¡Dì¸ü©ó¼Æ¾Ç¶Ç¼½²Ä¤C¨÷²Ä¤T´Á ¡D§@ªÌ·í®É¥ô±Ð©ó¥æ¤j¼Æ¾Ç¨t | |||
½Í¬ã¨s¦~ÄÖµ²ºc¤§¼Æ¾Ç¼Ò«¬
Leslie's Model ³\¥@¾À |
¥»¤å³Ì¥Dnªº¥Øªº¬O¤¶²Ð¦p¦ó¬ã¨s¤H¤f°Ê¤O¾Ç (Population Dynamics) ùتº¤@¨Ç¦³Ãö¦~ÄÖµ²ºc (Age Strucure) ¤§°ÝÃD¡CÁ|Ó¨Ò¨Ó»¡©ú¡G ¥Ø«e¥xÆW¤H¤f¤¤ 0¡ã5 ·³¦³ x1 ¤H¡A6¡ã10 ·³¦³ x2¤H¡A¡K¡K¡A76¡ã80 ·³¦³ x16 ¤H¡C¸Õ°Ý20¦~©Î100¦~«á¡A³o¨Ç¤H¤fªºÅܤƦp¦ó¡H ÁÙ¦³¨C¤@Ó¦~ÄÖ¤ÀÃþ (Age class) ¦bÁ`¤H¤f¤Wªº¤ñ¨Ò·|¤£·|«Üéw¦aÁͦV¬Y¤@Ó©T©wÈ¡H¦pªG¬Oªº¸Ü¡A¦h§Ö¡H´NªÀ·|¾Ç¡B¸gÀپǦӨ¥¡A³o¬O¤@ӫܹê»Ú¦Ó¥Bȱo¬ã¨sªº«n°ÝÃD¡C ¤U±§ÚÌ´Nn¾É¥X¦³Ãö³oÓ°ÝÃD¤§¼Æ¾Ç¼Ò«¬¢w¢wLeslie's Model¡C ¥¦¦P®É¤]¥i¥HÀ³¥Î¨ì¨ä¥L¥Íª«¡A¦p³½Ãþ¤Î©øÂC
º¥ý¡A°²³]±q²{¦³ªº²Îp¼Æ¾Ú¡A§Ú̯à¿ï¾Ü¥X¤@Ó¾A·íªº³æ¦ì®É¶¡ T¡A
¦Ó«á±N¤H¤f¤À¦¨ A Ãþ¡C¥O¦V¶q
¥Nªí¦b²Ä N ´Á®É¡]®É¶¡¬° NT¡^¤H¤fùتº¤k©Ê¦~ÄÖµ²ºc¡]¦b¦¹§ÚÌ°²³]¨k©Ê¡A¤k©Ê¤H¤f¼Æ¥Ø¬Ûµ¥¡^¡A²¦Ó¨¥¤§¥O
¦b¦¹¡A¤À¶q Vk,N¡Ak= 1,¡K,A ¥Nªí¦~ÄÖ¤¶©ó (k-1)T ¤Î kT ¤¤¶¡¤§¤k©ÊÁ`¤H¼Æ¡CÄ´¦p»¡À³¥Î¨ì¹ê»Ú¤H¤f®É¡A§Ú̳q±`¨ú T=5 ¦~¡A¦Ó¥B±N¤H¤f¤À¦¨ 16 Ãþ¡A§Y A=16¡A
¦pªG¦~ÄÖ¶W¹L80·³®É¡A«h§Ṳ́£¤©°Q½×¡C
¤U¤@¨B§ÚÌn°µªº¤u§@¬O¦p¦ó§ä¥X²Ä N+1 ´Áªº¦~ÄÖµ²ºc¦V¶q (Age structure vector)
¡A
»P¦b²Ä N ´Á¤§¦~ÄÖµ²ºc¦V¶q
¤§Ãö«Y¡C
°²³]¤U¦Cªº bk ¤Î mk,k=1,¡K,A ¬°¤wª¾¡A
§Q¥Î bn¡Amk ¤Î Vk,N ¤§©w¸q¡A§ÚÌ¥i¥H¾É¥X¤U¦CÃö«Y¦¡¡G ¨ä¤¤(2)¦¡»¡©ú¤F±q²Ä N ´Á¨ì N+1 ´Á©Ò¥X¥Í¤§¤k«ÄÁ`¼Æ¡C ©Ò¥H¡A¦pªG§ÚÌ°²³] ¤Î ³o¨Ç«Dt¤§¹ê¼Æ§¡¥i¥Ñ¤H¤f¤§²Îp¸ê®Æ±o¨ì¡A«h§Ú̦³¤U¦C¦¡¤l ©ÎªÌ¥Î¯x°}¤§ªí¥Üªk¡A(3)¦¡¥i§ï¼g¬° ¦pªG¡A§ÚÌ°²³]²{¦bªº¦~ÄÖµ²ºc¦V¶q ¡C ¬°¤wª¾¡A«h¥Ñ(4)¦¡¡A§Ú̱o¨ì¡G ©Ò¥H¡A§Ú̱N¦~ÄÖµ²ºcªº°ÝÃDÅܦ¨¤@Ó½u©Ê¥N¼Æªº°ÝÃD¡G
·í N «Ü¤j®É¡A¦V¶q ¦p¦óÅܤơH
¬°¤F¸Ñ¨M³oÓ°ÝÃD¡A¥²¶·§Q¥Î½u©Ê¥N¼Æ¤¤¦³Ãö©T¦³È (eigenvalue)
¤Î©T¦³¦V¶q (eigenvector) ¤§Æ[©À¤Î¨ä«n©w²z Primary decomposition Theorem¡]°Ñ¦Ò[1]¡^¡C
º¥ý§Ú̦Ҽ{ A x A ¯x°} M ¤§©T¦³È £f¡C
±q©T¦³È¤§©w¸q¡A£f ¬° M ¤§¯S¼x¦h¶µ¦¡
(characteristic polynomial)
¤§®Ú¡C
³q±`¯S¼x¦h¶µ¦¡«ÜÃøºâ¡A¦ý¦b³oùدx°} M ¦³¨ä¯S®í§Î¦¡ (5)¡A
©Ò¥H§Q¥Î°¶¥®i¶}¦æ¦C¦¡ det ()¡A±o¨ì
¦]¬° f(0) < 0 ¦Ó¥B·í °÷¤j®É ¡A©Ò¥H ¥²¦³¤@¥¿¹ê®Ú¡C ¨Æ¹ê¤W¡A¦]¬°¯x°} M ùؤ§«Y¼Æ¬Ò¤j©ó©Îµ¥©ó¹s¡A®Ú¾Ú¦³¦Wªº Frobenius©w²z¡]°Ñ¦Ò[2]¡^§Ú̱oª¾¦s¦b¤@©T¦³È ¡A ¦Ó¥B¨ä¥L A-1 Ó©T¦³È £f¡Aº¡¨¬ ¡C ²{¦b¡A§ÚÌ°²³]¯x°} M º¡¨¬¤U¦C©Ê½è¡G
(H) ¦s¦b¤@©T¦³È ¦Ó¥B¨ä¥L A-1 Ó©T¦³È £f¡Aº¡¨¬ ¡C
¦b°²³](H)¤U¡A§ÚÌ¥i¥H¥Î¼ÆȤÀªR¤§¤èªk Power Method ¹ê»Ú¦aºâ¥X ¡]°Ñ¦Ò[3]¡^¡C¦³¤F ¡A¦]¬° º¡¨¬(7)¦¡¡A§ÚÌ¥i¥HÀˬd¤@¤U¤U¦C
¬°¤@¹ïÀ³©ó £f ¤§©T¦³¦V¶q¡F
¥O E0 ¬°¥Ñ¦V¶q ©Ò²£¥Í¤§¤@ºû¤lªÅ¶¡¡A ¡C ¥Ñ½u©Ê¥N¼Æªº Primary decomposition Theorem¡A§ÚÌ¥i±N RA¼g¦¨ RA ¡A¨ä¤¤ E1 ¬O¥H¹ï©ó©T¦³È ¤§©T¦³¦V¶q (eigenvectors) ©Î¼s¸q©T¦³¦V¶q (generalized eigenvectors) ¬°¨ä°ò©³ (basis) ©Ò²Õ¦¨ªº A-1 ºû¤lªÅ¶¡¡C ¬°¤F°Q½×¤è«K°_¨£¡A§ÚÌ´N°²³]¯x°} M ¤§©T¦³È¬° ¡A ,¡K,, ·í ¦Ó¥B¥O ¬°¹ïÀ³©ó ¤§©T¦³¦V¶q¡C ©Ò¥H¥ô¦ó ¡A¥i°ß¤@ªí¬° ²{¥O P ¬° E0 ¤W¤§§ë¼vºâ¤l (Projection operator on E0)¡A§Y ¥O «h
©Ò¥H¦pªG±N
ªí¬°
«h ±q©T¦³È¡A©T¦³¦V¶q¤Î P,Q ¤§©Ê½è¡A¥i±o ©Ò¥H¡A ¦]¬°§ÚÌ°²³] ¡Ai=1,¡K,A-1¡A ©Ò¥H·í N «Ü¤j®É ±q(8)¦¡¡A§Ú̱o¨ì¨âÓµ²½×
¦]¬°¥Ñ(8)¦¡
|
¹ï¥~·j´MÃöÁä¦r¡G ¡D¤H¤f°Ê¤O¾Ç ¡D©T¦³È ¡D©T¦³¦V¶q ¡DPrimary decomposition Theorem ¡D¯S¼x¦h¶µ¦¡ ¡DFrobenius ¡Dbasis ¡DProjection operator |
|
¡]Y¦³«ü¥¿¡BºÃ°Ý¡K¡K¡A¥i¥H¦b¦¹ ¯d¨¥ ©Î ¼g«H µ¹§ÚÌ¡C¡^ |
EpisteMath (c) 2000 ¤¤¥¡¬ã¨s°|¼Æ¾Ç©Ò¡B¥x¤j¼Æ¾Ç¨t ¦Uºô¶¤å³¹¤º®e¤§µÛ§@Åv¬°ìµÛ§@¤H©Ò¦³ |
½s¿è¡G±d©ú°a | ³Ì«áקï¤é´Á¡G4/26/2002 |