­º­¶ | ·j´M

¡D­ì¸ü©ó¬ì¾Ç¤ë¥Z²Ä¤G¨÷²Ä¤K´Á
¡D§@ªÌ·í®É¥ô±Ð©ó¥x¤j¼Æ¾Ç¨t
 

¨ß¤l¡B»ñ±ù¡B¦V¤é¸ª¡B©¬¼w¯à¼q¡B¥¿¤QÃä§Î¡BÆxÄMÁ³

±ä«G¦N

 
 

³o¬O¤°»ò©ÇÃD¥Ø¡H«ç»ò·|Â\¦b¼Æ¾Ç½ì¨ý³o¤@Äæ¡H®£©È©ñ¿ù¤F¦a¤è§a¡I¨S¿ù¡Aµ´¹ï¨S¿ù¡I¥BÅ¥§ÚºCºC¹D¨Ó¡C ¤Q¤T¥@¬öªº·N¤j§Q¼Æ¾Ç®a¶O§B¯Ç¦è(Fibonacci)¼g¤F¤@¥»®Ñ¥s°µ¡mLiber abacci¡n¨º¬O°Ó¥Îªººâ³N©M¥N¼Æ¤â¥U¡C¦b³o¥»®ÑùØ¡A¥L´£¥X¤F³o»ò¤@­Ó¦³½ìªº°ÝÃD:°²©w¤@¹ï¨ß¤l¦b¥¦­Ì¥X¥Í¾ã¾ã¨â­Ó¤ë¥H«á¥i¥H¥Í¤@¹ï¤p¨ß¤l¡A¨ä«á¨C¹j¤@­Ó¤ë¤S¥i¥H¦A¥Í¤@¹ï¤p¨ß¤l¡C°²©w²{¦b¦b¤@­ÓÅ¢¤l¸Ì¦³¤@¹ï¤j¨ß¤l©M¥¦­Ì­è¥Í¤U¨Óªº¤@¹ï¤p¨ß¤l¡A½Ð°Ý¤@¦~¥H«áÅ¢¤lùØÀ³¸Ó¦³´X¹ï¨ß¤l¡H

Åý§Ú­ÌºCºC¦aºâ¤@¤U¡C¤@¤ë©³¡A¤j¨ß¤l¤S¥Í¤F¤@¹ï¤p¨ß¤l¡A¦ý¬O²Ä¤G¥Nªº¨º¹ï¤p¨ß¤lÁÙ¨S¦¨¼ô¡AÁÙ¤£¯à¥Í¤p¨ß¤l¡A©Ò¥HÁ`¦@¦³¤T¹ï¡C ¤G¤ë©³¡A²Ä¤@¡B¤G¨â¥Nªº¨â¹ï¨ß¤l¦U¥Í¤F¤@¹ï¤p¨ß¤l¡A³s¦P¤@¤ë©³©Ò¦³ªº¤T¹ï¡A²{¦b¤@¦@¦³¤­¹ï¤F¡C¤T¤ë©³¡A¦b¤@¤ë©³¤w¸g¦³ªº¤T¹ï¨ß¤l¦U¥Í¤@¹ï¤p¨ß¤F¡A³s¦P¤G¤ë©³©Ò¦³ªº¤­¹ï¨ß¤l,²{¦b¤@¦@¦³¤K¹ï¤F¡C ¨Ì¦¹Ãþ±À¡A¨C­Ó¤ë©³©Ò¦³ªº¨ß¤l¹ï¼ÆÀ³¸Óµ¥©ó«e¤@­Ó¤ë©³©Ò¦³ªº¨ß¤l¹ï¼Æ¡]¤]´N¬O­ì¦³ªº¨ß¤l¹ï¼Æ¡^¥[¤W«e¨â­Ó¤ë©³©Ò¦³ªº¨ß¤l¹ï¼Æ¡]³o¨Ç¨ß¤l¦U¥Í¤F¤@¹ï¤p¨ß¤l¡^¡C©Ò¥H¨C­Ó¤ë©³ªº¨ß¤l¹ï¼ÆÀ³¸Ó¬O3¡B5¡B8¡B13¡B21¡B34¡B55¡B89¡B144¡B233¡B377¡B610¡B¡K¡A¨C¤@¶µ³£¬O«e¨â¶µ¤§©M¡C²{¦b°²©w¤Q¥|¥N¦P°ó¡A¨º»ò¤@¦~«áÅ¢¤l¸ÌÀ³¸Ó¦³610¹ï¨ß¤l¤F¡C

¶O¤ó¥»¤H¹ï³o­Ó¼Æ¦C¨Ã¨S¦³¦A°µ¶i¤@¨Bªº±´°Q¡Cª½¨ì¤Q¤E¥@¬öªì¤~¦³¤H¸Ô¥[¬ã¨s¡A¨ä«á¦U¤è­±ªº¤å³¹´N¹³¶O¤óªº¨ß¤l¤@¼Ë¨³³t¦a¼W¥[¡A¦Ó 1¡B1¡B2¡B3¡B5¡B8¡B13¡B21¡K³o­Ó¼Æ¦C´N³Q¥s°µ¶O¤ó¼Æ¦C¡]³Ìªìªº¨â¶µ¥Nªí³Ì¶}©lªº¤@¹ï¤j¨ß¤l©M¤@¹ï¤p¨ß¤l¡^¡C²{¦bÅý§Ú­Ì¬Ý¬Ý¶O¤ó¼Æ¦C¨ì©³©M¦V¤é¸ª¡B©¬¼w¯à¼q¡B¥¿¤QÃä§Î¡BÆxÄMÁ³µ¥µ¥¦³¨Ç¤°»òÃö«Y¡G

¬°¤è«K°_¨£¡A§Ú­Ì¥Î Fn¡]$n \geq 0$¡^ªí¥Ü¶O¤ó¼Æ¦Cªº²Ä n ¶µ¡AÄ´¦p F7=21 ªí¥Ü¶O¤ó¼Æ¦Cªº²Ä¤C¶µ¬O 21¡C²{¦b§â¨C¤@¶µ¥Î«e¤@¶µ¨Ó°£¡A±o¤@­Ó·s¼Æ¦C¡G

\begin{displaymath}
\begin{array}{ll}
{\displaystyle
\frac{F_1}{F_0} =\frac{1}{1...
...playstyle
\frac{F_9}{F_8} =\frac{55}{34}=1.618, } &
\end{array}\end{displaymath}

³o¤£¬O«Ü©_©Ç¶Ü¡H·s¼Æ¦C¦n¹³Áͪñ¬Y­Ó©w­È $1.61\cdots$¡CÅý§Ú­Ì¥Î Gn ªí¥Ü·s¼Æ¦Cªº²Ä n ¶µ $\frac{F_{n+1}}{F_n}$¡C¦]¬°¶O¤ó¼Æ¦C¤¤ªº¨C¤@¶µ³£¬O«e¨â¶µ¤§©M¡A©Ò¥H Fn=Fn-1+Fn-2¡C¨º»ò

\begin{displaymath}
G_n=\frac{F_{n+1}}{F_n} = \frac{F_{n}+F_{n-1}}{F_n}
=1+\frac{F_{n-1}}{F_n}=1+\frac{1}{G_{n-1}}
\end{displaymath}

¥Ñ $G_n=1+\frac{1}{G_{n-1}}$ ³o­ÓÃö«Y¦¡¡A§Ú­Ì¥i¥HÃÒ©ú Gn ¬OÁͪñ¨ì¤@­Ó©w­Èªº¡]ÃÒ©úªº¹Lµ{­n¶O¤@ÂI¤â¸}¡A¦b¦¹¤£´£¡C¡^¡A§Ú­ÌºÞ³o­Ó©w­È¥s°µ £p ³o´N¬O»¡¡A ·í n ·U¤j®É¡AGn ©M £p ¤§®t´N·U¤p¡A¦Ó Gn-1 ©M Gn ¤§®t¤]¥i¥H¤p¦Ó¤£­p¡C©Ò¥H¥Ñ $G_n=1+\frac{1}{G_{n-1}}$ ³o­Ó¦¡¤l§Ú­Ì¥i¥H±À±o $\varphi=1+\frac{1}{\varphi}$¡]ÄY®æªºÃÒ©ú¶·­n¦³²M·¡ªº·¥­­Æ[©À¡C¡^¡A¦Óºâ±o $\varphi=\frac{\sqrt{5}+1}{2}$¡C

¶®¨åªº©¬¼w¯à¼q (Parthenon at Athens) ²øÄY¡B§»°¶¡Bµ¹¤H¥H¬üªº·Pı¡A³Q»{¬°¬O¥j§Æþ³Ì°¶¤jªº«Ø¿v¤§¤@¡C¬°¤°»ò¥¦·|Åã±o¨º»ò©M¿Ó¡C¦³¤H»¡¥¦ªº¼e«×©M°ª«×¥¿¦X©ó¶Àª÷«ß¡C

¤°»ò¬O¶Àª÷«ß?¨º´N±o¥ý±q¶Àª÷¤À³Î½Í°_¡C¦p¹Ï¤@¡A°²¦p $\frac{AB}{AC}=\frac{AC}{BC}$¡A¨º»ò´N»¡CÂI§â½u¬qAB¶Àª÷¤À³Î¤F¡C»{§Ú­Ì¨Óºâºâ $\frac{AB}{AC}=\frac{AC}{BC}$³o­Ó¤ñ­È:

\begin{displaymath}\frac{AC}{BC}=\frac{AB}{AC}=\frac{AC+BC}{AC}=1+\frac{1}{\frac{AC}{BC}}\end{displaymath}

³o­Ó¤ñ­È¤£´N¬O«e­±©Ò¨Dªº£p¶Ü?¥¿¬O¡A¤@ÂI¤£¿ù¡A§Ú­Ì¥s¥¦°µ¶Àª÷¤ñ­È(Golden Ratio)¡C³ø¯È¡B®Ñ¥»«×©M¼e«×¤§¤ñ©¹©¹±µªñ³o­Ó¤ñ­È¡A¤j·§¬O¦]¬°¦b³o­Ó¤ñ¨Ò¤§¤U¡A¥¦­Ì¬Ý°_¨Ó«Ü¶¶²´¡A«Ü©M¿Ó§a!«Ø¿v©Møµe¤è­±¤]±`§Q¥Î³o­Ó¤ñ­È¨Ó¤Þ°_¬üªº·Pı¡A³o´N¥s°µ¶Àª÷«ß¡C



¹Ï¤@

¾ú¥v¤W¡A¥¿¦hÃä§Îªº§@¹Ï«Ü¤Þ°_¤H­Ìªº¿³½ì¡A¦P®É¦b¼Æ¾Ç¤W¤]¦û¬Ý¬Û·í­«­nªº¦a¦ì¡C§Ú­Ì¨Ó½Í½Í¥¿¤QÃä§Îªº§@¹Ï§a!



¹Ï¤G

¦p¹Ï¤G¡A°²©wOÂI¬O¥¿¤QÃä§Îªº¤ß¡A¨º»òOAB¬O­Óµ¥¸y¤T¨¤§Î¡A¥¦ªº³»¨¤ $\angle AOB=36^{\circ}$¡A ©³¨¤ $\angle OAB=\angle OBA=72^{\circ}$¡A§@$\angle OBA$ªº¤À¨¤½uBC¡A«h¥Ñ¨¤«×ªº­pºâ±oª¾OC=BC=AB¡C ¤S¦]$\triangle BCA$©M$\triangle OAB$¬Û¦ü¡A±o $\frac{OA}{BC}=\frac{AB}{AC}$¡A ©Ò¥H $\frac{OA}{OC}=\frac{OC}{AC}$,³o´N¬O»¡CÂI±NOA¶Àª÷¤À³Î¤F¡C¦pªGµ¹¤@­Ó¤@©wªºªø«×OA¡A §Ú­Ì¯à°÷¨D¥XAB(=OC)¡A¨º»ò$\triangle OAB$´N¥i¥H§@¹Ï¡A¦Ó¥¿¤QÃä§Îªº§@¹Ï¤]´N§¹¦¨¤F¡C

¦ý¬O«ç»ò¼Ë§â¤@½u¬qAB¶Àª÷¤À³Î©O?(¹Ï¤T)¡A¤Þª½½uBD««ª½©óAB¡A¥O $BD=\frac{1}{2}AB$¡A³s±µAD¡A ¦bAD¤W¨úDE=BD¡A¦bAB¤W¨úAC=AE¡A«hCÂI´N§âAB¶Àª÷¤À³Î¤F¡C



¹Ï¤T

ªø©M¼e¤§¤ñ¬° £p ªºªø¤è§Î¥s°µ¶Àª÷ªø¤è§Î¡C³oºØªø¤è§Î¦³³\¦h©_©Çªº©Ê½è¡C°²¦p§Ú­Ì±q¶Àª÷ªø¤è§Î ABCD ªº¤@ºÝ§â¤p¥¿¤è§Î ABEF ¥h±¼¡]¹Ï¥|¡^¡A³Ñ¤Uªº CDEF ÁÙ¬O¤@­Ó¶Àª÷ªø¤è§Î¡C¥Î¦P¼Ëªº¤èªk¡A¥i§O³vº¥¨B¥h±¼³\¦h¥¿¤è§Î¦Ó±o¨ì·U¨Ó·U¤pªº¶Àª÷ªø¤è§Î¡A¦Ó¶Àª÷¤À³ÎÂI F,H,I,J,K,L, ¡K ³£±Æ¦b¤@­Óµ¥¨¤Á³½u¤W¡AÁ³½uªº¤ß¥¿¦n¬O¨âµê½u AC ©M DE ªº¥æÂI¡C©Ò¿×µ¥¨¤Á³½u¡]¹Ï¤­¡^´N¬O¦V®|©M¤Á½uªº¥æ¨¤¥Ã»·¤£Åܪº¦±½u¡CÆxÄMÁ³ªº¥~´ß¡B¶H»ó¡B¦Ï¨¤¡BÆxÄMªº¤ö¤lµ¥µ¥³£¬O¦¨µ¥¨¤Á³½u§Îªº¡C



¹Ï¥|



¹Ï¤­

¥J²ÓÆ[¹îÂúµâªá¿¶ªº±Æ¦C¡A§A·|µo²{¥¦­Ì¤]¬O¦¨µ¥¨¤Á³½u§Î¡C³oºØ±Æ¦C¥i¥H¦³¨âºØ¬Ýªk¡G¥ª±Ûªº©M¥k±Ûªº¡C¤j³¡¥÷Âúµâªº¥ª±Û¼Æ©M¥k±Û¼Æ¬O21©M34¡A¥¿¬O¶O¤ó¼Æ¦Cªº¬Û¾F¨â¶µ¡CªQªG¡B»ñ±ùªºÅì¤ù¤]¦³Ãþ¦üªº±Æ¦C¡A¦Ó±Æ¦C¼Æ¦U¬° 5 ©M 8 ¥H¤Î 8 ©M13¡A¤]¬O¶O¤ó¼Æ¦Cªº¬Û¾F¨â¶µ¡C¦V¤é¸ª¤]¬O¤@¼Ë¡]¹Ï¤»¡^¡A³q±`¥ª±Û¼Æ©M¥k±Û¼Æ¦U¬°34©M55¡A§ó¤jªº¦V¤é¸ª«h¦³89©M144¡A¬Æ¦Ü144©M233ªº±Æ¦C¼Æ¡A³£¬O¶O¤ó¼Æ¦C¤¤¬Û¾Fªº¨â¶µ¡C



¹Ï¤»

1960¦~¥ª¥k¡A³\¦h¼Æ¾Ç®a¹ï¶O¤ó¼Æ¦C©M¦³Ãöªº²{¶H«D±`·P¨ì¿³½ì¡A¤£¦ý¦¨¥ß¤F¶O¤ó¾Ç·|¡A¦b1963¦~©~µMÁٳпì¤F¡m¶O¤ó©u¥Z¡n¡A°µ¬°·|­ûµoªíÆ[¹îµ²ªG©M­Ó¤H¤ß±oªº¶é¦a¡A¬O¤@¥÷¬Û·í¾Ç³N©Êªº¥Zª«¡C¦³¤H»¡¥¼º¸¦N (Vergil) ©M¨º®É­Ôªº³\¦hù°¨¸Ö¤H¸g±`¦b¥L­Ìªº§@«~ùØÀ³¥Î¶O¤ó¼Æ¦C¡F¬Æ¦Ü¿ûµ^ªºµ^Áä¦b¤@­Ó¤K«×­µ¤§¶¡¦³¶ÂÁ䤭­Ó¡A¥ÕÁä¤K­Ó¡I¶O¤ó¼Æ¦C¨ì³B¥i¨£¡C

¶O¤ó¼Æ¦C¬Û¾F¨â¶µªº¤ñ­ÈÁͪñ©ó¶Àª÷¤ñ«ß¡A¥Ñ¶Àª÷ªø¤è§Î¤S¥i´y¥Xµ¥¨¤Á³½u¡Aµ¥¨¤Á³½u¤S¥X²{¦bªQªG¡B»ñ±ù¡BÂúµâ¡B¦V¤é¸ªµ¥¡A¦Ó¥¦­Ìªº¥ª¥kÁ³±Û¼Æ¤S«ê¦n¬O¶O¤ó¼Æ¦C¬Û¾Fªº¨â¶µ¡A¦ÛµM¤§³yª«¥O¤H¹Ä¬°Æ[¤î¡I

²{¦b´£¥X¤@¨Ç°ÝÃD¨ÓÅýŪªÌªáÂI¸£µ¬·Q¤@·Q¡C

1. ¡]¹Ï¤C¡^°²©w»e¸Á¦b¸Á©Ð¸Ì¥u¯à¦V¥k¤è©Î¤W¥k¤è²¾°Ê¡A¨º»ò²¾¨ì²Ä n ­Ó¤p¸Á©Ðªº¤èªk¦³´XºØ¡H



¹Ï¤C

2. ¦pªG¥H Fn=Fn-1+Fn-2¡]F0=1,F1=1¡^¨Óªí¥Ü¶O¤ó¼Æ¦C¡A«h§Ú­Ì»¡¶O¤ó¼Æ¦C¬O¥H»¼±À¤½¦¡ (Recursive formula) ªí¥Ü¥X¨Óªº¡A¨º´N¬O»¡¸Ó¼Æ¦Cªº¤@¯ë¶µ¨Ã¨S¦³¿ìªkª½±µ­pºâ¡A§Ú­Ì©Òª¾¹Dªº¥u¬O¸Ó¶µ©M«e­±¦U¶µ¤§¶¡ªºÃö«Y¦Ó¤w¡CÄ´¦p»¡µ¥®t¼Æ¦Cªº»¼±À¤½¦¡¬O an=an-1+d¡Ad ¬O¤½®t¡A¦ý¬O§Ú­Ì¥i¥H¨D¨ì¥¦ªº¤@¯ë¤½¦¡ an=a0+nd¡C¥Ñ³o­Ó¤½¦¡¡Aan ªº­È´N¥i¥Hª½±µ¨D±o¤F¡C¦]¬°¦b³\¦h³õ¦X¸Ì§Ú­Ì§Æ±æ¦³¤@­Ó¥i¥Hª½±µ­pºâªº¤½¦¡¡A©Ò¥H¨D±o¼Æ¦Cªº¤@¯ë¤½¦¡¬O¤@­Ó­«­nªº½ÒÃD¡C¨º»ò¶O¤ó¼Æ¦C¬O§_¦³¤@¯ë¤½¦¡©O¡H¦³ªº¡A¤@¯ë¤½¦¡¬O³o¼Ëªº¡G

\begin{displaymath}
F_n=\frac{1}{\sqrt{5}}[(\frac{1+\sqrt{5}}{2})^n-(\frac{1-\sqrt{5}}{2})^n]\quad n\geq1 \: ,
\end{displaymath}

¦Ó F0=1¡C ½ÐŪªÌÃÒ©ú³o¬O¶O¤ó¼Æ¦CµL»~¡C

3. $\frac{\sqrt{5}+1}{2}=\varphi$¬O¶Àª÷¤ñ­È¡A $\frac{\sqrt{5}-1}{2}$¬O­Ó¯Â¤p¼Æ¡A©Ò¥Hn«Ü¤j®É $(\frac{1-\sqrt{5}}{2})^n$ªºµ´¹ï­È´NÅܱo«Ü¤p,Ä´¦pn=6®É¸Óµ´¹ï­È¤p©ó0.1¡C©Ò¥Hn«Ü¤j®É¡A±N£p¦Û­¼n¦¸¥H«á¡A¦A°£¥H$\sqrt{5}$¡A¨ú³Ì±µªñªº¾ã¼Æ´N±oFn¡C¨Æ¹ê¤W£p¨ú­È1.62,$\sqrt{5}$¨ú­È2.24´N°÷¤F¡C½ÐŪªÌ¥J²Ó¦Ò¼{¬°¤°»òFnªº­È¥i¥H³o¼Ë­pºâ ¡A¨Ã¦Û¦æºâ¥X´X¶µ¨Ó¡C

4. ¸ÕÃÒ $\sum_{k=0}^n F_k = F_{2n}$

5. Åý§Ú­Ì¨Óª±¤@ºØ¨â­Ó¤Hª±ªº¹CÀ¸¡C²{¦b¦³nÁû¥ÛÀY¡A½Ö¯à®³±¼³Ì«á¤@Áû¥ÛÀY¡A½Ö´NĹ¡C³W«h¬O³o¼Ëªº¡G

(1)¦pªG¥Ò¥ý®³¡A«h²Ä¤@¦¸¥Ò¤£¯à®³±¼©Ò¦³ªº¥ÛÀY¡C

(2)¨ä«á¤A¡B¥Ò½ü¬y®³¡A¨C­Ó¤H¨C¦¸³Ì¦h¥u¯à®³±¼«e¤@¦¸¹ï¤è®³±¼¥ÛÀY¼Æ¥Øªº¨â­¿¡C

¦b³oºØ³W«h¤§¤U¡A¦pªG n ¬O¶O¤ó¼Æ¦Cªº¬Y¤@¶µ¡A«h¥ý®³ªº·|¿é¡A¤Ï¤§¦pªG n ¤£¬O¶O¤ó¼Æ¦Cªº¥ô¦ó¤@¶µ¡A«h¥ý®³ªº·|Ĺ¡C§A¥iª¾¹D³o¬O«ç»ò¤@¦^¨Æ¡HÅý§Úµ¹§A¤@ÂI´£¥Ü¡G¥ô¦ó¥¿¾ã¼Æ³£¥i¥H°ß¤@¦a¼g¦¨¶O¤ó¼Æ¦C¤¤¬Y¨Ç¶µªº©M¡A¦Ó¶O¤ó¼Æ¦C¤¤¬Û¾Fªº¨â¶µ¤£¯à¦P®É¥X²{¦b¸Óªí¥Ü¦¡¸Ì¡C

6. ³»¨¤¬°36«×ªºµ¥¸y¤T¨¤§Î¥s°µ¶Àª÷¤T¨¤§Î¡A³o¦b°Q½×¥¿¤QÃä§Î§@¹Ï®É¤w¸g¦Ò¼{¹L¤F¡C½Ð§A¤]¥é·Ó¶Àª÷ªø¤è§Î¡A´y¥Xµ¥¨¤Á³½u¨Ó¡A¨Ã§ä¥XÁ³½uªº¤ß¡C

7. ½ÐÄY®æ¦a§@¥X¥¿¤QÃä§Î¨Ó¡C¥¿¤­Ãä§Î¤S¦p¦ó¡H

8. ½ÐÃÒ©ú¥»¤å¸Ì¶Àª÷¤À³Îªº§@¹Ï¬O¹ïªº¡C

9. ½Ðª`·NÆ[¹î¦ÛµM¬É¤¤ÁÙ¦³¨º¨Ç²{¶H©M¶O¤ó¼Æ¦C¶Àª÷«ß©Îµ¥¨¤Á³½u¦³Ãö¡C

 
¹ï¥~·j´MÃöÁä¦r¡G
¡DFibonacci
¡D¶O¤ó¼Æ¦C
¡DÆxÄMÁ³
¡D¶Àª÷¤À³Î
¡Dµ¥¨¤Á³½u

¦^­¶­º
 
¡]­Y¦³«ü¥¿¡BºÃ°Ý¡K¡K¡A¥i¥H¦b¦¹ ¯d¨¥ ©Î ¼g«H µ¹§Ú­Ì¡C¡^
EpisteMath

EpisteMath (c) 2000 ¤¤¥¡¬ã¨s°|¼Æ¾Ç©Ò¡B¥x¤j¼Æ¾Ç¨t
¦Uºô­¶¤å³¹¤º®e¤§µÛ§@Åv¬°­ìµÛ§@¤H©Ò¦³


½s¿è¡G§õ´ô¤Ñ ¢A ø¹Ï¡G±iÖq´f ³Ì«á­×§ï¤é´Á¡G2/17/2002