­º­¶ | ·j´M

¡D­ì¸ü©ó¼Æ¾Ç¶Ç¼½²Ä¤C¨÷²Ä¤T´Á
¡D§@ªÌ·í®É¥ô±Ð©ó¥æ¤jÀ³¼Æ¨t

¡EµùÄÀ
 

°°µeŲ©w
·L¤À¤èµ{ªºÀ³¥Î

ªL´ÂªK

 
 

¤G¦¸¥@¬É¤j¾Ô«á´Á¡A·ù­x¦¬´_¤ñ§Q®É¤§«á¡A²üÄõªv¦w¤H­û¶}©l³q½r¯Çºé¦P¸ô¤H¡C ¦b¤@®a´¿¸g¥X°â³\¦hÃÀ³N«~µ¹¼w°ê¤Hªº¤½¥q°O¿ý¤W¡A ¥L­Ìµo²{¤@¦ì»È¦æ®aªº¦W¦r¡A¥L´¿¬O±NµÛ¦Wªº¤Q¤C¥@¬ö²üÄõµe®a JAN Vermeer ªºªoµe¡G "Woman Taken in Adultery" ¥X°âµ¹¯ÇºéÀY¥Ø¤àªLªº¤¤¶¡¤H¡C ¥Ñ»È¦æ®a¤f¤¤±oª¾¥L¬O¥Nªí¤@­Ó¤T¬y²üÄõµe®a H.A. VAN Meegeren¡C 1945¦~5¤ë29¤é VAN Meegeren ³Q±±³q¼Ä¸o¦W¦Ó³Q®·¤Jº»¡C 1945¦~7¤ë12¤é VAN Meegeren ¦bº»¤¤¶Ç¥X¤@­Ó¾_Åå¥@¤Hªº¸Ü¡A ÁnºÙ¥L¤£´¿¹ï "Woman Taken in Alultery" ½æµ¹¤àªL¡C¦P®É¡A ¥L»¡³o´Tµe©M¥t¤@´T¬üÄRªºµe¡G"Disciples at Emmaus"¡A ÁÙ¦³¨ä¥L¨â´T³Q»{¬°¬O Vermeers ªº§@«~¥H¤Î¨â´T de Hooghs¡]¤Q¤C¥@¬ö²üÄõµe®a¡^ªºµe³£¬O¥L¦Û¤v©Ò°°³yªº¡C µM¦Ó³\¦h¤H«o»{¬° VAN Meegeren »¡¥X³oÃþÁÀ¨¥¡A¥Øªº¥u¦b©ó§K°£¥Lªº«q°ê¸o¦W¡C ¬°¤FÃÒ¹ê¥Lªº¸Ü¡AVAN Meegeren ¦bº»¤¤¶}©l°°³y Vermeer ªºµe¡G"Jesus Amongst the Doctors"¡AÅã¥Üµ¹¨º¨Ç¤£¬Û«H¥Lªº¤H¡A¥L½T¬O Vermeer µeªº°°³y°ª¤â¡C ·í³o´Tµe±µªñ§¹¦¨ªº®É­Ô¡AVAN Meegeren ±oª¾¥L³q¼Äªº¸o¦W¤w§ï¬°°°³y¸o¦W¡A ©ó¬O¥L©Úµ´§¹¦¨³o´Tµe©M±NµeÅܦ¨¥j¦Ñªº¼Ë¤l¡A§Æ±æ½Õ¬d¦æ°Ê¤£­Pµo²{¨ä±NµeÅÜ¥jªº¯µ±K¡C¬°¤F¸Ñ¨M³o­Ó°ÝÃD¡A¦³µÛ¦W¤Æ¾Ç®a¡Bª«²z¾Ç®a©MÃÀ³N¥v®a¨ü©R²Õ¦¨°ê»Ú±M®×¤p²Õ¡A ¨Ó½Õ¬d³o­Ó¯µ±K¡C¤p²Õ¥ÎX-¥ú³zµøµe¥ó¥H¨M©w³o¨Ç°°µe¬O§_µe¦b¨ä¥Lªºµe¤§¤W¡C ¥t¤@¤è­±¡A¥L­Ì¤ÀªRµe¤W©Ò¥ÎªºÃC®Æ©Mµeªº¬Y¨Ç¦~¥Nªº¸ñ¶H¡C

µM¦Ó VAN Meegeren ¹ï©ó³o¨ÇŲ©w¤èªkª¾±x»á¸Ô¡A¬°¤FÁקK³Qµo²{¡A ¥L±N¤£­È¿úªº¥jµeªºÃC®Æ¬A¥h¡A¶È¥u«O¯dµe¥¬¡A¦Ó¹Á¸Õ¨Ï¥Î Vermeer ¥i¯à·|¥ÎªºÃC®Æ¡C VAN Meegeren ¤]¼ôª¾Âªºªo±m«D±`¦aµw¡A¦P®É¤]µLªk·»¸Ñ¥¦¡C¦]¦¹¡A ¥L«Ü¬¾·â¦a±N¤@ºØ¤Æ¾Çª«¡G'Pheno formaldehyde ²V¤Jªo±mùØ¡AµM«á·í§¹¦¨ªºªoµe¦b¯N½c¤¤¥[¼ö®É¡Aªoµe´N·|µw¤Æ¡A¦]¦Ó¥L¤H¤£©öª¾¹D¨º¬O°°µe¤F¡C

µM¦Ó VAN Meegeren ¦b¥Lªº´X´T°°µe¤¤¦³©Ò²¨©¿¡C±M®a©Ò²Õ¦¨ªºÅ²©w¤p²Õµo²{¤F¤@ºØ²{¥NÃC®Æ¹WÂŪºÂܸñ¡C ¥t¥~¡A¥L­Ì¦b¼Æ´Tµe¤¤¤]µo²{¤F Phenoformaldehyde¡A³oºØ¤Æ¾Çª«ª½¨ì¤Q¤E¥@¬öªì¤~³Qµo²{¡C°ò©ó³o¨ÇÃÒ¾Ú¡AVAN Meegeren ©ó1947¦~10¤ë12¤é³Q§P¤F°°³y¦Wµeªº¸o¡A¤Jº»¤@¦~¡C ¦bº»´Á¶¡¡A¥Lªº¤ßŦ¯fµo§@¡A©ó1947¦~12¤ë30¤é¥h¥@¡C

¦ý¬O¡A§Y¨Ï¦b±M®a­Ì·j¶°¤FÃÒ¾Ú¡A¤´¦³³\¦h¤H©Úµ´¬Û«H¦Wµe¡G"Disciples at Emmaus ¬O VAN Meegeren ©Ò°°³yªº¡A¥L­Ìªº·Qªk¬O°ò©ó¨ä¥LªºÁt«~©M VAN Meegeren ªñ¥G§¹¦¨ªº"Jesus Amongst the Doctors" ³£¬O¬Û·í§C«Uªº«~½è¡C¥L­Ì»{¬°¬üÄRªº "Disciples at Emmaus" ªº³Ð§@ªÌµ´¹ï¤£·|µe¥X¦p¦¹©å¦Hªºµeªº¡C¨Æ¹ê¤W¡A"Disciples at Emmaus" ´¿³QµÛ¦WÃÀ³N¥v®a A.Bredius Ų©w¬° Vermeer ªº¯uÂÝ¡A¦Ó³Q Rembrandt Society ¥H $170,000 ªº°ª»ùÁʱo¡CŲ©w¤p²Õ¹ï³o¨Ç«ùÃhºÃºA«×ªº¤HªºµªÂЬO VAN Meegeren ¹ï©ó¥L¦bÃÀ³N¬É²@µL¦a¦ì²`·P¥¢±æ¡A ¥L¦bµe "Disciples at Emmaus" ®É¡A±ý¥HµL¤ñªº¨M¤ß¨ÓÃÒ©ú¦Û¤v¹ê¦b¤£¬O¤T¬yªºµe®a¡C ¦b§¹¦¨³o´T³Ç§@¤§«á¡A¥Lªº·N§Ó¤O´N®ø¥¢¤F¡A¦P®É¡A¦bÅé»{¤F¥L¯à»´©ö¦a§¹¦¨¤F "Disciples at Emmaus"¡A¥L¤£¦A¨º»ò»{¯u¦a±q¨Æ¨ä¥Lªº°°µe¤F¡C³oºØ»¡ªk«o¤£¥O«ùÃhºÃ½×ªÌº¡·N¡A¥L­Ì­n¨D¯à´£¥X¤@ºØ¥þµM¬ì¾Ç¤Æ©Mµ²½×©ÊªºÃÒ¾Ú¡A¥HÃÒ¹ê "Disciples at Emmaus" ½T¹ê¬O¤@´T°°µe¡C1967¦~¬ü°ê Carnegie Mellon ¤j¾Çªº¬ì¾Ç®a­Ì¶i¦æ¤F³o¶µ¬ã¨s¡A¥H¤U´N¬O¥L­Ì¤u§@ªº·§²¤´y­z¡C

§Q¥Î©ñ®g©Êªº²{¶H¨ÓŲ©wµe©M¨ä¥Lª«½è¢w¢w½Ñ¦p¥ÛÀY©M¤Æ¥Ûªº¦~¥Nµ¥¢w¢wªº¤èªk¬O¥»¥@¬öªì©Òµo²{ªº¡Cª«²z¾Ç®a Rutherford ©M¥Lªº¦P¨Æ­ÌÃÒ¹ê¤F¬Y¨Ç©ñ®g©Êªº¤¸¯À¤§­ì¤lµ²ºc¤£Ã­©w¡A¦b¤@­Ó¬J©wªº®É´Á¤§¤º¡A©T©w¤ñ¨Òªº­ì¤l·|µo¥Í¸ÀÅܦӧΦ¨¥t¤@ºØ·s¤¸¯À¡A¥Ñ©ó©ñ®g©Ê¬O­ì¤lªº¤@ºØ©Ê½è¡ARutherford ÃÒ¹ê¤@ºØª«½èªº¸ÀÅܲv µù1 »P¸Óª«½è¥Ø«eªº­ì¤l­Ó¼Æª½±µ¦¨¤ñ¨Ò¡C ¦]¦¹¡A³]­Y N(t) ªí¥Ü¬Yª«½è¦b t ®É¶¡ªº­ì¤l¼Æ¡A«h³æ¦ì®É¶¡¤ºµo¥Í¸ÀÅܪº­ì¤l¼Æ dN(t)/dt »P N(t) ¦¨¥¿¤ñ¡C §Y:

\begin{displaymath}\frac{dN(t)}{dt}=-\lambda N(t) \eqno(D)\end{displaymath}

¨ä¤¤ £f ¬°¤@­Ó±`¼Æ¡A$\lambda >0$ ¬O¬°©Ò¿×ªº¸ÀÅܱ`¼Æ¡C ·íµM £f ¶V¤j¡Aª«½è¸ÀÅܱo¶V§Ö¡C¥b°I´Á´N¬O¥Î¨Ó­p¶q¤@ºØª«½èµo¥Í¸ÀÅܱ¡ªpªº³æ¦ì¡A§Ú­Ì©w¸q¥b°I´Á¬°©ñ®g©Ê­ì¤l¼Æ¥Ø¸ÀÅܦ¨­ì¨Ó¼Æ¥Ø¤§¤@¥b©Ò»Ý­nªº®É¶¡¡C °²³]¦b¶}©l®É¶¡,t0,­ì¤l¼Æ¥Ø¬° N0¡A§YN(t0)=N0¡A «h N(t) º¡¨¬·L¤À¤èµ{¦¡¡G

\begin{displaymath}
\frac{dN(t)}{dt}=-\lambda N(t) \; , \;\; N(t_0)=N_0\eqno(1)
\end{displaymath}

(1)ªº¸Ñ¬O

\begin{eqnarray*}
N(t)&=& N_0\cdot e^{-\lambda \int_{t_0}^{t}ds} \\
&=& N_0e^{-\lambda(t-t_0)}
\end{eqnarray*}


¥i±À±o

\begin{displaymath}
\frac{N(t)}{N_0}=e^{-\lambda(t-t_0)}
\end{displaymath}

¨âÃä¨ú¹ï¼Æ¨ç¼Æ¡A«h

\begin{displaymath}
-\lambda(t-t_0)=\ln \frac{N(t)}{N_0}\eqno(2)
\end{displaymath}

·í

\begin{displaymath}
\frac{N(t)}{N_0}=\frac{1}{2}
\end{displaymath}

«h

\begin{displaymath}
-\lambda(t-t_0)=\ln \frac{1}{2}
\end{displaymath}

¦]¦¹

\begin{displaymath}
t-t_0=\frac{\ln 2}{\lambda} \approx \frac{0.6931}{\lambda}\eqno(3)
\end{displaymath}

¤]´N¬O»¡ª«½èªº¥b°I´Á¬° $\ln2$ ³Q¨ä¸ÀÅܱ`¼Æ £f ¨Ó°£ªºµ²ªG¡C «Ü¦h©ñ®g©Êª«½èªº¥b°I´Á³£¤w¸g³Q§¹¾ã¦a­pºâ¡A¨Ã¥B°O¿ý¤U¨Ó¡C¹³ C-14 ªº¥b°I´Á¬O5568¦~¡AU-238 «h¬°¥|»õ¤­¤d¸U¦~¡C

¥Ñ(2)¦¡¥i±o

\begin{displaymath}
t-t_0=-(\frac{1}{\lambda})\cdot\ln(\frac{N(t)}{N_0})
\end{displaymath}

¦] N(t) ¥i¥H´ú¶q¥X¨Ó¡A£f ¬°¤wª¾¼Æ©Î¬O«Ü®e©ö­pºâ¥X¨Ó¡A¬G·íN0ª¾¹D®É¡A §Ú­Ì´N¯à±o¨ì t0 ¨Ó¡C¨Æ¹ê¤W N0 ªº¨M©w´N¬OÃø³B¡C ¦]¬°§Ú­Ì¤£¯àª¾¾å¬YºØ©ñ®g©Êª«½è¦b t0 ®Éªº­ì¤l¼Æ¦³¦h¤Ö?¤£¹L¡A§Ú­ÌÁÙ¬O¥i¥H¶¡±µ¦a¨M©wN0¤§­È¡A (©ÎªÌ¦ô­p N0 ¤§­È¡C)¨Ï¥¦¦b¬Y­Ó¥i«H¿àªº½d³ò¤º¡C ¦ô­p N0 ¤§­È§Y¬°§Ú­Ì¥Î¨ÓŲ©wÁt«~ªº¤èªk¡C§Ú­Ì±N¦b©³¤U·§²¤ªº¸ÑÄÀ³oºØ¤èªk¡C

¦a²yªº¦a´ß¤¤§t¦³¹\ªº¦¨¤À¡A¦b©¥¥Û¶ô¤ºªº¹\·|¸ÀÅܦ¨¨ä¥Lªº©ñ®g©Ê¤¸¯À¡A µM«á¦A¸g¹L¤@³s¦êªº¸ÀÅÜ¡A¤@ª½¨ìPb-206¬°¤î¡A¨ì¦¹¥¦¤w¤£§t¥ô¦óªº©ñ®g©Ê¤¸¯À¤F¡C ¤Uªí»¡©úU-238ªº¤@¨t¦C¸ÀÅܱ¡§Î¡C½bÀY¤W¤èªº¼Æ¦r§Y¬°¥b°I´Á¡C



¦]¬°¹\-238ªº¥b°I´Á«Üªø¡A¥¦¤£·|«Ü§Ö®ø¥¢¡A·íµM¤]·|¤@ª½ªº¸ÀÅܤU¥h¡C ¦]¦¹ªíùتº¤¤¶¡©ñ®g©Ê¤¸¯À¡A¤@¤è­±·|¸ÀÅܦ¨¨ä«á­±ªº¤¸¯À¦Ó´î¤Ö¡A ¦ý¤@¤è­±¤]·|¦]«e­±¤¸¯Àªº¸ÀÅܤU¨Ó¦Ó¼W¥[¡C

©Ò¦³µe®a©Ò¨Ï¥ÎªºÃC®Æ³£§t¦³¦h¶q©ñ®g©Ê¤¸¯Àªº¹]-210¡A¦P®É¤]§t¦³§ó¤Ö¶qªºÅJ-226¡C ¦]¬°¤W­z¨âºØ¤¸¯À§t¦b¹]¥Õ¤º¡A¦Ó¹]¥Õ³Qµe®a¥Î°µÃC®Æ¤w¸g¦³¨â¤d¦h¦~ªº¾ú¥v¤F¡C ¹]¥Õ¥Ñª÷Äݹ]©Ò»s¦¨¡A¦Óª÷Äݹ]«h¥Ñ¹]Äq¥Îº²·Ò¤èªk´£·Ò¥X¨Ó¡A¦b³oºØ´£·Ò¹Lµ{¤¤¡A ¹]-210·|ÀHµÛ¯d¦b´£·Ò«áªºª÷Äݹ]¤º¡AµM¦Ó¦Ê¤À¤§¤E¤Q¨ì¤E¤Q¤­ªºÅJ-226·|¦b´£·Ò¹Lµ{¤¤¯d¦bº²´í¤º¦Ó³Q±Æ°£±¼¡C ¦b­è°µ¦¨¹]¥Õ®É¡A¦]¬°ÅJ-226¤§¥b°I´Á¬°¤@¤d¤»¦Ê¦~¡A©Ò¥H¸ÀÅܦ¨¹]-210ªº©ñ®g©Ê¤¸¯Àºâ¬O«Ü¤Ö¡C ¦ý¬O¡A¥Ñ©ó¹]-210ªº¥b°I´Á¬°¤G¤Q¤G¦~¡A¦]¦¹¹]-210´N·|¸ÀÅܪº¤ñ¸û§Ö¡A¦Ó´î¤Ö¤F«Ü¦h¹]-210ªº­ì¤l­Ó¼Æ¡C ³oºØ²{¶H·|¤@ª½¤U¥h¡Aª½¨ì¥­¿ÅÂI¡C¤]´N¬O¥ÑÅJ-226¸ÀÅܦ¨¹]-210ªº­ì¤l¼Æ¥Ø¡A ¬Ûµ¥©ó¥Ñ¹]-210¸ÀÅܦ¨¥t¤@ºØ¤¸¯Àªº­ì¤l¼Æ¥Ø¡C¤S¦]¬°±qÅJ-226¸ÀÅܦ¨¹]-210¤§¶¡¨º¨Ç©ñ®g©Ê¤¸¯Àªº¥b°I´Á»P¤@¤d¤»¦Ê¦~¤¬¬Û¤ñ¸û¤§¤U¡A ¹ê¦b¤Ó¤p¡C­Y©¿²¤¤F¥¦­Ì¡A«h§Ú­Ì¤]¥i¥H»¡¹]-210»PÅJ-226ªº¸ÀÅܬ۵¥®É´N¬O©Ò¿×ªº¥­¿ÅÂI¡C

§Ú­Ì¥Î¤W­zªºµ²½×¡A¨Ó¦ô­p¥X¦b³Ìªì»s³yª÷Äݹ]®É¡A¹]-210ªº§t¶q¦³¦h¤Ö¡H ¥O y(t) ªí¥Ü¦b t ®É¶¡¨C¤½§Jªº¹]¥Õ©Ò§t¹]-210ªº­ì¤l¼Æ¥Ø¡Ay0 «h¬O¦b»s³y¹]¥Õ®É (t0)¡A¨C¤½§J¹]¥Õ©Ò§t¹]-210ªº­ì¤l¼Æ¥Ø¡C¤]¥O r(t) ¬° t ®É¡A¹]¥Õ¤¤ªºÅJ-226¨C¤ÀÄÁ¨C¤½§J¸ÀÅܪº­ì¤l¼Æ¥Ø¡C £f ¬°¹]-210ªº¸ÀÅܱ`¼Æ¡A«h§Ú­Ì¥i¥H±o¨ì¤U¦Cªº·L¤À¤èµ{¦¡:

\begin{displaymath}
\begin{eqalign}
\frac{dy(t)}{dt} &= -\lambda y(t)+r(t), \\
y(t_0) &= y_0
\end{eqalign} \eqno(4)
\end{displaymath}

³o­Ó¤èµ{¦¡¦b r(t) ¤£¬O±`¼Æ®É¡A¨D¥X¨Óªº¸Ñ¤ñ¸û¤£©ö»¡©ú¨äµ²½×¡C §Ú­Ì¥i¥H°µ¦p¤UªºÂ²¤Æ¡G¦]¬°§Ú­Ìªº¥Øªº¦bŲ©w¤@±iµeªº¯u°°µ{«×¡A¦Ó³o¨Çµeªº¾ú¥v¤j³£¦b¤T¦Ê¦~ªº®É¶¡¤º¡C ¦P®ÉÅJ-226ªº¥b°I´Á«h¦³¤@¤d¤»¦Ê¦~¡A§t¦b¹]¥Õ¤ºªºÅJ-226¤S«D±`¤Ö¡C ©Ò¥H¬°¤F¤è«K¡A§Ú­Ì¤£§«°²©w r(t) ¬°¤@­Ó±`¼Æ r¡C§Ú­Ì¨Ó¸Ñ·L¤À¤èµ{¦¡(4)¡C ¨âÃä­¼¤W¨ä¿n¤À¦]¤l $\mu(t)=e^{\lambda t}$¡A§Ú­Ì±o¨ì¡G

\begin{displaymath}\frac{d}{dt}[e^{\lambda t}y(t)]=re^{\lambda t}\end{displaymath}

©Ò¥H

\begin{displaymath}
e^{\lambda t}y(t)-e^{\lambda t_0}y_0
=\frac{r}{\lambda}(e^{\lambda t} - e^{\lambda t_0})
\end{displaymath}

©ÎªÌ

\begin{displaymath}
y(t)=\frac{r}{\lambda}[1-e^{-\lambda(t-t_0)}]
+y_0e^{-\lambda(t-t_0)}
\eqno(5)
\end{displaymath}

y(t) »P r «Ü®e©ö¥i¥H´ú©w¥X¨Ó¡C¬G­Y y0 ª¾¹D¡A¥Ñ(5)¦¡¡A (t-t0) ´N¥i¥H¨D±o¡Aµeªº¦~¥N¥Ñ¦¹´Nª¾¾å¤F¡C±©«e­±¤w¸g±Ô­z¹L y0 ¤£¯àª½±µ¨D±o¡C§JªA³o­Ó§xÃøªº¤èªk¤§¤@¬O:¥Ñ©ó¦a²yªº¦~¥N¤w¸g«D±`¤[»·¡A©Ò¥H§Ú­Ì¥i¥H·Q¹³¦b¹]Äq¤¤¡A¹]-210»PÅJ-226ªº¸ÀÅܱ¡ªp¤w¹F¥­¿Åª¬ºA¡A§Y¥¦­Çªº¸ÀÅܳt²v¤@¼Ë¡C ·í§Ú­Ì©â¨ú¦a²y¤Wªº¤£¦PÄq¥Û¨Ó´ú©wÅJ-226ªº¸ÀÅܱ¡§Î¡Cµo²{ÅJ-226¦b¤£¦PÄq¥Û¤¤¨C¤½§J¨C¤ÀÄÁªº¸ÀÅܳt²v¬O¦b0.18¨ì140¤§¶¡¡C ©Ò¥H±À±o¹]-210¦b¹]¥Õ¤º¨C¤½§J¨C¤ÀÄÁªº¸ÀÅܱ¡§Î¤]¤j­P¬O¦b³o½d³ò¤§¶¡¡C ¥Ñ©ó³o­Ó½d³ò¤Ó¤j¡A ¦]¦¹Âk¯Ç¥X¨Óªº y0 ¼Æ¥Ø¤]¥i¯à·|¦b¤@¬q«Ü¤jªº½d³ò¤º¡]¦]¬°¹]-210ªº¸ÀÅܳt²v»P¨ä­ì¤l¼Æ¥Ø¦¨¥¿¤ñ¡C¡^¡F§Y¹]-210ªº­ì¤l¼Æ¥Ø y0 ·|¦³«Ü¤jªºÅܤơC©Ò¥H¤£¯à¥Î³oºØ¤èªk¨Ó¦ô­p y0 ¤§­È¡C ¦ý¬O¡A§Ú­ÌÁÙ¬O¥i¥Î(5)¦¡¨ÓŲ§O¥X¤Q¤C¥@¬öªºµe»Pªñ¥Nªº¥é»s«~¡C­Y¤@±iµeªº¦~¥N»·¤ñ¤G¤Q¤G¦~¡]¹]-210ªº¥b°I´Á¡^ÁÙ¤[ªº¸Ü¡A ¨º»ò¡AÅJ-226»P¹]-210´N´X¥G¤w¹F¥­¿ÅÂI¤F¡C¤Ï¹L¨Ó»¡¡A­Y¬O¤@´Tªñ´X¦~¤ºªº¥é»s«~¡A ¤ñ¤è»¡¬O20¦~ªºÁt«~¡A¨º»ò¹]-210ªº©ñ®g©Ê´N­n¤ñÅJ-226ªº©ñ®g©Ê±j±o¦h¡C Åý§Ú­Ì°²³]¬Y´T±ý³QŲ©wªºµe¡A¨ä¦~¥N¬O§_¦b300¦~¡H¥O t-t0=300¡A¥Ñ(5)¦¡¡A §Ú­Ì±o¨ì¡G

\begin{displaymath}
\lambda y_0=\lambda y(t)e^{300\lambda}-r(e^{300\lambda}-1)
\eqno(6)
\end{displaymath}

­Y³o´Tµe¬Oªñ´X¦~¨Óªº¥é»s«~¡A«h $\lambda y_0$ ªº­È·|¬O¤@­Ó«Ü¤jªº¼Æ¡A ¤j¨ì¥O¤H¤@¬Ý´Nª¾¹D¬°¤£¥i¯àªº±¡§Î¡C¦ý§Ú­Ì¤S«ç¼Ëª¾¹D¨º¤@­Ó¼Æ¤~¬O¦X²z¡H ¨º¤@­Ó¤jªº¼Æ¥O¤Hı±o¤£¦X²z©O¡H­º¥ý¡A§Ú­Ì°²³]¹]-210¦b­è»s³y¥X¨Óªº®É­Ô¡A ¦b¹]¥Õ¤º¨C¤½§J¨C¤ÀÄÁªº¸ÀÅܳt²v¬°100¡A«h±Àºâ¥X±Ä¥X¨ÓªºÄq¥Û¤¤§t¹\-238ªº¤ñ²v¬ù¬°$0.014 \%$¡C ³o­Ó§t¶q¤wºâ¬O¬Û·í°ª¤F¡A¦]¬°¦a²y¤Wªº©Ò¦³Äq¥Û§t¹\-238ªº¥­§¡¼Æ»·§C©ó¦¹¼Æ¡C ¤£¹L¡A¦b¦è¥b²y¦³¤@¨Çµ}¦³ªºÄq¥Û¤¤¡A«h§t¦³$2 \sim 3\%$ªº¹\-238¡C©Ò¥H¬°¤F¦w¥þ°_¨£¡A§Ú­Ì´N»¡¡A·í¹]-210ªº¸ÀÅܳt²v¶W¹L30000®É¡]¦¹®É¡A¦b¦a²y¤W¦¹Äq¥Û§t¹\-238¤§¤ñ²v¬ù¬°5.2 %¡^¡A´N¬O­Ó¤£¦X²zªº¼Æ¥Ø¡C

¦]¬°¦b´X¦~«á¡A¹]-210»P¹`-210ªº¸ÀÅܱ¡§Î«Ü§Ö·|¹F¨ì¥­¿Åª¬ºA¡A ¦Ó¥B¥H¥Ø«e¤w¦³ªº­p¶q¤è¦¡¨Ó»¡¡A¹ï¹`-210ªº´ú©w¤ñ¸û®e©ö¡C©Ò¥H§Ú­Ì´N¥Î¹`-210¨Ó¥N´À¹]-210¡C ¤S¹]-210ªº¥b°I´Á¬°22¦~¡C¬G $\lambda=\ln2/22$¡A©Ò¥H $e^{300\lambda}=e^{\frac{300}
{22}\ln2}=2^{\frac{150}{11}}$

¤U­±ªºªí¬O¹`-210»PÅJ-226¦b´X´Tµe¤Wªº¸ÀÅܱ¡§Î¡G

µeªº¦W¦r ¹`-210¸ÀÅܲv(¨C§J¨C¤ÀÄÁ) ÅJ-226¸ÀÅܲv(¨C§J¨C¤ÀÄÁ)
Disciples at Emmaus 8.5 0.8
Washing of Feet 12.6 0.26
Women Reading Music 10.3 0.3
Women playing Mandolin 8.2 0.17
Lace Maker 1.5 1.4
Laughing girl 5.2 6.0

­Y§â "Disciples at Emmaus" ³o±iµeªº8.5¥N¤J(6)¦¡¤¤ªº $\lambda y(t)$¡A §â0.8¥N¤J(6)¦¡¤¤ªº r¡A $\lambda=2^{\frac{150}{11}}$¡A«h§Ú­Ì±o¨ì¡G

\begin{eqnarray*}
\lambda y_0 &=& (8.5)\times2^{\frac{150}{11}}-0.8\times(2^{\frac{150}{11}}-1)\\
&=& 9.8050261204056\times10^{4}
\end{eqnarray*}


©Ò±o¨ìªº¼Æ¥Ø¤j©ó 3 x 104 ¤Ó¦h¡A¬G¥i¥HÂ_©w¥¦¬°¤@´T°²µe¡C ¨ä¥L´X´Tµeªº $\lambda y(0)$ ªº­È¡A¸g¹L­pºâ¤§«á¡A¤À§O¬°:

\begin{displaymath}\begin{array}{cccc}
105713407185169\times10^{5}&,&1.273372626...
...7\times10^{3}&,\\
-1.0180957008214\times10^{4}&;&&
\end{array}\end{displaymath}

¥Ñ¦¹¥i¨£«e­±ªº¤T´Tµe¤]¸Ó¬OÁt«~¡C¦Ü©ó«á­±ªº¨â±iµe¬O¯u«~ªº¥i¾a©Ê´N¬Û·í°ª¤F¡C

M. Braun: Differential equations with applications.

 
¹ï¥~·j´MÃöÁä¦r¡G
¡D·L¤À¤èµ{

¦^­¶­º
 
¡]­Y¦³«ü¥¿¡BºÃ°Ý¡K¡K¡A¥i¥H¦b¦¹ ¯d¨¥ ©Î ¼g«H µ¹§Ú­Ì¡C¡^
EpisteMath

EpisteMath (c) 2000 ¤¤¥¡¬ã¨s°|¼Æ¾Ç©Ò¡B¥x¤j¼Æ¾Ç¨t
¦Uºô­¶¤å³¹¤º®e¤§µÛ§@Åv¬°­ìµÛ§@¤H©Ò¦³


½s¿è¡G¥Û²ú§g ¢A ®Õ¹ï¡G·¨¨ÎªÚ ¢A ø¹Ï¡G²¥ßªY ³Ì«á­×§ï¤é´Á¡G4/26/2002