Ý¦¨¬O¤@Ó¯à¶q³õ¤¤Ã©wªº©_²§ÂI (singularity)¡A§Ṳ́]¥i¥H§â©Ò¦³¥Íª«ªºÓÅéµø¬°¬O¤@ӥͩR§ÎºA³õ (morphogenetic field) ¤¤Ã©wªº©_²§ÂI¡C¥L³ßÅw§â³oӥͩR§ÎºA³õºÙ¬°logos¡A³o logos ½Ķ¥X¨Ó´N¬O¡u¹D¡v¡A´N¬O
¡uK o
¡v
¡]¹D¦¨¤F¦×¨¡^¤¤ªº¡u¹D¡v¡A¦]¦¹¥L´N§â³o¤@¥y¬ù¿«ºÖµ¤¤ªº¸g¸`®³¨Ó°µ¬°¥Lªº²Ä
¤E³¹ªº¤l¼ÐÃD¡C¦Ó¦b²Ä¤E³¹¤¤¥L³Ð³y¤@Ӭݨӫܤ£¿ùªºFL¾Ç¤¤ªº§½³¡¼Ò«¬¡AµM
«áÂà¦Ó¹B¥Î¦b²Ä¤Q³¹¤¤¥H³Ð³y¥Íª«ÓÅ骺¤j°ì¼Ò«¬¡C³Ì«áªº¤T³¹¯d¤U¨Ó±´°Q¥Íª«
¾Ç¤¤¤@¨Ç°ò¥»ªº°ÝÃD¡A¥H¤Î§â¼@Åܽקó¼sªx¦a¹B¥Î¨ì»y·N¾Ç¤Î¨ä¥L½ÒÃD¤§¤¤¡C
»¡¹ê¦bªº¡A³o¬O¤@¥»«ÜÃøªº®Ñ¡A·Qn§¹¥þŪ³q´X¥G¬O¤£¥i¯àªº¨Æ¡C¦ý¬O®Ñ¤¤«o
¤]¥]§t¤£¤Ö¤ñ¸û¤£¨º»òÃøÀ´¡A¦Ó¥B¤w¨¬°÷ŪªÌ§uµúÅé·|¤£¤îªº³¡¥÷¡C³o¥»®Ñ¤¤
ªº¤@¨Ç°ò¥»Æ[ÂI¤Î§V¤OÀ|¸Õ·Q§¹¦¨ªº¥Ø¼Ð¡A¨ä¹ê¦³¨Ç¦¦b¼Æ¤d¦~«e´N¦³¥j¤H
³o¼Ë·Q¹L¡A¥u¤£¹L¨º¨Ç¥j¤H¹B®ð¤£¦n¡A¨S¦³²{¥Nªº¼Æ¾Ç¹³·L¤À©Ý¾ëªºª¾ÃÑ
¥i¥Î¡A©Ò¥HÁ¿°_¨ÓÁ`¬O¨Ç¡uªÅ¸Ü¡v¡C¦ý¬O¸³±Ð±Â«oºIµM¤£¦P¡A¥L¤£¶È¨ã³Æ²{
¥N¼Æ¾Ç¦U»â°ìªºª¾ÃÑ¡A¦Ó¥B´N·L¤À©Ý¼³¦Ó¨¥§ó¬O¼Æ¤@¼Æ¤Gªº°ª¤â¡C¨Ò¦p¥L©Ò³Ð¥Îªº¦P
¹Ò(bordism)ªºÆ[©À«K³Q³¯¬Ù¨±Ð±ÂºÙÅA¬°²{¥N³Ì°¶¤j¤S«nªº¼Æ¾ÇÆ[
©À¤§¤@¡C©ó¬O¥L¥R¤À¦a¹B¥Î³o¨Ç¤u¨ã¦Ó§â¤@¨Ç¥j¤Hªº·QªkÁ¿±o»ô³Æ¡C¦]¦¹
¥L³ßÅw»¡¥L¦Û¤vªº¤@¨Ç¤u§@¥u¬O¥j¤H«ä·Q¡u»»»·ªº°jÅT¡v(distant echo)¡C
³o¬O¤@¥»«Ü¦³½ìªº©_®Ñ¡A³o¥»®Ñ´¿¸g¤Þ°_¤£¤ÖªºÄ³½×»Pª§°õ¡A«o¤]¤Þ°_¦P
¼Ë³\¦hªºÆg¬ü»P±À±R¡C¦³¨Ç¤H§â¥¦©^¬°¦c¯o¡A¦ý¦³¨Ç¤H«o»{¬°¸ò¥L¡u¹D¤£¦P¤£¬Û¬°
¿Ñ¡v¡C¤£¹LµL½×¦p¦ó¡Aº¥º¥ªº³o®Ñ¤w¶}©l±o¨ì§ó¦h¤Hªº³ß·R¡BÁA¸Ñ»P«µø¡C§ó¦hªº¤H¦P·N
³o¬O¥»¶W¶V§Ú̳o®É¥N¤Ó»·ªº¹dµÛ¡A§ó¦hªº¤H²`«H¸³±Ð±Â¦b³o®ÑùØ©Ò§V¤O³Ð¾É
ªº³o¤@®M²©R©Êªº¼Æ¾Ç«ä¼é±N§Î¦¨¤@ªÑ·U´é·U²±ªº¬u·½¡A´þ¼í¦ÛµMõ¾ÇÂ׵ͪº
¶é¦a¡C¦p¦P¬Û¹ï½×¸g¹L¤F³o»ò¦h¦~¡A²×©ó³Q¤j®a©Ò¼Ö·N±µ¯Ç¡A¤]³\¸g¹L¤@¨â
¥N¤§«á¡A¸³±Ð±Âªº¼@ÅܽײױN¤]³Q´¶¹M±µ¯Ç¡A¤S³Qµo´¥ú¤j¡C¸³±Ð±Â¹ï©ó³o¤@ÂI
¥Rº¡¤F«H¤ß¡C
ì¬ì¤ë½sªÌ«ö¡G¼Æ¾Ç¦bªÀ·|¬ì¾Ç¤Wªº¹B¥Î¥»¨Ó¤]¦³¤@¨Ç¡CÄ´¦ppºâ¤èªk¡Bp¶q¤èªk¡]¦pp¶q¸gÀپǡ^µ¥¡F¤SÄ´¦p²Îp¡B©ÎµM²v¡B¹Ï§Î¡B·L¿n¤À¡]¦p³B²z·¥¤j¡B·¥¤p¡^µ¥¡A¦b³B²z©w©Ê¤è±ªº°ÝÃD³£¦³¬Û·íªº¦¨´N¡C¥u¬O¹ï¤£³sÄò²{¶H¡]¤£½×µo¥Í¦bªÀ·|¬ì¾Ç¡B¥Íª«¬ì¾Ç©Î¦ÛµM¬ì¾Ç¡^ªº¬ã¨s«o¤@ª½¨S¦³«Ü¦³¤Oªº¤u¨ã¡C¼@Åܽשγ\¯àÀ±¸É³o¤è±ªº¯Ê¾Ñ§a¡I
- 1. René Thom, ¡mStructural Stability and Morphogenesis¡n, 1975. Benjamin Inc.
- 2. R. Thom, ¡qLa Theorie des Catastrophes: Etat present et Perspectives¡r, Dynamical Systems-Warwick 1974. Springer Notes # 468.
- 3. E.C. Zeeman, ¡qCatastrophe Theory: A reply to Thom¡r, Same as (2).
- 4. E.C. Zeeman, C.A. Isnard, ¡qSome Models from Catastrophe Theory in the Social Sciences¡r, Warwick Notes.
- 5. J. Croll, ¡qIs Catastrophe Theory Dangerous?¡r New Scientist, 17. June, 1976.
- 6. ¿½ªY©¾¡A¡m¼@Åܽ׺tÁ¿¶°¡n¡A²H¦¿¼Æ¬ã©Ò¡A1976.
|