­º­¶ | ·j´M

¡D­ì¸ü©ó¼Æ¾Ç¶Ç¼½²Ä¤T¨÷²Ä¥|´Á
¡D§@ªÌ·í®É¥ô±Ð©ó²M¤j¼Æ¾Ç¨t
 

¹ï¼Æ»P¬ù¿«¡D¯Ç¥Öº¸ (John Napier)

¿àº~­ë

 
 

¹ï¼Æ³o­Ó¦Wµü¡A¹ï°ê¤¤¡B°ª¤¤ªº¦P¾Ç¨Ó»¡³£¤£·|­¯¥Í¡A¦]¬°¥L­Ì­n¾Ç±`¥Î¹ï¼Æ¡C¶i¨ì¤j¾Ç¤W·L¿n¤À®É¡A¥H e ¬°©³ªº«ü¼Æ»P¹ï¼Æ¨ç¼Æ§ó¨ã°ò¥»ªº­«­n©Ê¡C§Ú¤W½Ò¡A¨C¦¸»¡¨ì³oùØÁ`­n²³æ´£¤@´£¦³Ãö¹ï¼Æªº¬G¨Æ¡A¥H¤Þ°_¾Ç¥Íªº¿³½ì¡C¤µ¦~§Ú¤W·L¿n¤À½Ò®É¡A¾Ç¥Í´£Ä³±N³o¨Ç¬G¨Æ¼g¥X¨Ó¦nÅý¸û¦hªº¾Ç¥Í¤À¨É¦¹¬G¨Æ¡C¼g»PÁ¿µy¦³¤£¦P¡A»\¼g¥X¨ÓÁ`±o­n¦³¨t²Î¤Î®Ú¾Ú¡BÁ¿«h¥i¥H¸û¤£ÄY®æ¡AµMÀ³¾Ç¥Íªº§Æ±æ¡A¤Dªá¨Ç¤u¤Ò°µ­Ó³ø¾É¡C

¤µ¤Ñ§Ú­Ì©Ò¥Î©ÒÁ¿ªº¹ï¼Æ¬°±`¥Î¹ï¼Æ©Î¦ÛµM¹ï¼Æ¡A»P³Ì¦­ Napier ªº¹ï¼Æµy¦³¥X¤J¡A°ß¨ä¨Ó·½ªººë¯«¤Î¨ä©Ê½è¥i»¡¨Ó¦Û Napier¡A¬é¬O§Î¦¡¤£¦P¦Ó¤w¡C²{¦b´N¨Ó¤¶²Ð Napier ¨ä¤H¤Î¨äµo©ú¤§¹ï¼Æªk«h¡C


John Napier, 1550¡ã1617

§Ú­Ìª¾¹D·í¤@­Ó¤H·Q­pºâ¤j¼Æ¤§¿n»P°Ó®É¡A³£±`§Q¥Î¹ï¼Æ¤èªk¡A¨D¨äªñ¦ü­È¡C¨ä°_·½¥i»··¹ Kepler¡]1571¡ã1630¡^¬ã¨s¤ÑÅé¹B°Ê¾Ç®É¥L¹J¨ì³\¦h«D±`¤jªº¼Æ­È­pºâ¡A¦ý¥L­n¨Dªº¬O¦³®Äªºªñ¦ü­È¡A¦]¤§¤D´M¨D²³æªº­pºâ¤èªk¡C·í®É¦bĬ®æÄõ«ê¦n¥X¤F¤@¥»®Ñ

"Mirifici logarithmorum Canonis descriptio, seu ... , auctore ac inventore Joanne Nepero barone Merchistonii"
¡]Åå°Ê¤Hªº¹ï¼Æ³W«h»P°O­z¡A§Y¡K¡KµÛªÌ­Ýµo©úªÌ John Napier, Merchistonii¡^

³o¬O1614¦~ªº¨Æ¡A¶Ç»¡µÛªÌ Napier ¦b1550¦~¥X¥Í©óĬ®æÄõªº¤@¤p¥«Âí¡ANapier ­ì¥ý¬Oªø¦Ñ±Ð·|ªº­×¹D¤h¡A¥L»{¬°¹ï¤HÃþ³Ì¤jªº©^Äm¬O¶Ç±Â¨ä±Ð¸q¤§ºë¯«¡C³o­Ó«D¼Æ¾Ç®aªº Napier¡A¬°¤°»òµÛ¤â¬ã¨sµo©ú¹ï¼Æ©O¡H¸Ô±¡¤£±o¦Óª¾¡A©Î³\¥L±`Å¥¨ì¦³¤H¬°Ãe¤jªº¼Æ­È­pºâ¦Ó·P¨ì­W´o¡A¤×¨ä¬O°Ó¡B¿n¤§­pºâ¡A¦]¦¹¤Þ°_¤F¥L±ÀºV¬O§_¦³Â²³æªº­pºâ¤èªk¡C¤j·§¦]¤§¦Óµo²{¥Lªº¹ï¼Æªk«h§a¡I

Napier ­º¥ý©Ò±À¦Òªº¬O±N¤j¼Æªº¿n©Î°Óªºªñ¦ü­È­pºâ¡AÂàÅܦ¨©M©Î®tªººtºâ¡C©ó¬O¥Ñ¿n»P©Mªº¹ïÀ³¡Aª`·N¨ìµ¥¤ñ¯Å¼Æ»Pµ¥®t¯Å¼Æªº¹ïÀ³¡A¦ý«ç¼Ëªºµ¥¤ñ¯Å¼Æ¹ïÀ³«ç¼Ëªºµ¥®t¯Å¼Æ¤D¬O­Ó°ÝÃD¡A³o´N¬O¦b Napier ªº³Ð·N¤¤ªºÃöÁä¡C

Napier ³Ì¥ý¦Ò¼{ªuª½½u¹B°Êªº¨âÂI P,Q¡CP ¬O¦b©wªø AZ ¤§©lÂI A ¨ì²×ÂI Z ªº¹B°Ê¡CÂI Q «hµL­­¨î¦a±qª½½u A'Z' ¤§©lÂI A' ÂI¦V Z' ¤è¦V°µ¹B°Ê¡AP,Q ¥H¦P³t¥Xµo¡CÂI Q ¥Hµ¥³t¹B°Ê¡AÂI P ¤§³t«×¥Ñ¦¹ÂI¨ì Z ªº¶ZÂ÷¨Ó¨M©w¡A°µ´î³t¹B°Ê¡C¦pÂI P ¦b B ÂI®É¡AQ ¦b B'¡A¦¹®É´NºÙ

A'B' ¬° AB ªº¹ï¼Æ¡C



³o´N¬O¡uNapier ¹ï¼Æ¡vªº°ò¥»©w¸q¡C¶È´N¦¹©w¸q¡A«h©|µLªk¥X²{¡uNapier ¹ï¼Æ¡vªº©Ê½è¡C¬°¥Ü©ú¨ä©Ê½è¡A¤D¨ú AZ ªø¬° r¡Ar ¥i¥H¬°«Ü¤jªº­È¡C¦bÂI A ªº P ¤§³t«×¬° r¡CP,Q ±q A,A' ¥Xµo¡A¸g¹L®É¶¡ $\frac{1}{r}$ ®É¡AP,Q ¤À§O©è¹F B,B'¡C·í r «D±`¤j®É¡A$\frac{1}{r}$ µ¥©óÀþ¶¡ªºµu®É¶¡¡C¦¹®É P ¨ì B ªº¶ZÂ÷µ¥©ó r x (1/r)=1¡AQ ¨ì B' ªº¶ZÂ÷¤]µ¥©ó 1¡C¤µ P ¦bÂI B ªº³t«×µ¥©ó BZ ªºªø¡A§Y

\begin{displaymath}BZ=r-1=r(1-\frac{1}{r})\end{displaymath}

¬G¦b®É¶¡ $\frac{1}{r}$ ¤º¡AÂI P ¨ì¹F C¡AÂI Q ¨ì¹F C'¡A«h

\begin{displaymath}BC= \frac{1}{r} \cdot r(1- \frac{1}{r})=1- \frac{1}{r}, \quad B'C'= \frac{1}{r}\cdot r=1\end{displaymath}

©ó¬O

\begin{displaymath}CZ=AZ-AB-BC=r(1-\frac{1}{r})^2 \end{displaymath}

¤S¦A¸g $\frac{1}{r}$ ®É¶¡ Q ¨ì D' ÂI¡A«h C'D'=1¡A¦ÓÂI P ¦b C ÂIªº³t«×¬O $r(1-\frac{1}{r})^2$¡A¬G P ¦b $\frac{1}{r}$ ®É¶¡¤ºªº¶ZÂ÷¬° $CD = (\frac{1}{r}) \cdot r(1-\frac{1}{r})^2$ $= (1-\frac{1}{r})^2$¡A¦]¦¹

\begin{displaymath}DZ=AZ-AB-BC-CD=r(1-\frac{1}{r})^3\end{displaymath}

´`¦¹¤U¥h¡A¥iª¾ÂI P ¦b A,B,C,D, $\cdots \cdots$ ¦UÂIªº³t«×¤À§O¬°
\begin{displaymath}
r, \; r(1-\frac{1}{r}), \; r(1-\frac{1}{r})^2, \; r(1-\frac{1}{r})^3, \; \cdots \cdots
\end{displaymath} (1)

¨ä©Ò¹ïÀ³ªº Q ÂI¦ì¸m A',B',C',D', $\cdots \cdots$ ¬°
\begin{displaymath}
0,\quad 1, \quad 2,\quad 3, \cdots \cdots
\end{displaymath} (2)

¡]ª`·N(2)¤§¼Æ n »P(1)¤¤¥X²{¤§ $(1-\frac{1}{r})^n$ ªº¦¸¼Æ n ¬Û¦P¡C¡^ (2)¦¡ªº¨C¤@­Ó­È¡A¨Ì©w¸q¬O(1)¦¡©Ò¹ïÀ³¤§¡uNapier ¹ï¼Æ¡v¡C

¬°ÁA¸Ñ¡uNapier ¹ï¼Æ¡vªº©Ê½è¡A¯÷¥Î²{¥Nªº¼Æ¾Ç§Î¦¡¨Ó»¡©ú¡C³]

\begin{displaymath}
x=r(1-\frac{1}{r})^y
\end{displaymath} (3)

y ´N¬O¡ux ªº Napier ¹ï¼Æ¡v¡A¦¹ Napier ¹ï¼Æ¥H

\begin{displaymath}
\mbox{Nap.} \log{x} = y
\end{displaymath}

ªí¥Ü¡A³o¨Ã¤£¬O Napier ©Ò¥Îªº°O¸¹¡C

¨Ì¦ÛµM¹ï¼Æªº©Ê½è¡A¥Ñ(3)¥i¾É¥X

\begin{displaymath}\log_e x = \log_e r +y \log_e { (1- \frac{1}{r}) } \end{displaymath}

©ó¬O

\begin{displaymath}y = \frac {\log_e{x}-log_e{r}}{ \log_e(1- \frac{1}{r})}
= \frac {r( \log_e{r}-log_e{x})} {-r \log_e {(1-\frac{1}{r})}}\end{displaymath}

¦ý

\begin{displaymath}-r \log_e {(1-\frac{1}{r})} = 1 + \frac{1}{2} \cdot \frac{1}{r} +
\frac{1}{3} \cdot \frac{1}{r^2} + \cdots \cdots \end{displaymath}

¬G

\begin{displaymath}y = \frac{ r(\log_e{r}-\log_e{x}) } {1+ \frac{1}{2} \cdot \frac{1}{r} + \frac{1}{3} \cdot \frac{1}{r^2}+ \cdots \cdots}\end{displaymath}

­Y¥O r ¬°·¥¤jªº­È¡A«h¤W¦¡¤§ªñ¦ü­È¦¨¬°

\begin{displaymath}y = r(\log_e{r}-log_e{x})\end{displaymath}

¬G±o
\begin{displaymath}
\mbox{Nap.} \log x = r(\log_e{r} - \log_e{x}).
\end{displaymath} (4)

³o¼Ë¤@¨Ó
\begin{displaymath}
\mbox{Nap.} \log r = 0
\end{displaymath} (5)

³o´N¬O Napier ¹ï¼Æªº¯S©Ê¡A©ö©ó¬Ý¥X¡ux ¤j©ó r ®É¡A $\mbox{Nap.} \log x$ ¬°­t­È¡Ax ¤p©ó r ®É¡A $\mbox{Nap.} \log x$ ¬°¥¿­È¡v¡C

¨ä¦¸³]

\begin{displaymath}
x = r(1- \frac{1}{r} )^y , \quad x'=r(1- \frac{1}{r} )^{y'}
\end{displaymath}

«h

\begin{displaymath}xx'=r^2(1- \frac{1}{r})^{y+y'}.\end{displaymath}

©ó¬O±o

\begin{displaymath}
\frac{xx'}{r}=r(1-\frac{1}{r})^{y+y'} .
\end{displaymath}

¨Ì¡uNapier ¹ï¼Æ¡vªº©w¸q

\begin{displaymath}
\mbox{Nap.} \log {\frac{xx'}{r}}=y+y'= \mbox{Nap.} \log x + \mbox{Nap.} \log x'. \eqno{(*)}
\end{displaymath}

¥Ñ(4)±o

\begin{eqnarray*}
\mbox{Nap.} . \log {\frac{xx'}{r}} & = & r(\log_e{r} -\log_e{...
...{(xx')})+r \log_e r \\
&=& \mbox{Nap.} \log(xx')+r \log_e r ,
\end{eqnarray*}


©ó¬O±N $\mbox{Nap.} \log(\frac{xx'}{r})$ ¥N¤J(*)±o
\begin{displaymath}
\mbox{Nap.} \log{(xx')}=\mbox{Nap.} \log x + \mbox{Nap.} \log{x'}-r\log_e{r}.
\end{displaymath} (6)

¤S

\begin{displaymath}\frac{x}{x'}=(1-\frac{1}{r})^{y-y'}, \end{displaymath}

¬G

\begin{eqnarray*}
r \frac{x}{x'} &=& r(1-\frac{1}{r})^{y-y'}, \\
\mbox{Nap.} ...
...{x}{x'})} &=& y-y'= \mbox{Nap.} \log x - \mbox{Nap.} \log{x'}.
\end{eqnarray*}


¨Ì(6)©Ò¥Ü¤§©Ê½è

\begin{displaymath}
\mbox{Nap.} \log{(r \frac{x}{x'})}
= \mbox{Nap.} \log r + \mbox{Nap.} \log{\frac{x}{x'}}-r\log_e r
\end{displaymath}

¦b(5)©Ò¥Ü¡A $\mbox{Nap.} \log r$ ¬° 0¡A¬G

\begin{displaymath}
\mbox{Nap.} \log{(r \frac{x}{x'})} = \mbox{Nap.} \log{\frac{x}{x'}}-r\log_e r
\end{displaymath}

µ²ªG±o
\begin{displaymath}
\mbox{Nap.} \log{\frac{x}{x'}}= \mbox{Nap.} \log x -\mbox{Nap.} \log{x'}+r\log_e r
\end{displaymath} (7)

±q(6)»P(7)©Ò¥Üªº©Ê½è¨Ó¬Ý¡A¡uNapier ªº¹ï¼Æ¡v¹ï©ó¦ÛµM¹ï¼Æ©Î±`¥Î¹ï¼Æ¤§¿n¡B°Óªº­pºâ¡A¥»½è¤W¬O¨ã¦³¦P¼Ë¤§©Ê½è¡CNapier ¬O¥H¤T¨¤¨ç¼Æ¤§­pºâ¬°¹ï¶H¡A¦]¦¹¨ú r=1000000 ®É¡A¨M©w $\mbox{Nap.} \log{\sec{90^{ \circ }}}=0$¡C¡]°Ñ·Ó(5)¦¡¡^¦b¨º­Ó®É¥N¬JµL 107 ¤§°Oªk¡A¤S¤í¤p¼Æ¤§ª¾ÃÑ¡A©Ò¥H¤~¥Î¨º»ò¤jªº¼Æ§a¡I

Napier ¦º«á¥Xª©¦³¡mDe arte logistica¡n¡]­pºâ§Þ³Nªº¤èªk¡^¡CNapier ¹ï©ó¥N¼Æ©Î´X¦ó©Ò¼gªºÂø¿ý¡A¤£°Ý¨ä§¹¦¨»P§_¡A¾Ú»¡¦³¿ò½Z¶°¡AµM¦]¥¼¥Ø¸@¨ä¤¤¤º®e¡A¬G¥¼¯à¦h¨¥¡A¦ý¥Ñ¡ulogistica ·N«ü°µ¦n­pºâ¡v¨Ó¬Ý¡ANapier ªº¼Æ¾Ç©Ò¥Ü¤§¤@­±¬O¥H­pºâ¬°¥Dªº¾Ç°Ý¡C

°Ñ¦Ò¸ê®Æ¡G
Sugaki seminar special number, 1971¦~12¤ë¡C

 
¹ï¥~·j´MÃöÁä¦r¡G
¡D¹ï¼Æ
¡DNapier
¡DKepler
 
½sªÌ«ö



¤T¨¤¾Ç·½°_©ó¤Ñ¤å¡C¡]¨£¹Ï¡^°_ªì¤j®a¦³¿³½ìªº¬O¨D¤@¤j¶ê¤¤¨¤ 2£c ©Ò¹ïªº©¶ªø BC¡]°O°µ $\mbox{cd} 2 \theta = BC$¡^¡A«á¨Ó¤SºtÅܦ¨¨D¬ÛÀ³©ó¨¤ £c ªº BD¡]§Y $\sin{\theta} = BD$¡^¡C$\sin$ ¨ç¼Æ©M $\mbox{cd}$ ¨ç¼Æ¦³±K¤ÁªºÃö«Y¡G $\sin{\theta}=\frac{1}{2} \mbox{cd} 2 \theta$¡C³o´N¬O¡u¥¿©¶¡v¨ç¼Æ¦WºÙªº¥Ñ¨Ó¡C³Ì¥iª`·Nªº¬O¨º®É $\sin$ ¨ç¼Æªº­È¬O½u¬qªø¦Ó¤£¬O§Ú­Ì²{¦b©Òª¾ªº¤ñ­È¡C³o¼Ëªº $\sin$ ­È·íµM©M¶ê¥b®|ªº¤j¤p¦³Ãö¡C³Ì¦­ªº®É­Ô²ßºD¨ú©w¥b®|ªºªø«×¬° 60 ­Ó³æ¦ì¡]­Y¥Î 3 °µ¶ê©P²v¡A«h¶ê©P­n¦³ 360 ­Ó³æ¦ìªø¡A©Ò¥H¨C¤@«×©Ò¹ïªº©·ªø¬°¤@­Ó³æ¦ì¡^¡A¦Ó»s³y¤T¨¤¨ç¼Æªí¡C·íµM¤j®aª¾¹D³o¼Ëªº¨ç¼Æªí¬O­n¬Û¹ï©ó¥b®|ªø¨Ó¬Ý¤~·|¯u¥¿¦³¥Î¡C¡]¹ê»Ú¤W³o´N¬O²{¥Nªº¤T¨¤¨ç¼ÆªºÆ[©À¡C¡^ ¦pªG­n±o¨ì¸ûºë½Tªº¨ç¼Æ­È¡A«h¨ä¤p¼Æ³¡¤À¤£¯àÀH«K±Ë¥h¡F¦ý¨º®É­Ôªº¼Ú¬w¤H¤£À´±o¤p¼Æªí¥Üªk¡A¥L­Ì¥u·|¥Î¤À¼Æ¡A¦Ó¥B¤À¼Æªº²Å¸¹¤Î¹Bºâ§Þ¥©³£«D±`²Â©å¡C¬°¤FÁקK­pºâ¤Wªº§xÃø¥u¦³±N¥b®|ªº³æ¦ì­Ó¼Æ¥[¤j¡A¨Ï±o¬ÛÀ³¨ç¼Æ­È¤p¼Æ¥H¤Uªº³¡¤À¥i¥H²¤¥h¡C¦b Napier ªº®É«J¡A³q±`¤T¨¤¨ç¼Æªí¤¤ªº¥b®|ªøÅܦ¨ 107 ¨º»ò¤j¡A©ó¬O·í¥L¬°¤F¸Ñ¨M¤Ñ¤å¤W­pºâªº§xÃø¦Ó°µ¹ï¼Æªí®É¡A¥L´N¨ú r ªø¬° 107¡C¦b³o¼Ëªº r ªø¤§¤U¡A $\sin{90}^{\circ}=10^7$ ©Ò¥H $\mbox{Nap.} \log \sin 90^{\circ}=0$¡C

Napier ªº¹ï¼Æ¡]¨ä©³¼Æ¬° $1-\frac{1}{10^7}$¡^¬O¥Ñ¤T¨¤¾Çªº­pºâ¦Ó°_ªº¡A¤£¦n¥Î¨ì¨ä¥L¤è­±ªº­pºâ¡C¥L¤Î Henry Briggs¡]1561¡ã1631¡^¤£¤[´Nµo²{¥H10¬°©³ªº¹ï¼Æ³Ì¤è«K³Ì¹ê¥Î¡A©Ò¥H Napier ªº¹ï¼Æ¥u¾èªá¤@²{¡A¤£¤[´N³Q±`¥Î¹ï¼Æ´À¥N¤F¡C

   

¦^­¶­º
 
¡]­Y¦³«ü¥¿¡BºÃ°Ý¡K¡K¡A¥i¥H¦b¦¹ ¯d¨¥ ©Î ¼g«H µ¹§Ú­Ì¡C¡^
EpisteMath

EpisteMath (c) 2000 ¤¤¥¡¬ã¨s°|¼Æ¾Ç©Ò¡B¥x¤j¼Æ¾Ç¨t
¦Uºô­¶¤å³¹¤º®e¤§µÛ§@Åv¬°­ìµÛ§@¤H©Ò¦³


½s¿è¡G±d©ú°a ¢A ®Õ¹ï¡G¾H´f¤å ¢A ø¹Ï¡G±iÖq´f ³Ì«á­×§ï¤é´Á¡G4/26/2002