­º­¶ | ·j´M

¡D­ì¸ü©ó¼Æ¾Ç¶Ç¼½²Ä¥|¨÷²Ä¤T´Á
¡D§@ªÌ·í®É¥ô±Ð©ó¬F¤jÀ³¥Î¼Æ¾Ç¨t
 

¥Y¨ç¼Æ¤§ªìµ¥ÃÒ©ú

®L¤å«J

 
 

¯÷©w¸q¥Y¨ç¼Æ¦p¤U¡G

³] f ¤§©w¸q°ì¬° D¡A¥B f ¾A¦X

\begin{displaymath}
f(\frac{x_1+x_2+\cdots+x_n}{n})\geq\frac{f(x_1)+f(x_2)+\cdots+f(x_n)}{n}\eqno (1)
\end{displaymath}

«hºÙ f ¬°¥Y¨ç¼Æ¡CÄY®æ¤@ÂI¡A(1)¤¤¤§µ¥¸¹À³¸Ó§R¥h¡A¦ýµ¥¸¹¤£§R¥h¡A¤ñ¸û¤è«K¨Ç¡AŪªÌ¥i¥é¦¹©w¸q¥W¨ç¼Æ¡A¤µ¥Îªìµ¥¤èªk¡A§Y°ª¤¤¼Æ¾Ç¤¤¤wª¾¤§¤èªk¡AÃÒ©ú¥Y¨ç¼Æ©ó¦¸¡G

[1] f(x)=1-x2,$x\in D=[0,1]$¡A³] x1,x2,¡K,$x_n\in D$¡A¥ýÃÒ©ú

\begin{displaymath}
\frac{x_1^2+x_2^2+\cdots+x_n^2}{n}\geq(\frac{x_1+x_2+\cdots+x_n}{n})^2\eqno (a)
\end{displaymath}

¦]

\begin{eqnarray*}
&& (x_1+x_2+\cdots+x_n)^2 \\
&=& x_1^2+x_2^2+\cdots+x_n^2+2\...
...x_2^2+\cdots+x_n^2+2\sum_{i,j=1\atop i\neq j,i>j}^n(x_i^2+x_j^2)
\end{eqnarray*}


¥B¦b $\sum x_ix_j$¤¤¡A§tx1 ªÌ¦³ n-1 ¶µ¡A¬G $\sum (x_i^2+x_i^2)$ ¤¤¦³ n-1 ­Ó x12¡A¦P²z x22,x32,¡K,xn2 ¥ç¦U¦³ n-1 ­Ó¡A¦]¦Ó±o

\begin{displaymath}
(x_1+x_2+\cdots+x_n)^2\leq n(x_1^2+x_2^2+\cdots+x_n^2)
\end{displaymath}

¥H n2 °£¤§§Y±o(a)¡A¥Ñ(a)±o

\begin{eqnarray*}
f(\frac{x_1+x_2+\cdots+x_n}{n})
&=& 1-(\frac{x_1+x_2+\cdots+x...
...cdots+1-x_n^2}{n} \\
&=& \frac{f(x_1)+f(x_2)+\cdots+f(x_n)}{n}
\end{eqnarray*}


¦¹¨ç¼Æ f ¯à¾A¦X(1)¡A¬G¬°¥Y¨ç¼Æ¡C

[2]$f(x)=\sin x$, $x\in D=[0,\pi]$
¦b¤½¦¡ $\sin(A+B)+\sin(A-B)=2\sin A\cos B$ ¤¤¡A¥O A+B=x1¡AA-B=x2 «h

\begin{displaymath}
A=\frac{1}{2}(x_1+x_2) \;\; , \;\; B=\frac{1}{2}(x_1-x_2)
\end{displaymath}

©ó¬O±o $\sin x_{1} + \sin x_{2} = 2\sin\frac{1}{2}(x_1+x_2)\cos\frac{1}{2}(x_1-x_2)$
¨ú $x_1, x_2 \in D$¡A«h

\begin{displaymath}
-\frac{\pi}{2}\leq\frac{x_1-x_2}{2}\leq\frac{\pi}{2}
\end{displaymath}

©Ò¥H¡A

\begin{displaymath}0\leq\cos\frac{x_1-x_2}{2}\leq 1
\end{displaymath}

¬G

\begin{displaymath}
\frac{\sin x_1+\sin x_2}{2}\leq\sin \frac{x_1+x_2}{2}
\end{displaymath}

¦P²z

\begin{displaymath}
\frac{\sin x_3+\sin x_4}{2}\leq\sin \frac{x_3+x_4}{2}\quad(x_3,x_4\in C)
\end{displaymath}

¦Ó

\begin{eqnarray*}
\lefteqn{ \frac{\sin x_1+\sin x_2+\sin x_3+\sin x_4}{2} } \\
...
..._2}{2}+\frac{x_3+x_4}{2}) \\
&=& \sin\frac{x_1+x_2+x_3+x_4}{4}
\end{eqnarray*}


¤µ³]¹ï 2p-1 ­Ó¼Æ¬°¯u¡A§Y

\begin{eqnarray*}
\frac{\sin x_1+\sin x_2+\cdots+\sin x_q}{q}
& \leq & \sin\fra...
...x_{2q}}{q}
& \leq & \sin\frac{x_{q+1}+x_{q+2}+\cdots+x_{2q}}{q}
\end{eqnarray*}


¦¡¤¤ q=2p-1,$x_i\in D$, $(i=1,2,\cdots ,2q)$ «h¦]

\begin{eqnarray*}
\frac{1}{2q}\sum_{i=1}^{2q}\sin x_i
&=& \frac{1}{2} \Big[ \fr...
...{i=q+1}^{2q} x_i ) \\
&=& \sin(\frac{1}{2q}\sum_{i=1}^{2q}x_i)
\end{eqnarray*}


¬G¹ï 2q=2p ¥ç¯u¡A¥Ñ¼Æ¾ÇÂk¯Çªk¥iª¾¡Fp ¬°¥ô¦ó¥¿¾ã¼Æ®É¬Ò¯u¡C´«¨¥¤§¡A³] $p\in N$¡A¥B m=2p¡A«h¤U­±ªº¤£µ¥¦¡ùÚ¦¨¥ß¡G

\begin{displaymath}
\frac{\sin x_1+\sin x_2+\cdots+\sin x_m}{m}
\leq\sin\frac{x_1+x_2+\cdots+x_m}{m} \eqno{(b)}
\end{displaymath}

¹ï¥ô¤@¥¿¾ã¼Æ n¡A­Y n ¬° 2 ¤§­¼¾­¼Æ¡A«h¥Ñ(b)ª¾¨ä¾A¦X(1)¡F­Y n ¤£¬° 2 ¤§­¼ò»¼Æ¡A¥i¨ú p ¨Ï

2p>n>2p-1

¦A¨ú¾A©y¤§¥¿¾ã¼Æ r ¥i±o

m=2p=n+p

¦b(b)¤¤¡A¥u­n $x_i\in D$¡A´N¯à¦¨¥ß¡A¤µ¨ú

\begin{displaymath}
x_{n+1}=x_{n+2}=\cdots=x_{n+r}=X
\end{displaymath}

¦¹ X ¤D x1,x2,¡K,xn ¤§ºâ³N¥­§¡¼Æ¡A§Y

\begin{displaymath}
X=\frac{1}{n}(x_1+x_2+\cdots+x_n) \in D
\end{displaymath}

±a¤J(b)¡A«h¨ä¥ªÃ䬰

\begin{displaymath}
\frac{\sin x_1+\sin x_2+\cdots+\sin x_n+r\sin X}{n+r}
\end{displaymath}

¦Ó¨ä¥kÃ䬰

\begin{eqnarray*}
\sin\frac{x_1+x_2+\cdots+x_n+rX}{n+r}
&=& \sin\frac{nX+rX}{n+r} \\
&=& \sin X
\end{eqnarray*}


¬G±o

\begin{displaymath}
\sin x_1+\sin x_2+\cdots+\sin x_n+r\sin X\leq(n+r)\sin X
\end{displaymath}

§Y

\begin{displaymath}
\frac{\sin x_1+\sin x_2+\cdots+\sin x_n}{n}\leq\sin X=\sin\frac{x_1+x_2+\cdots+x_n}{n}
\end{displaymath}

¦¹¤Dªí¥Ü¥¿©¶¨ç¼Æ $\sin$ ¦b D ¯à¾A¦X(1)¡A¬G¬°¥Y¨ç¼Æ¡C

[3] $f(x)=\ln x$, $x\in D=[1,2]$¡]$\ln=\log_e$¡A¬°¦ÛµM¹ï¼Æ¨ç¼Æ¡^
³] $x_1, x_2 \in D$ «h¦]

\begin{displaymath}
\frac{x_1+x_2}{2}\geq\sqrt{x_1x_2}
\end{displaymath}

¬G

\begin{displaymath}
\ln\frac{x_1+x_2}{2}\geq\ln\sqrt{x_1x_2}=\frac{1}{2}(\ln x_1+\ln x_2)
\end{displaymath}

¦P²z

\begin{displaymath}
\ln \frac{x_3+x_4}{2}\geq \frac{1}{2}(\ln x_3+\ln x_4),\quad (x_3,x_4\in D)
\end{displaymath}

¦Ó

\begin{eqnarray*}
\ln\frac{x_1+x_2+x_3+x_4}{4}
&=& \ln\frac{1}{2}(\frac{x_1+x_2...
...+\ln x_4}{2}) \\
&=& \frac{\ln x_1+\ln x_2+\ln x_3+\ln x_4}{4}
\end{eqnarray*}


¥é [2] ¥iª¾¡A­Y m ¬° 2 ¤§­¼ò»¼Æ¡A«h

\begin{displaymath}
\begin{eqalign}
\ln\frac{x_1+x_2+\cdots+x_m}{m}
& \geq \fra...
... & \quad (x_i\in D, \; i=1,2,\cdots,m)
\end{eqalign}\eqno{(c)}
\end{displaymath}

¹ï¥ô¤@¥¿¾ã¼Æ n¡A­Y n ¬° 2 ¤§­¼ò»¼Æ¡A«h¥Ñ(c)ª¾¨ä¾A¦X(1)¡F­Y n ¤£¬° 2 ¤§­¼ò»¼Æ¡A¥i¨ú

m=n+r

¥B¦b(c)¤¤¨ú

\begin{eqnarray*}
x_{n+1} &=& x_{n+2}=\cdots=x_{n+r} \\
&=& X=\frac{1}{n}(x_1+x_2+\cdots+x_n)
\end{eqnarray*}


«h±o

\begin{displaymath}
\ln\frac{nX+rX}{n+r}\geq\frac{\ln x_1+\ln x_2+\cdots+\ln x_n+r\ln X}{n+r}
\end{displaymath}

§Y

\begin{displaymath}
(n+r)\ln X\geq\ln x_1+\ln x_2+\cdots+\ln x_n+r\ln X
\end{displaymath}

¦]¦¹

\begin{displaymath}
\ln X\geq\frac{\ln x_1+\ln x_2+\cdots+\ln x_n}{n}
\end{displaymath}

¬G¦ÛµM¹ï¼Æ¨ç¼Æ $\ln$ ¯à¾A¦X(1)¡A½T¬°¥Y¨ç¼Æ¡C

¤W­±¦@Á|¥X¤T­Ó¨ÒÃD¡A¥H¥Ü¥Y¨ç¼Æ¤§ÃÒ©ú¤èªk¡A·íµM¡A¥Y¨ç¼Æ«Ü¦h¡A¤£¬é¦¹¤T­Ó¡A§Æ±æÅª ªÌ¯à¦ÛÁ|¨ÒÃD¦Ó¦ÛÃÒ¤§¡C¹ï©ó¥W¨ç¼Æ¥çµM¡C°Ý¤U¦C¦U¨ç¼Æ¦óªÌ¬°¥Y¡H¦óªÌ¬°¥W¡H

  1. $f(x)=\cos x$, $x\in [-\pi,\pi]$
  2. $f(x)=\cos x$, $x\in [\frac{\pi}{2},\frac{3\pi}{2}]$
  3. $f(x)=\sin x$, $x\in[\pi,2\pi]$
  4. f(x)=x2, $x\in R$

 
¹ï¥~·j´MÃöÁä¦r¡G
¡D¥Y¨ç¼Æ

¦^­¶­º
 
¡]­Y¦³«ü¥¿¡BºÃ°Ý¡K¡K¡A¥i¥H¦b¦¹ ¯d¨¥ ©Î ¼g«H µ¹§Ú­Ì¡C¡^
EpisteMath

EpisteMath (c) 2000 ¤¤¥¡¬ã¨s°|¼Æ¾Ç©Ò¡B¥x¤j¼Æ¾Ç¨t
¦Uºô­¶¤å³¹¤º®e¤§µÛ§@Åv¬°­ìµÛ§@¤H©Ò¦³


½s¿è¡G¶À«H¤¸ ³Ì«á­×§ï¤é´Á¡G5/2/2002