­º­¶ | ·j´M

¡D­ì¸ü©ó¼Æ¾Ç¶Ç¼½²Ä¤T¨÷²Ä¤T´Á
¡D§@ªÌ·í®É¥ô±Ð©ó¥æ¤j¹B¿é¤uµ{»PºÞ²z¾Ç¨t

¡EµùÄÀ
 

²{¥N²Î­p¾Çªºµo®i

À¹¤[¥Ã

 
 

¡u²Î­p¡v³o­Ó¦Wµüªº·N¸q¦]¤H¦Ó²§¡A¹ï¤@¯ë¤H¦Ó¨¥¡A²Î­p¬O¥ô¦ó¤è­±±M®a­Ì¥Î¥H¤ä«ù¨ä½×ÂIªº¤@¤j°ï¼Æ¦r¡F¹ï©ó²¤¨ã±`ÃѪº¤H¨ÓÁ¿¡A³o­Ó¦Wµü¥Nªí¥Î¥HºK­n©M¸ÑÄÀ¤@°ï¼Æ¾Ú¦p­pºâ¥­§¡¼Æ (mean) »P¼Ð·Ç®t (Standard deviation) ªºµ{§Ç¤§Ãþªº·§©À¡C¦ý¬O¹ï©ó±q¨Æ²Î­p¤u§@ªº¤H­û¦Ó¨¥¡A²Î­p¬O¨Ì¤p¶q¼Æ¾Ú¡]¼Ë¥»¡^©Ò´£¨Ñªº¸ê®Æ¥H¦ô­p¹w´ú¬Y¬ã¨s¹ï¶H¦p¸sÅ骺¤èªk¡C©ÎªÌ§ó¼s¸q¦a»¡¡A²Î­p¬°­±¹ï¤£©wª¬ªp¨î©w¨Mµ¦´£¨Ñ¤èªkªº¬ì¾Ç¡C

ÁöµM²Î­pªº°_·½¥i°l·¹¦Ü¤Q¤K¥@¬ö¬Æ¦Ü§ó¦­¡AµM¦Ó²Î­p¾Ç¥D­nªºµo®i«o¿ð¦Ü¤Q¤E¥@¬ö¥½¸­¤G¤Q¥@¬öªì´Á¤~¯u¥¿¶}©l¡C¨ì¤F¥|¤Q¦~¥N¤~³vº¥¦¨¼ô¡A²Î­p¾Ç©M¾÷²v½×ªºÃö«Y²§±`±K¤Á¡A¨Æ¹ê¤W¥ô¦ó²Î­p°ÝÃDªº¬ã¨s³£¥²¶·²o¯A¨ì¾÷²v½×ªº¹B¥Î¡A¦]¬°«áªÌ¹ê¬°«eªÌªº¥D­n¤u¨ã¡C

²Î­p¤H­û¹ï¦p¤U©ÒÁ|¤§Ãþ°ÝÃDªºµª®×²`·P¿³½ì¡G¬O§_±µ¨ü¥»§å°eÅ禨«~¡H§l·Ï»P±oÀù¯g¦³Ãö¶Ü¡H±i¤T·|©ó¤U©¡¿ïÁ|¤¤Àò³Ó¶Ü¡H¬°¤F¦^µª¤W­z°ÝÃD¡A§Ú­Ì¥²¶·¥Ñ¨ã¡u¥Nªí©Ê¡vªº¯S®íª¬ªp¥H¡uÁA¸Ñ¡v¤@¯ëªºª¬ªp¡A¥Ñ¼Ë¥»¡u±À´ú¡v¸sÅé¡C¦]¦¹¡A¥Ñ²Î­p¤H­û©Ò±À´ú±o¨ìªºµ²½×³£¤£¬Oµ´¹ïªÖ©w¥i¥H±µ¨ü¡C¨Æ¹ê¤W¡A²Î­p¤H­ûªºÂ¾³d¤§¤@¬O¶q«×¥L©Ò±oµ²½×ªÖ©wªºµ{«×¡A¦ý¬O§Ú­Ì¤£¯à¥H¬°²Î­pªº¯Ê¥FªÖ©w©Ê¦Ó»~»{¬°²Î­p¼Æ¾Ç¤£ÄY±K¡A¦]¬°ºc¦¨²Î­p°ò¦ªº¼Æ¾Ç¬O¾÷²v½×¡A¥¦¦³©T­Y½Y¥Ûªº¼Æ²z¤Æ°ò¦©M¸gÄY±KÃÒ©úªº©w²z¡C

¤@¯ë¦Ó¨¥¡A§Ú­Ì¥i¥H§â²Î­p°ÝÃD¤À¦¨¨âÃþ¡G ±Ô­z²Î­p©M±À½×²Î­p¡A²³æªº»¡¡G¥ô¦ó¹ï¼Æ¾Ú¡]§Y¼Ë¥»¡^ªº³B²z¾É­P¹w´ú©Î±À½×¸sÅ骺²Î­pºÙ¬°±À½×²Î­p¡C¤Ï¤§¡A¦pªG§Ú­Ìªº¿³½ì¥u­­©ó¤âÀY²{¦³ªº¼Æ¾Ú¡A¦Ó¤£·Ç³Æ§âµ²ªG¥Î¨Ó±À½×¸sÅé«hºÙ¬°±Ô­z²Î­p¡CÁ|­Ó¨Ò¤l¨Ó»¡¡A¨Ì¾Ú¹L¥h¤Q¦~¨Óªº²Î­p¡A¨C¦~¨ÓµØÆ[¥úªº¤H¼Æ¡A¥­§¡¨C¤H¦b»O°±¯dªº¤é¼Æ¡A¥­§¡¨C¤H¨C¤Ñ¦bµØªºªá¶O¡A¤Q¦~¤º¨º¤@¦~³Ð³Ì°ª°O¿ýµ¥µ¥³£¬OÄÝ©ó±Ô­z²Î­pªº½d³ò¡F¦ý¬O¦pªG§Ú­Ì®Ú¾Ú³o¨Ç¦~©Ò±oªº¼Æ¾Ú¨Ó¹w´ú¨Ó¦~¥i¯àªºÆ[¥ú«È¤H¼Æ´N¬O±À½×²Î­pªº°ÝÃD¤F¡C¤Q¦~«eªºªì¯Å²Î­p½Ò¥»¤j¦h½Í±Ô­z²Î­p¡A¦p¤µ¥Ñ©ó­pºâ¾÷ªº²±¦æ¡A³o³¡¥÷ªº¤u§@¤j¦h§Q¥Î­pºâ¾÷¨Ó¸Ñ¨M¡AºÙ¬°¼Æ¾Ú³B²z¡A¦Ó¤@¯ë²Î­p®Ñªº­«ÂI§O©ñ¦b±À½×²Î­p¡C

¤j­P»¡¨Ó¡A±À½×²Î­p¤À¬°¤T¤jÃþ¡A´N¬O¦ô­p¡AÀË©w©M¤ÀÃþ»P¿ï¾Ü¡C Ä´¦p»¡¡A±i¤T·QÄv¿ï»O¥_¥«Ä³­û¡A¥L·Q¦ô­p¤@¤U¥i¯à¦³¦h¤Ö¤H·|§ë²¼µ¹¥L¡A©ó¬O¥L¥HÀH¾÷©â¼Ëªº¤è¦¡¡A¸ß°Ý100¦ì¦³§ë²¼Åvªº¥«¥Áªº·N¨£¡A¦Ó«á®Ú¾Ú©Ò±oµ²ªG±À½×¥i¯à¥þ¥«¦³¦h¤Ö¤H·|¿ï¥L¡A³o¬O¦ô­p°ÝÃD¡C¤S¦p¬Y®a®x¥D°ü·Qª¾¹D¦o¤ß¤¤ÃhºÃ¼ä¤ýµP¬~¦ç¯»ªº¬~²b¤O¬O§_¤ñ·R¤ýµP¬~¦ç¯»±j¡A­º¥ý°²³]¼ä¤ýµP¤ñ·R¤ýµP¦n¡AµM«á¸g¹L¸ÕÅç¨Ó´ú©w³o°²»¡¬O§_¦¨¥ß¡A¦b¥»¨Ò¤¤¡A§Ú­Ì¨Ã¤£·Q¦ô­p¥ô¦ó°Ñ¼Æ¡A¦Ó¥u¬O·QÀËÅç¨Æ¥ý©Ò±Ô­zªº°²³]¬O§_¦¨¥ß¨ä¥i¾a©Ê¦³¦h¤j¡A³o´N¬OÀË©w°ÝÃD¡C ÁÙ¦³¡A·s»s³yªº¤TºØÃÄ«~¤¤¨º´XºØ¤ñ¥Ø«e©Ò¥Îªº³oºØÃÄ«~¦³®Ä©O¡H³o¬O¿ï¾Üªº°ÝÃD¡C¦pªG§Ú­Ì§â²Î­p³]·Q¬°¸g¥Ñ©â¼Ë¥H¨î©w¨Mµ¦ªº¬ì¾Ç¡A¨º»ò§Ú­Ì¦ü¥G©y¥H¤Q¤E¥@¬ö¥½´Á°ªº¸¹yÀï¤h¡]Sir Francis Galton, 1822¡ã1911¡^©M¥dº¸¡D¥Öº¸»¹¡]Karl Pearson, 1857¡ã1936¡^ªº½×­z°µ¬°¥¦ªº°_ÂI¡C ±q¨º®É¶}©l¡A²{¥N²Î­p²z½×ªºµo®i¥i²¤¤À¬°¥|¤j«ä¼é¡A¦b³o¥|¤j®É´Á¡A¨C¤@¶¥¬q³£¬O¥H¤@¦ì°¶¤jªº²Î­p¾Ç®aªº±MµÛ¬°¥ý¾É µù1¡C

²Ä¤@¶¥¬qÀHµÛ1899¦~°ªº¸¹yªº¡mNature Inheritance¡n¤@®Ñªº¥Xª©¦Ó®i¶} §Ç¹õ¡A¸Ó®Ñ°£¤F¨ä¥»¨­ªº»ù­È¥~¡AÁÙ¤Þµo¤F³Ç¥Xªº²Î­p¾Ç®a¥dº¸¡D¥Öº¸»¹¹ï²Î­p¾Çªº¿³½ì¡C¦b¦¹¤§«e¡A¥Ö¤ó¥u¬O¦b­Û´°¤j¾Çªº¤j¾Ç³¡ (University College) °õ±Ðªº¼Æ¾Ç±Ð­û¡C·í®É¡A³o¡u©Ò¦³ª¾Ãѳ£°ò©ó²Î­p°ò¦¡vªº·Qªk¤Þ°_¤F¥Lªºª`·N¡C

1890¦~¥LÂà¨ì®æ¨½¨¯¾Ç°| (Gresham College)¡A¦b¨ºùØ¥L¥iÁ¿±Â¥ô¦ó¥L§Æ±æÁ¿±Âªº½Òµ{¡A¥Ö¤ó¿ï¤F¤@­ÓÃD¥Ø¡u²{¥N¬ì¾Çªº½d³ò»P·§©À¡v(the Scope and Concepts of modern Science) ¦b¥Lªº±Â½Ò¤¤¥L¶V¨Ó¶V±j½Õ¬ì¾Ç©w«ßªº²Î­p°ò¦¡A«á¨Ó¥L¥þ¯«¶°¤¤­P¤O©ó²Î­p²z½×ªº¬ã¨s¡C¤£¤[¥Lªº¹êÅç«Ç¦¨¬°¥@¬É¦U¦a¤H­Ì¾Ç²ß²Î­p©M¦^°êÂI¿U¡u²Î­p¤§¤õ¡vªº¬ã¨s¤¤¤ß¡C¸g¥Ñ¥L¼ö¤ßªº´£­Ò¡A¬ì¾Ç¤u§@ªÌ³vº¥¥Ñ¹ï²Î­p¬ã¨s¤£·P¿³½ìªº¹Ò¦aÂà¦Ó¦¨¬°¼ö¤Á¦a§V¤Oµo®i·s²z½×©M·j¶°¨Ã¬ã¨s±o¦Û¦U¤è­±ªº¼Æ¾Ú¡C¤H­Ì¶V¨Ó¶V²`«H²Î­p¼Æ¾Úªº¤ÀªR¯à¬°³\¦h­«­nªº°ÝÃD´£¨Ñ¸Ñµª¡C

®ü­Û¡DµØ§J (Helen Walker) ´y­z¥Ö¤ó¤p®É­Ôªº¤@«h¶c¨Æ¡A¥Í°Ê¦aÅã¥Ü¥L©¹«á¨Æ·~¤¤©Òªí²{ªº¯S¦â µù2 ¡C¦³¤H°Ý¥Öº¸»¹¥L©Ò°O±o³Ì¦­ªº¨Æ¡A¥L»¡¡u§Ú¤£°O±o¨º®É¬O´X·³¡A¦ý¬O§Ú°O±o¬O§¤¦b°ª´È¤l¤W§l§mµÛ¤j©æ«ü¡A¦³¤H§i¶D§Ú³Ì¦n°±¤î§m¥¦¡A¤£µM³Q§mªº¤j©æ«ü·|Åܤp¡C§Ú§â¨â¤âªº¤j©æ«ü¨Ã±Æ¬Ý¤F«Ü¤[¡A¥¦­Ì¦ü¥G¬O¤@¼Ëªº¡A§Ú¹ï¦Û¤v»¡¡G§Ú¬Ý¤£¥X³Q§l§mªº¤j©æ«ü¤ñ¥t¤@­Ó¤p¡A§ÚÃhºÃ¦o¬O§_¦bÄF§Ú¡v¡C

¦b³o­Ó³æ¯Âªº¬G¨Æ¤¤¡A®ü­ÛµØ§J«ü¥X¡u¤£ª¼«HÅv«Â¡A­n¨D¹êÃÒ¡A¹ï©ó¦Û¤v¹ïÆ[´ú¼Æ¾Úªº·N¸qªº¸Ñö²`¨ã«H¤ß¡A©MÃhºÃ»P¥Lªº§PÂ_¤£¦Pªº¤HºA«×¬O§_¤½¥­¡v³o¨Ç´N¬O¥Ö¤ó¤@¥Í¿W¨ãªº¯S¼x¡C

ªí¤@

\begin{displaymath}
\begin{tabular}{c\vert c\vert c} \hline
\mbox{{\fontfamily{c...
...4\\
10&180&70\\
11&178&70\\
12&174&70\\ \hline
\end{tabular}\end{displaymath}

³o­Ó²Ä¤@¶¥¬qªº¯SÂI´N¬O¤H­Ì¹ï²Î­pªººA«×ÂàÅܤF¡A²Î­pªº­«­n©Ê³Q¬ì¾Ç¬É©Ò©Ó»{¡C°£¦¹¤§¥~¡A¦b²Î­p§Þ¥©¤W¤]¦³«Ü¦hªº¶i®i¡A§Ú­Ì§Q¥Î¤W­±³o­Ó¤Q¤G­Ó¤Hªº¨­°ª©MÅé­«ªº¼Æ­Èªí¤¶²Ð¤@¨Ç³Ì°ò¥»ªº²Î­pÆ[©À¡A¨ä¤¤¨­°ª X ¥H¤½¤À¬°³æ¦ì¡AÅé­« Y ¥H¤½¤ç¬°³æ¦ì¡C



¹Ï¤@

¬°¤F¹ï³o²Õ¸ê®Æ±o¨ì¤@ÂI·§©À¡A§Ú­Ì§â¥¦¦C¦¨¹Ï§Î¡C­^¤H´¶µÜµá¡]William Playfair, 1759¡ã1823¡^³Q¤½»{¬°±N¹Ï§Îªí¥Üªº·§©À¤¶²Ð¨ì²Î­p¾Çªº²Ä¤@¤H¡C¥LªºµÛ§@¡A¤j¦h¬°Ãö©ó¸gÀپǡA¦h±Ä¥Î¹Ï§Î¦pª½¤è¹Ï¡B±ø§Î¹Ï¡C¦b§Ú­Ì¤W­z°ÝÃD¤¤¡A¥Î¦¸¼Æ¹Ï´N¯à«Ü²M·¡¦aªí¥Ü¥X¨Ó¡A¹Ï¤@´N¬O¨­°ª X ªº¦¸¼Æ¹Ï¡AÅé­« Y ªº¦¸¼Æ¹Ï¤]«Ü®e©öªí¥Ü¡C ¦³¿³½ìªºÅªªÌ¤£§«¤@¸Õ¡CÁöµM³oÃþ¹Ï§Î¯àÀ°§U§Ú­Ìªºª½Ä±¡A¦ý¬O¦pªG·Q¹ï³o¨Ç¼Æ¾Ú§ó¤@¨BÁA¸Ñ¡A§Ú­Ì¥²±o¶i¤@¨B¥Î¬Y¨Ç¶q¨Ó´y­z¥¦­Ì¡C¦b³oÃþ¼Æ¶q¤¤³Ì­«­n¤§¤@¬O¹ï©ó¶°¤¤ÁͶժº´ú«×¡C³Ì¦­ªº¶°¤¤ÁͶժº´ú«×¹ê»Ú¤W¥i°l·¹¦Ü¥j§Æþ¡A¬Oºâ³N¥­§¡¼Æ $\mu_x$¡A§Y

\begin{displaymath}
\mu_{x}=\frac{1}{n} \, \sum^n_{i=1}\,x_i
\end{displaymath}

¨ä¤¤ xi ¥NªíÅÜ¼Æ X ªº¼Æ­È¡An ¬°Æ[´ú­ÈªºÁ`­Ó¼Æ¡A­pºâµ²ªG±o¨ì¨­°ªªº¥­§¡¼Æ $\mu_x$ ¬°166.66¡AÅé­«ªº¥­§¡¼Æ $\mu_y$ ¬°63.83¡A¬°¤F²z¸Ñ³o­ÓÆ[©Àªº¯S©Ê¡A§Ú­Ì§â¥¦ªº©w¸q§ï¼g¦¨

\begin{displaymath}
\mu_x=\frac{1}{n} \, \sum x_j f_j
\end{displaymath}

¨ä¤¤ fj ¬O xj ¥X²{ªº¦¸¼Æ¡A¨Ã¹ï¤£¦Pªº X ÅÜ¼Æ xj ­È¨D©M¡C

°²³]¦³¤@®ÚµL­«ªº¤ì±ì¡A¨ä¤W¨èµÛÅÜ¼Æ Y ªº¦U¤£¦P­Èªº¨è«×¡A¨Ã¥B³]·Q¦b xj ³B±¾µÛ½è¶q $\frac{1}{n}\,f_j$ ªºª««~¡A«h¾ã­ÓÅé¨tªº½è¶q¬° 1¡A¦Ó $\mu_x$ ¬°½è¶q­«¤ß¡A¤]´N¬O»¡¦pªG§â¤äÂI³]©ó $\mu_x$¡A«h¾ã­ÓÅé¨t·|ÁÍ©ó¥­¿Å¡A¥H¥»¨Òªº¨­°ª¦Ó¨¥¡A¨äÅé¨t¦p¹Ï¤G©Ò¥Ü¡C



¹Ï¤G

³oºØ¹ï¥­§¡¼Æªº¸ÑÄÀ¦b¥H«á§Ú­Ì«ä¦Ò³sÄò¤À°tÆ[©À®É¡A«Ü¦³À°§U¡C

ÁöµM¤¤¦ì¼Æ (median) Æ[©À¥i¯à¦­¤w¦³¤§¡A¦ý¬O¿ð¦Ü1883¦~¤~¸g¥Ñ°ªº¸¹y§â¥¦¤Þ¤J²Î­p¡A¦¨¬°¶°¤¤ÁͶղĤGºØ´ú«× µù3 ¡C©Ò¿×¤¤¦ì¼Æ´N¬O©Ò¦³Æ[´ú­È¨Ì¤j¤p±Æ°_¨Ó¡A¤¤¶¡ªº¨º­Ó¼Æ¡A­Y¬O°¸¼Æ­Ó¼Æ´N¬O¨â­Ó¤¤¶¡¼Æªº¥­§¡¼Æ¡A¦b§Ú­Ì¨Ò¤l¤¤¨­°ªªº¤¤¦ì¼Æ¬°165¡C

¥t¥~ÁÙ¦³¤@­Ó¶°¤¤ÁͶժº´ú«×¬O²³¼Æ¡A1894¦~¥ª¥k¥Ñ¥dº¸¡D¥Öº¸»¹©Ò¤¶²Ð¡C²³¼Æ¦pªG¦s¦bªº¸Ü¡A´N¬O¥X²{¦¸¼Æ³ÌÀWÁcªº¼Æ­È¡A¦pªG¨â­Ó©Î¨â­Ó¥H¤Wªº¼Æ­È¥X²{¦¸¼Æ¬Û¦P¡A²³¼Æ´N¤£¤Ó¦³·N¸q¤F¡A¦b§Ú­Ì¨Ò¤l¤¤Åé­«ªº²³¼Æ¬O62¡C

¦pªGÅÜ¼Æ X ªº¤À°t¬O§¹¥þ¹ïºÙ¡A§Y¨ä¦¸¼Æ¹Ï§¹¥þ¦a¹ïºÙ©ó¤@««ª½½u¡A¨º»ò¥­§¡¼Æ¡B¤¤¦ì¼Æ©M²³¼Æ¡]¦p¦³¤@²³¼Æ¦s¦bªº¸Ü¡^·|­«¦X¬°¤@ÂI¡CŪªÌ­ÌÀ³ª`·N¡A¤Ï¹L¨Ó»¡¨Ã¤£¦¨¥ß¡C¤]´N¬O»¡¤£¹ïºÙªº¹Ï§Î¤]¥i¦³¥­§¡¼Æ¡A¤¤¦ì¼Æ©M²³¼Æ­«¦Xªº±¡§Î¡]§Y¥­§¡¼Æ¡B¤¤¦ì¼Æ©M²³¼Æ­«¦X¨Ã¤£«OÃҹϧά°¹ïºÙ¡^¡C

¹ï¤j¦h¼Æªº¥Øªº¦Ó¨¥ºâ³N¥­§¡¼Æ¬O³Ì±`¥Îªº¶°¤¤ÁͶմú«×¡A³o·íµM¦³¥¦¾Ç²z¤Wªº·N¸q¡CÁöµM¦³®É­Ô­pºâ¬Û·í¶O®É¡A¤¤¦ì¼Æ¤]¦³¥¦ªºÀuÂI¡A¥¦¤£¨ü¤Ö¼Æ·¥ºÝ­Èªº¼vÅT¡C¨Ò¦p¦b§Ú­Ìªº¨ÒÃD¤¤¡A­Y§â¤@­Ó¨­°ª180¤½¤Àªº¤H´«¦¨¤@­Ó200¤½¤Àªº¤H¡A¥­§¡¼Æ´N·|¨ü¨ì«Ü¤jªº¼vÅT¡A¦Ó¤¤¦ì¼Æ«o¥þµM¤£ÅÜ¡C

¨ä¦¸§Ú­Ì½Í¤@¤U¡uÂ÷®t¡v(dispersion) ªº´ú«×¡A¥¦¬O¼Æ¾Ú¥H¥­§¡¼Æ¬°·Ç¹ï©ó¤À´²µ{«×ªº´ú«×¡C³Ì¦­³oºØ´ú«×¤j·§¬O¨©¶ë¡]Bessel¡^©ó1815¦~¥Î©ó¦³Ãö¤Ñ¤å¾Ç°ÝÃDªº¡u¥i¯à»~®t¡v¡C¥Ø«e³Ì³q¥Îªº¬O¡u¼Ð·Ç®t¡v£m¡A³o­Ó¦Wµü¬O1894¦~¥dº¸¡D¥Öº¸»¹©Ò³Ð¡C

Â÷´²ÅÜ¼Æ X ªº¼Ð·Ç®t©w¸q¬°

\begin{displaymath}
\sigma_x = \big[\frac{1}{n} \sum^n_{i=1}(x_i-\mu_x)^2 \big]^{1/2}
\end{displaymath}

¥Ñ³o­Ó¤½¦¡¥i¥H¬Ý¥X­Y¼Æ¾Ú«D±`¤À´²¡A$\sigma_x$ ­È·|«Ü¤j¡A¦ý·í¼Æ¾Ú¶°¤¤©ó¥­§¡­Èªþªñ®É«h $\sigma_x$ ·|¤p¡C

¬°¤F¤¶²Ð¬ÛÃöªºÆ[©À¡A§Ú­Ì¦^ÀY¦A¥J²Ó¬Ý¤@¤Uªí¤@¤¤ªº¨­°ª©MÅé­«¡A¼Æ­ÈÅã¥Ü³o¨â­ÓÅܼƦü¥G¦³¬YºØ¬ÛÃö¦s¦b¡A®Ú¾Ú±`ÃÑ¡A°ªªº¤H³q±`­n¤ñ¸Gªº¤H­«¡A¦b³o¨Ç¼Æ¾ÚÂIø¦bª½¨¤§¤¼Ðªº¥­­±¤W¡A¥i¥H¬Ý¥X¥¦­Ì¤§¶¡ªºÃö«Y¡AºÙ¬°¤À§G¹Ï¡]°Ñ¨£¹Ï¤T¡^



¹Ï¤T

¦pªG¥¦­Ì¤§¶¡¬°½u©ÊÃö«Y¡A«hÂIªºÁͦV·|§e²{¦bª½½uªºªþªñ¡C

¦b¤Q¤E¥@¬ö¥½¸­¡A¦³¤H°Ý°ªº¸¹yÀï¤h³oºØ¨â²Õ¼Æ¾Ú¤§¶¡ªºÃö«Y¬O§_¥i¥H´ú«×¡H¥L·Q¥X¤F¬ÛÃöªºÆ[©À¡C¦ý¬O§Ú­Ì²{¦b©Ò¥Îªº¬ÛÃö«Y¼Æ£l «o¬O¥dº¸¥Öº¸»¹©Ò³Ð¡A¨ä©w¸q¬°

\begin{displaymath}
\rho=\frac{1}{n \sigma_x \sigma_y}\,\sum^n_{i=1}\,(x_i-\mu_x)(y_i-\mu_y)
\end{displaymath}

$\mu_x,\sigma_x$ ¤À§O¬° X-²Õ¸ê®Æªººâ³N¥­§¡©M¼Ð·Ç®t¡C

¸g¥Ñ²³æªº¥N¼Æ¹Bºâ¡A§Ú­Ì¥i¥HÃÒ¥X£lªº¼Æ­È¤¶©ó -1 »P +1 ¤§¶¡¡A0 ­Èªí¥Ü¨S¦³ª½½uÃö«Y¦s¦b¡A$\pm 1$ ªí¥Ü¼Æ¾ÚÀ³¦b¥¿±×²vªºª½½u¤W¡A-1 ªí¥Ü¼Æ¾Ú¦b­t±×²vªºª½½u¤W¡A¦b $\pm 1$ ªþªñªº¬ÛÃö«Y¼Æªí¥Ü¨âÅܼƦ³¬Û·í°ªªºª½½uÃö«Y¡A±µªñ 0 ªº¬ÛÃö«Y¼Æªí¥Ü¨âÅܼƨS¦³ª½½uÃö«Y¡A¦b§Ú­Ìªº¨Ò¤l¤¤¡A£l ¤j¬ù¬° 0.9¡Cª`·N£l¬Oª½½uÃö«Yªº´ú«×¡A¼Æ¾Ú¥i¯à§Î¦¨¤@¹Î¡A³o®É $\vert\rho\vert$ ­È·|«Ü¤p¡AµM¦Ó¥¦­ÌÁö¤£¬Oª½½u¬ÛÃö¡A¦ý«oµLºÃ¬O¬ÛÃöªº¡C

°ªº¸¹y¬OµÛ¦Wªººt¤Æ½×ªÌ¹Fº¸¤åªºªí¿Ë¡A´¿¬°¹Fº¸¤å°µ¹L¤@¨Ç²Î­p¤u§@¡C §Ú­Ì¦b¤W¸`´¿´£¨ì¥L¹ï¬ÛÃö·§©Àªº¬ã¨s¡A¦ý¬O±Ð®v­Ì³Ì¤£·|§Ñ°Oªº°ª¤óªº°^Äm¬O¥L­º³Ð§â¦¨ÁZµû¤À»P±`ºA¦±½u©Ô¤WÃö«Y¡C

±`ºA¦±½u¦Ü¤Ö¥i°l·¹¦Ü1733¦~ªº´Ð¬ü¥±¡]Abraham De Moivre¡^ªº¾ÉÃÒ¡A¬O¤@­Ó²Î­p¤W«D±`¦³¥ÎªºÆ[©À¡C¥¦ªº¤èµ{¦¡¬°

\begin{displaymath}
f(x)=\frac{1}{\sqrt{2\pi}\sigma}\mbox{exp}[-\frac{(x-\mu)^2}{2\sigma^2}]
\end{displaymath}

¨ä¤¤ £g ©M £m ¬°°Ñ¼Æ¡A«ê¥©µ¥©ó¥¦ªº¥­§¡¼Æ©M¼Ð·Ç®t¡C¤@¯ë¤H§â¥ô·N¡uÄÁ§Î¦±½u¡v³£·Q¦¨¬°±`ºA¡A¨Æ¹ê¤W³oºØÆ[©À¨Ã¤£¥¿½T¡C¨ä¥L¨ç¼Æ¨Ò¦p $g(x)=[\pi(1+x^2)]^{-1}$ ªº¹Ï§Î¤]¬OÄÁ§Î¡A¦ý¬O«o¥þµM¨S¦³±`ºA¦±½u©Ò¨ã¦³¥Îªº¯S©Ê¡C±`ºA¦±½uªº¤èµ{¦¡¬Ý°_¨Ó¦ü¥G¬Û·í½ÆÂø¡A¦ý¬O¦b¼Æ¾Ç®a­Ì¬Ý¨Ó«o¬O©Ò¦³¦±½u¤¤³Ì³æ¯Â¡u³Ì¦w¤À¡vªº¦±½u¤§¤@¡C¹Ï¥|´N¬O¤@±ø¯S©w±`ºA¦±½uªº¹Ï§Î¡C



¹Ï¥|¡G±`ºA¤À§G±K«×¨ç¼Æ¦±½u¹Ï

±`ºA¤À°tªºÀuÂI¬O¤£½×¨ä¥­§¡¼Æ £g ©M¼Ð·Ç®t¡]$\sigma >0$¡^¤§­È¬°¦ó¡A§¡¥i¸g¹L¼Ð·Ç¤Æ $z=\frac{x-\mu}{\sigma}$ ªºÅÜ´«¡AÂà´«¦¨¥­§¡¼Æ¬° 0 ©M¼Ð·Ç®t¬° 1 ªº¼Ð·Ç±`ºA¤À°t¡C ¦pªG§â¦b±`ºA¦±½u¤U¥Ñ $-\infty$ ¨ì $+\infty$ ªº­±¿n¿n¤Àªº¸Ü¡Aµ²ªG¬O 1¡C ¤j¬ù¦³¤T¤À¤§¤Gªº­±¿n¦b¥H¥­§¡¼Æ¬°¤¤¤ß¥ª¥k¤@­Ó¼Ð·Ç®t¤§¶¡¡C ¦b¥ô·N°Ï¶¡ $a \leq x \leq b $ ¤§¶¡±`ºAÅܼƪº¾÷²vªº¨Dªk´N¬Oµ¥©ó¨D¦b³o°Ï¶¡¤§¤W¡A±`ºA¦±½u¤§¤U©Ò³ò¦¨ªº­±¿n¡A³oºØ¼Æ­È¥i¥Ñ¥ô¦ó¼Ð·Çªº¼Æªí¤¤¬d¥X¡C

¦­¥ý¦b½ÍÂ÷´²¤À°tªº®É­Ô¡A§Ú­Ì´¿¸g´£¨ìºâ³N¥­§¡¼Æ¥i¥H¬Ý¦¨¬OÁ`½è­«µ¥©ó 1 ªºÂ÷´²½èÂIÅé¨tªº½è¶q­«¤ß¡C­è¤~§Ú­Ì´£¨ìªº±`ºA¦±½u¬O¤@­Ó³sÄò¤À°tªº¨Ò¤l¡A¨Ì¾ÚÃþ¤ñªº¤è¦¡¡A§Ú­Ì¥i¥H§â±`ºA¤À°t»P¤@®Ú²z·Q¤Æ¦V¨âºÝµL­­¦ùªø½è­«¬° 1 ¦Ó¨ä±K«×«h¬°¨Ì¨M©w±`ºA¤À°tªº¨ç¼Æ f ¦ÓÅܰʤÀ§Gªº´Î¬ÛÁp±µ¡C¨Ì¾Ú·L¿n¤À¡A³oºØ±ì´Îªº½è¶q¤¤¤ß¬O

\begin{displaymath}
\mu =\int^{\infty}_{-\infty} \, x f(x) \,dx
\end{displaymath}

³o­Ó¤½¦¡¥¿¬O§Ú­Ì¥Î¨Ó©w¸q³sÄò¤À°tªº¥­§¡¼Æªº¦¡¤l¡C©Î³\«Ü¥X¤H·N¥~ªº¡A¨Ã¤£¬O¨C¤@³sÄò¤À°t³£¦³¥­§¡¼Æ¡A¦]¬°¤W¦¡ªº¿n¤À¦³®É¥i¯à¤£¦s¦b¡C¨Ò¦p¬_¦è¤À°t¡A¨ä¤èµ{¦¡¬°

\begin{displaymath}
g(x)=[\pi(1+x^2)]^{-1}
\end{displaymath}

´N¬O¤@­Ó¥­§¡¼Æ¤£¦s¦bªº¤À°t¡A¦³¿³½ìªºÅªªÌ¥i¸ÕµÛÅçÃÒ¥¦¡C

¦P²z¡A¨Ì¾ÚÂ÷´²Åܼƪº¼Ð·Ç®t¤½¦¡¡A§Ú­Ì¥i¥H©w¸q¥X³sÄò¤À°tªº¼Ð·Ç®t¬°

\begin{displaymath}
\sigma =[\int^{\infty}_{-\infty}(x-\mu)^2 f(x)dx]^{1/2}
\end{displaymath}

¦pªG¥Î³o¨â­Ó¤½¦¡¨Ó­pºâ¤@¤U±`ºA¤À°tªº¥­§¡¼Æ©M¼Ð·Ç®t¡A¸g¥Ñ¬Û·í²©öªº¿n¤À¹Bºâ¥i¥H±o¥X¥¦­Ì¤À§O¬O¥¦ªº¨â­Ó°Ñ¼Æ £g ©M £m¡C°£¦¹¥H¥~¡A°ªº¸¹y¡B¥Öº¸»¹©M¥L­Ìªº¡uªù®{¡vÁٳХX°jÂkÆ[©À©M¥d¤è¸ÕÅç¡C ¤j¬ù¦b1915¦~¡A¤@­Ó·s¦W¦r¥X²{©ó²Î­p¬É¡A¶O³·¡]Ronald Aylmer Fisher, 1890¡ã1962¡^¡A¥L¦b¸Ó¦~µoªíÃö©ó¼Ë¥»¬ÛÃö«Y¼Æ²Î­p¶qªººë½T¤À°tªº½×¤å¤Þ¾É¶i¤J²Î­p¥vªº²Ä¤G®É´Á¡Cºò±µµÛ¥Lªº¤@¨t¦Cªº½×¤å©M±M®Ñµ¹²Î­p½Õ¬d±a¨Ó¤@ªÑ·s°Ê¤O¡C¦³¤H§â§Ú­Ì¦p¤µ©Ò±Ä¥Îªº²Î­p²z½×ªº¥b¼ÆÂk¥\¬°¶O¤óªº¦¨´N¡A¦b¶O¤ó©M¥Lªº¦P¤¯³Ì¨ô¶Vªº¦¨´N¤¤¡A¥]¬A¾A¥Î©ó¤p¼Ë¥»ªº²Î­p¤èªkªºµo®i¡Aµo²{³\¦h¼Ë¥»²Î­p¶qªººë½T¤À°t¡A°²»¡ÀË©w¤§ÅÞ¿è­ì«hªºÂ²©ú³¯­z¡AÅܲ§¼Æ¤ÀªRªºµo©ú©M¹ï¤@­Ó¸sÅé°Ñ¼Æªº¼Æ²z²Î­p¶q¤¤¦p¦ó¨ú±Ëªº·Ç«hªº¤¶²Ð¡C ¾Ú»¡¶O³·¬O­Ó¦­¼ôªº«Ä¤l µù4 ¡A¦b«Ü¤pªº®É­Ô´N¤wºë³q¦p²y­±¤T¨¤¤§ÃþÁ}²`ªº¾Ç°Ý¡C¥L´¿¹ïª«²z¬ì¾Ç²`·P¿³½ì¡A1912¦~¦Û¼C¾ô¤j¾Ç±o¨ì¤Ñ¤å¾Çªº¾Ç¤h¾Ç¦ì¡C¤Ñ¤å¾Ç¤¤ªº»~®t½× (theory of errors) ¨Ï¥L¹ï²Î­p°ÝÃDµo¥Í¿³½ì¡A§Ú­Ì´£¨ì1915¦~¥L¶i¤J²Î­p¬É¦]¬°¨º¦~¥Lµoªí¤@½gÃö©ó¼Ë¥»¬ÛÃö«Y¼Æªº¤À°tªº¤å³¹¡C³o½g¤å³¹±Ò©l¤F¹ï¦UºØ¼Ë¥»²Î­pºë½T¤À°tªº¬ã¨s¡A¶O¤ó¦b³o¤è­±»á¨É²±¦W¡C¦b³o¤è­±ªº¬ã¨s¡A¥L²`¨ü±Ó¾Uªº´X¦óª½Ä±ªº¤Þ¾É¡A±o¥Xªº«Ü¦hµ²ªG¡A«á¨Ó¸g´X­Ó»D¦W¥@¬Éªº³Ì³Ç¥X¼Æ¾Ç®aªº¬ã¨s¡AÃÒ©ú¤F¨ä¥¿½T©Ê¡C

¶O³·ÁÙ¦³«Ü¦h¨ä¥Lªº°^Äm¡A¦­¥ý§Ú­Ì´¿´£¨ì¥L¤¶²Ð¤F¤@¼Ë¥»²Î­p¶q¬O§_¬°¤@­Ó¸sÅé°Ñ¼Æªº¦n¦ô­p¶qªº§P©w·Ç«h¡A¥]¬A¤F¤@­P©Ê¡A®Ä²v©Ê©M¥R¨¬©Êµ¥·§©À´N¬O¦b1921¦~¤@½g­«­n¤åÄm¤¤´£¨ìªº¡C¦b³oÃþ¤å³¹¤¤¡A¥LÁÙ´¿¤¶²Ð³Ì·§¦ô­p¶q (maximum likelihood estimation) ªºÆ[©À¡C

1919¦~¶O¤óÂ÷¶}¥L¦b¤¤¾Ç±Ð¼Æ¾Çªº¤u§@¡AÂà¦Üù´Ë´µ±o¹A·~¸ÕÅ篸 (Rothamsted Agricultural Experimental station)¡A¦b³oùØ¥Lµo®i¥X²{¦b¥@¬É³q¥Îªº©â¼Ë§Þ¥©©MÀH¾÷µ{§Ç¡C ¥Lªº¨â¥»¦WµÛ¡mStatistical Methods for Research Workers¡n©M¡mDesign of Experiments¡n¤À§O©ó1925¦~©M1935¦~¥Xª©¡A¹ï©ó²Î­p¦³­«¤jªº¼vÅT¡C«áªÌªº²Ä¤G³¹´¿¦C¤J¡m¼Æ¾Ç¥@¬É¡n µù5¡A ¦b³o½g«D±`¤Þ¤H¤J³Óªº¤å³¹¤¤¡A¶O¤ó´£¨ì¦³¤@¦ì¤k¤hÁnºÙ¦o¯à¤À¿ë¥X¦oªº¯ù¤¤¤û¥¤¬O¦bªw¯ù¤§«e©Î¤§«á¥[¤Jªº¡A¦Ó«á¥L´y­z¤@ºØ¹êÅç­p¹º¨ÓÃÒ©ú©Î§_©w¸Ó¤k¤hªºÁnºÙ¡C

¬°¤F·QµªÂÐÃö©ó¸sÅ骺°ÝÃD¡A¥Ñ¹ê¥ÎªºÆ[ÂI¨Ó¬Ý¡A§Ú­Ì¥²¶·¥Ñ¸sÅ餤¿ï¨ú¼Ë¥»¡AµM«á¨Ì¾Ú¼Ë¥»©Ò´£¨Ñªº¸ê°T±À½×¥ÀÅé¡C¥ÀÅé©Ò¯A¤Îªº¦p¥ÀÅ駡­È £g ©M¼Ð·Ç®t £m ³£¬O¥¼ª¾¡A°²³]¦³¤@­Ó¼Ë¥»³Q«Ü¾A·í¦a¿ï¥X¡]¦p¦ó¿ïªk¬O¤@­Ó«Ü­«­nªº²Î­p°ÝÃD¡^¡A¨Ì¾Ú¼Ë¥»¥i¥H±o¥X¬Û·í¦nªº¥ÀÅé°Ñ¼Æ©Î¬Y¶qªº¦ô­p­È¡C ¦­¥ý§Ú­Ì´¿´£¨ì¶O³·´£¥X¥ÀÅé°Ñ¼Æªº¦n¼Ë¥»²Î­p¶qªº§P§O·Ç«h¡A§Ú­Ì¥u¬O«Ü²­nªº´£¥X¡A °²­Y (x1,$\cdots\cdots$,xn) ¥Nªí¤@²Õ¥Ñ¥ÀÅ駡­È¬° £g¡B¼Ð·Ç®t¬° £m ªº¸sÅ餤¿ï¨úªº¼Ë¥»¡A«h¤À§O©w¸q¦p¤Uªº¼Ë¥»¥­§¡¼Æ $\overline{X}$ ©M¼Ë¥»¼Ð·Ç®t S¡C

\begin{displaymath}
\overline{X}=\frac{1}{n} \sum^n_{i=1} x_i \quad \mbox{{\font...
... \big[ \frac{1}{n}\sum^n_{i=1}(x_i-\overline{X})^2 \big]^{1/2}
\end{displaymath}

¥Î³o¨Ç²Î­p¶q¥H¦ô­p £g ¤Î £m¡A·|º¡¨¬¶O³·©Ò­qªº¤j³¡¥÷·Ç«h µù6¡C

¦pªG§Ú­Ì¥Ñ¤@­Ó¸sÅé¨ú¥X«Ü¦h²Õ¼Ë¥»¡A¨Ã¥B¨C²Õ§¡­pºâ $\overline{X}$ ­È¡A§Ú­Ì´N¥i±o¨ì«Ü¦h¤£¦Pªº¼Æ­È¡A¦Ó³o¨Ç¼Æ­È·|Áͩ󱵪ñ¸sÅ饭§¡¼Æ £g¡C ³o¼Ë¬Ý¨Ó¡A$\overline{X}$ ¤]¬O¤@­ÓÅܼƧe¬YºØ§Î¦¡¤À§G¡A³o´N¤Þ°_¤F¤@­Ó­«­n°ÝÃD¡G ­Y¤wª¾¸sÅéÅܼƬ°¬YºØ¤À°t¡A«h¼Ë¥»¥­§¡¼Æ¤S¦p¦ó¤À°t¡H ¤U­z©w²z¡A§Ú­Ì¶È±Ô­z¦Ó¤£ÃÒ©ú¡A¥i¦^µª³¡¥÷³o­Ó°ÝÃD¡C

©w²z¡G ­Y¥ÀÅéÅܼƪº¤À§G¨ç¼Æ¬°¥­§¡¼Æ £g ©M¼Ð·Ç®t £m ªº±`ºA¤À°t¡A«h¼Ë¥»¥­§¡­È $\overline{X}$ ¥ç¬°±`ºA¤À°t¡A¨ä¥­§¡¼Æ¬° £g¡A¼Ð·Ç®t $\frac{\sigma}{\sqrt{n}}$¡An ¬°¼Ë¥»¤j¤p¡C

¦^·Q¼Ð·Ç®tªº­«­n©Ê¡A§Ú­Ìªºµ²½×¬O·í¼Ë¥»¤j¤p¶V¤j¡A«h $\overline{X}$ ­È±µªñ £g ªº¾÷²v¤]·U¤j¡A¦p¹Ï¤­©Ò¥Ü¡C ¦bÀ³¥Î³o­Ó©w²z®É¡A¨ü¨ì¤@­ÓÄY®æªº­­¨î¡A¦]¬°¹ê»Ú¤Wªº¥ô¦ó¸sÅé¬O§_½T¹ê¬°±`ºA¤À°t«Ü¥iÃhºÃ¡C¦³«Ü¦h¸sÅéÅܼƬƦܤ£ªñ¦ü±`ºA¤À°t¡A¦ý¦³¤@­Ó¦b¾÷²v½×¤W³ÌµÛ¦Wªº©w²z¡A¤]¬O¦b©Ò¦³¼Æ¾Ç¤¤³ÌµÛ¦Wªº©w²z¤§¤@¥i¥H³¡¤ÀÀ°§U¸Ñ¨M³o­Ó°ÝÃD¬O¤¤¥¡·¥­­©w²z¡A¨ä¤¤¤@ºØ§Î¦¡±Ô­z¦p¤U¡G

©w²z¡G ­Y¤@¥ÀÅéÅܼƤ£½×¨ä¤À°t¦p¦ó¡A¥u­n¦³¥­§¡¼Æ £g ©M¤@¼Ð·Ç®t £m¡A«h$\overline{X}$ ¬ùªñ¦ü¬°¥­§¡¼Æ¬° £g ©M¼Ð·Ç®t $\frac{\sigma}{\sqrt{n}}$ ªº±`ºA¤À°t¡A¦Ó¥B·í¼Ë¥»¼Æ n ¶V¤j®É¡A$\overline{X}$ ªº¤À§G¶Vªñ¦ü±`ºA¤À°t¡C

¤¤¥¡·¥­­©w²z¦³¤@¬q¬Û·íªøªºµo®i¥v¡A1773¦~´Ð¬ü¥±ÃÒ©ú¨ä²Ä¤@ºØ§Î¦¡§Y¦Ò¼{ÂYµw¹ô¥u¦³¨âºØ¥i¯à¥X²{ªº±¡§Î¡A§Ú­Ì¦b«e­±©Ò»¡ªº§Î¦¡¬O1922¦~­â¼w¬f (J.W.Lindeberg) ©Ò­z µù7 ¡Cªñ¨Ó«X°ê¼Æ¾Ç®a¬Æ¦Üµ¹¥X $\overline{X}$ ¥H±`ºA¤À°t¬°¨ä·¥­­¤À°tªº¥R­n±ø¥ó¡A§â¥»©w²z±À¼s¦Ü¨ä·¥­P¡C¬°¤FÅã¥Ü²Î­p¾Ç®a¹ï¤¤¥¡·¥­­©w²zªº¥Îªk¡A§Ú­Ì¨Ó¬Ý¥ÑÀNº¸ (Paul G. Hoel) ½sµÛªº²Î­p±Ð¥» µù8 ¤¤ªº¤@­Ó¨å«¬°ÝÃD¡u¬Y²Ó÷»sªo°Ó¥Ñ¹L¥hªº¸gÅçµoı¬YºØ²Ó÷ªº¥­§¡­@©Ô¤O¬°15.6½S¡A¼Ð·Ç®t¬°2.2¡A²{¸Õ±N³oºØ²Ó÷ªº»s³y¹Lµ{®É¶¡ÁYµu¡A¦Ó«á¨ú50±ø²Ó÷¬°¼Ë¥»°µ¸ÕÅç¡Cµ²ªGµo²{¨ä¥­§¡­@©Ô¤O´î¬°14.5½S¡A¸Õ°Ý¨Ì¾Ú³o­Ó¼Ë¥»¡A¬O§_À³¤Uµ²½×¬°¡u·s»s³yµ{§Ç¹ï÷¤l©Ô¤O¦³Ãaªº¼vÅT?¡v¡v



¹Ï¤­

²Î­p¤H­ûºÙ³oºØ°ÝÃD¬°°²»¡ÀË©w¡A§Ú­Ì¥²¶·ÀË©w°²»¡ $H_0:\mu=15.6$ ¹ï $H_1:\mu <15.6$¡AÁöµM»s³yµ{§Ç§ïÅÜ¡A¼Ð·Ç®t¤]«Ü¥i¯à§ïÅÜ¡A¦ý¬O§Ú­Ì¤´°²³]­@©Ô¤O X ªº¼Ð·Ç®t¬°2.2½S¡A²{¦b§Ú­Ì¥Î¨ì¤F¤¤¥¡·¥­­©w²z¡A¤£½× X ¦p¦ó¤À°t¡A$\overline{X}$ ¬°¥­§¡¼Æ £g ©M¼Ð·Ç®t $\frac{\sigma}{\sqrt{n}}$ ªºªñ¦ü±`ºA¤À°t¡A©ÎªÌ»¡ $z=(\overline{X}-\mu)/\sigma$ ¬°¥­§¡¼Æ 0 ©M¼Ð·Ç®t 1 ªº¼Ð·Ç±`ºA¤À°t¡CµM«á§Ú­Ì¬d¼Æ­Èªí¡Aµo²{ $\overline{X}=14.5$ »·Â÷15.6¡A¦pªG°²»¡ H0 ¦¨¥ßªº¸Ü¡A $\overline{X}=14.5$ ªº¾÷²v¶È0.0002¡A¦]¦¹§Ú­Ì±ó«o H0 ¦Ó±µ¨ü H1¡C ¨Ì·Ó³q±`¦b H0 ¦¨¥ßªº°²»¡¤U¡A$\overline{X}$ ­È¥X²{ªº¾÷²v¶È0.05®É§Y±ó«o H0 ªº­ì«h¡A¥Ñ¼Æªí¥iª¾·í $\overline{X}$ ¤p©ó15.09¡A§Ú­Ì´NÀ³§P©w±ó«o H0¡A¥ô·N¤p©ó15.09ªº¼Æ­ÈºÙ¬°¦bÁ{¬É°Ï°ì¡C



¹Ï¤»

§Ú­Ì¦A¦^ÀY´£¤@¤U°²³]·s»sµ{ªº¼Ð·Ç®t £m ¤£Åܪº»~®t¾÷²v¡C¨Æ¹ê¤W¡A³o®É £m ¤w¤£¬O¤@­Ó¤wª¾¼Æ¡A¦ý¬O§Ú­Ì¥i¥H­pºâ¥X¼Ë¥»¼Ð·Ç®t S¡A¦b1908¦~¤Æ¾Ç®a°ª¶ë¯S¡]William Gosset¡^¥H Student ªºµ§¦Wµoªí¥Lµo²{ªº²Î­p¶q $t=(x-\mu)\sqrt{n-1}/s$¡]ª`·N £m ³Q S ¨ú¥N¡^ªº¤À°t¡A¥L«ü¥X­Y X ¬°±`ºA¤À°t¡A«h t ¬°¦Û¥Ñ«× n-1 ªº student t ¤À°t¡A³oºØ¤À°t¬Û·í­«­n¡A¨ä¤À°t¼Æ­È¦b¤@¯ë²Î­p¼Æªí¤¤§¡¦³¦C¥X¡CÁöµM°ª¶ë¯S©ó1908¦~µo²{ t ¤À°t¡A¦ý¬O¥Lªºµ²ªG¥u¬O¤@ºØ²q´ú¡Aª½¨ì1926¦~¤~¥Ñ¶O³·¥[¥HÄY±KªºÃÒ©ú¡C¦b¦¹ X ¬°±`ºA¤À°t³o±ø¥ó«D±`ºò­n¡A¦ý¬O§Y¨Ï X ¶È¬°ªñ¦ü±`ºA¤À°t¡A²Î­p¾Ç®aµo²{·í £m ¬°¥¼ª¾¡A¤×¨ä¬O·í¼Ë¥»¼Æ n ­È«Ü¤p®É¡A«D±`¾A©y±Ä¥Î t ¤À°t¡C·í n ¬Û·í¤j®É¡AS ©M £m ªº®t§O¶V¨Ó¶V¤p¡A¦]¦¹¤£¤Ó»Ý­n¨Ï¥Î t ¤À°t¼Æ­Èªí¡C

²Ä¤T­Ó®É´Á¥H¬°¦b1928¦~¿°Ò¡]Jerzy Neyman¡^©M¥ì®Ú¡D¥Öº¸»¹¡]Egon Pearson, ¥dº¸¡D¥Öº¸»¹¤§¤l¡^ªº¦@¦P½×¤å¦h½gªºµoªí¬°¶}ºÝ¡A³o¨Ç½×¤å¤¶²Ð©M±j½Õ½Ñ¦pÅç©w°ÝÃD¤¤ªº²Ä¤GºØ¿ù»~¡AÀËÅ窺ÀË©w¤O©M«H¿à°Ï¶¡¤§ÃþªºÆ[©À¡C¦b³o´Á¶¡¡A¤u·~¬É¶}©l¤j¶q±Ä¥Î²Î­p§Þ¥©¡A¤×¨ä¬O»P«~½èºÞ¨î¦³Ãöªº²Î­p¡C¨Ã¥B¥Ñ©ó¤H­Ì¹ï½Õ¬d¤u§@ªº·P¿³½ì¾É¦V¹ï©â¼Ë²z½×»P§Þ¥©ªº¬ã¨s¡A1928¦~¿°Ò©M¥ì®Ú¡D¥Öº¸»¹ªº½×¤å¬°ÀË©w»P¦ô­p²z½×±a¨Ó¤@ºØ¹ñ·sªº­±»ª¡C¥]¬A¹ï³\¦h¶O³·¦­¥ý´£¥Xªº·Qªkªº­«·s¥[¥H¾ã²z©M­×¥¿¡A¨Ò¦p¦b²Ó÷»s³y°Óªº°ÝÃD¤¤¡A§Ú­Ì¦­¥ý±o¨ìªºµ²½×¬O¡G­Y¤@¼Ë¥»ªº¼Ë¥»¥­§¡¼Æ­È¤p©ó15.09«h±ó«o°²»¡ H0¡C¿°Ò©M¥Öº¸»¹´£¥X¦p¤U¤§Ãþªº°ÝÃD¡G¬°¤°»ò§Ú­Ì­n³]15.09¥H¥ª¬°Á{¬É°ì¡H¬°¤°»ò¤£¨ú0.025¦b¤À°t¦±½u·¥¥ªªº­±¿n©M0.25¦b¤À°t¦±½u·¥¥kªº­±¿n¦¨¡uÂù§À¡v(two tailed) Á{¬É°Ï°ì¡H



¹Ï¤C

©ó¿ï¨úÁ{¬É°ì®É¥²¶·±Ä¦óºØ·Ç«h¡H§Ú­Ì¥²¶·­n¥Îª½Ä±ÁÙ¬O¥ÎÄYÂÔªº¼Æ¾Ç¡H§Ú­Ì±o¨ì¦p¹Ï¤Kªºµ²½×²o¯A¨ì¨âºØ¤£¦P«¬ºAªº¿ù»~¡A¿°Ò©M¥Öº¸»¹©R¦W¬°²Ä¤@ºØ¿ù»~©M²Ä¤GºØ¿ù»~¡C¿°Ò©M¥Öº¸»¹Á`µ²¥L­Ìªºµo²{Âk¯Ç¦¨¬°¤U­z­ì«h¡G¦b©Ò¦³¨ã¦³¬Û¦P²Ä¤@ºØ¿ù»~ªº¸ÕÅç¡]Á{¬É°ì¡^¤¤¡A§Ú­Ì¿ï¥Î¨ã³Ì¤p²Ä¤GºØ¿ù»~ªºÁ{¬É°ì¡C

  H0¬°¯u H1¬°¯u
$\overline{x}\geq 15.09 $±µ¨üH0 ¥¿½T¨M©w ²Ä¤GºØ¿ù»~
$\overline{x} < 15.09 $±µ¨üH1 ²Ä¤@ºØ¿ù»~ ¥¿½T¨M©w

¹Ï¤K

ÁöµM¥»­ì«hªºÀ³¥Î¬Û·í½ÆÂø¡A¿°Ò©M¥Öº¸»¹ªº¼vÅT¨Ï¥»­ì«h¤Î¨ä¬ÛÃöªºÀË©w¤O¨ç¼Æ¦¨ ¬°­«­nªº²Î­p·§©À¡A¨Ã¥Bµo®i¥X°Q½×³oÃþ°ÝÃDªº¤@¯ë¼Æ¾Ç²z½×¡C

½Í²{¥N²Î­p¾Çªºµo®i¡A¹ê¤£¯à¤£´£µØ¼w¡]Abraham Wald, 1902¡ã1950¡^ µù9 ¡A§_«h¥²©wÅã±o¤£§¹³Æ¡CµØ¼wªº²Ä¤@½g½×¤åÃö©ó¥Ø«e±`¨£ªº²Î­pµ{§Ç¢w¢w³v¦¸©â¼Ë (sequential sampling) ªº¥X²{²Ä¥|®É´Áªº¶}©l¡C³o½g1939¦~ªº½×¤å¬OµØ¼w¤@³s¦ê½×¤åªº°_©l¡A¤£©¯¥¿·í¥Lªº³Ð·s¤O³B©óÄA®p®É«o¥Ñ©ó­¸¾÷¥¢¨Æ¦º©ó«D©R¡CµØ¼w³Ì¤jªº°^Äm¤§¤@¬O¥L¤¶²Ð¤@ºØ¹ï²Î­p°ÝÃDªº·s¬Ýªk(1945)¡A¨º´N¬O¥H¹ï§½ªºÆ[ÂI¥h³B²z²Î­p¤è­±ªº°ÝÃD¡A³o´N¬O¤µ¤é©ÒºÙªº²Î­p¨Mµ¦²z½× (statistical dicision theory)¡C±q³o­ÓÆ[ÂI¡A²Î­p³Qµø¬°¥H¦ÛµM¬°¹ï¤âªº¹ï§½ªºÃÀ³N¡A³o¬O¤@­Ó¬Û·í¼s¸qªº²z½×¡AÁöµM¥¦²o¯A¨ì¬Û·í½ÆÂøªº¼Æ¾Ç¡A¦ý¬O¥­¤ß¦Ó½×¡A§Ú­Ì¥i¥H»¡¤j³¡¤À¥Ø«eªº²Î­p¬ã¨s¤H­ûµo²{±Ä¥Î³oºØ·sÆ[ÂI«D±`²z·Q¡CµØ¼w¹ï²Î­p²z½×µo®iªº¤è¦V¦³­«¤jªº¼vÅT¡A¥Lªº¡uªù®{¡v­Ì¦h¦¨¬°¤µ¤é²Î­p¬Éªº»â³S¤Hª«¡C

µØ¼w½Ï¥Í¦bù°¨¥§¨È¡A¬O¥¿²Îªº (orthodox) µS¤Ó¥@®a¡A¥Ñ©ó¥¦ªº©v±Ð«H¥õ¡A¨Ï¥L¨ü±Ð¨|ªº¾÷·|¨ü¨ì¬Y¨Ç­­¨î¡A¦Ó¥²¶·¾a¦Û­×À±¸É¡C¥L¦Û­×ªºµ²ªG³º¯à¹ï§Æº¸§B¯S (Hilbert) ªº¡mFoundation of Geometry¡n´£¥X¦³»ù­Èªº¨£¸Ñ¡A¥Lªº«Øij¦C¤J¸Ó®Ñªº²Ä¤Cª©¤¤¡A³o¤@¨Æ¹ê¥R¤ÀÅã¥Ü¤F¥Lªº¼Æ¾Ç¤Ñ½á¡C«á¨ÓµØ¼w¶i¤Jºû¤]¯Ç¤j¾Ç¨Ã¥B¦b¶È­×¤F¤Tªù½Ò¤§«á´N±o¨ì³Õ¤h¾Ç¦ì¡C¦b³o­Ó®É´Áªº¶ø¦a§Q¡A¥Ñ©ó¬Fªv¤Wªº¦]¯À¨Ï¥LµLªk±q¨Æ¾Ç³N¤u§@¡A¥u¦n±µ¨ü¤@­Ó¨p¤H¾¦ì¡A¾³d¬OÀ°§U¤@¦ì»È¦æ®a¼W¼s°ªµ¥¼Æ¾Çª¾ÃÑ¡A¥L¦]¦¹¹ï¸gÀپDz`·P¿³½ì¡A«á¨Ó¦¨¬°¸gÀپǮa¼¯®Ú´µ©Z (Oskar Morgenstern) ªº¿Ë«H§U²z¡C¼¯¤ó´¿»P¶¾¯Ã°Ò (John Von Neumann) ¦@¦P¦X§@±q¨Æ¬ã¨s¨Ã³þ©w¤F¹ï§½½× (game theory) ªº°ò¦¡C

µØ¼w¦b¤G¦¸¤j¾Ô«e¨ì¹F¬ü°ê¡A¥Lªº¤÷¥À©M©n©f¤£©¯¨S¦³°k¥X¨Ó¡Aµ²ªG¦º©ó¯Çºéªº¥Ë´µ©Ð¡CµØ¼w¥Ñ©ó¹ï¸gÀپǪº¿³½ì±µÄ²¨ì²Î­p¾Ç¡A³vº¥Âà¦V±q¨Æ²Î­p¾Çªº¬ã¨s¡A¤£¤[³º¦¨¬°¤@¦ì³Ç¥Xªº²z½×²Î­p¾Ç®a¡C°£¤F²Î­p¨Mµ¦²z½×¤§¥~¡AµØ¼w¹ï²Î­pÁÙ¦³«Ü¦h­«­nªº°^Äm¡A¦b¦¹§Ú­Ì´£¥X¥D­nªº¤@­Ó¡A´N¬O³v¦¸¤ÀªR¡CÁöµM³o­Ó²z½×¥i¯à¤£¬O¥L©Ò­º³Ð¡A¦ý«o¬O¥Lµo®i§¹¦¨ªº(1943)¡C³o­Ó§Þ¥©¦b´î¤Ö¥Í²£»sµ{¤¤ªº©â¼Ë¼Æ¤è­±«D±`­«­n¡A¤G¦¸¤j¾Ô´Á¶¡´¿³Q¦C¬°¾÷±K¡C

²{¦b§Ú­Ì¥H¤u·~¤è­±ªº«~½èºÞ¨î°ÝÃD¬°¨Ò¨Ó»¡©ú³v¦¸¤ÀªRªºÆ[©À¡A¦b³v¦¸¤èªk¥¼µoªí¤§«e¡A¼Ð·Çªº©â¼Ëµ{§Ç¬O¥Ñ»s¦¨«~¤¤©â¨ú©w¶qªº¼Ë¥»¡AµM«á¨Ì¾Ú¼Ë¥»¤¤©Ò§t¤£¨}«~¼Æªº¦h¹è§P©w¤¹¦¬©Î©Ú¦¬¸Ó§å¡C³oºØµ{§Ç©¿²¤¤FÃö©ó»s¦¨«~§åªºÀu¦H¸ê°T¥i¥Ñ¦b©â¼Ë¹Lµ{¤¤¤£¨}«~¥X²{²vªº¤j¤pÀò±oªº¨Æ¹ê¡C

¦b³v¦¸©â¼Ë¤¤¡A§Ú­Ì§â©â¼Ë¹Lµ{¤¤¥i¯àµo¥Íªºª¬ªp¤À¬°¤TÃþ¡G

(1)¤j¶q¤£¨}«~³sÄò¥X²{¾É­P¥ß§Y§P©w©Ú¦¬¸Ó§å
(2)¤j¶q¨}«~³sÄò¥X²{¡A¾É­P¥ß§Y§P©w¤¹¦¬¸Ó§å
(3)¯Ê¥Fµ²½×©ÊªºÃÒ¾Ú¡A¦]¦¹¥²¶·Ä~Äò©â¼Ë¡A¹Ï¤E¬O¤@­Ó¹ê¨Ò¡C



¹Ï¤E¡G³o¦¸©â¼Ë

³o¤T­Ó°Ï°ìªº¹º¤À·Ç«hµø©Ò¤¹³\ªº²Ä¤@ºØ¿ù»~©M²Ä¤GºØ¿ù»~¦Ó©w¡C¦b¥»¨Ò¤¤¡A¦b¬dÅç²Ä¤»¤Q­Ó»s¦¨«~«á¤~§P©w¤¹¦¬¡C

¥Ñ¹Ï§Î¤¤¥i¨£¡A³oºØ©â¼Ë¤èªk¥i¯à«Ü§Ö´N¯à¨M©w¬O§_¤¹¦¬¡A¤]¥i¯à¦b¤¤¶¡°Ï°ì°±¯d«Ü¤[ªº®É¶¡¡A¦ý¬OµØ¼wÃÒ©ú¤¹¦¬©Î©Ú¦¬ªº¨M©w¯à©ó¦³­­¨B¤º¹F¦¨ªº¾÷²v¬°1¡A¹ê»Ú¸gÅçÅã¥Ü³v¦¸©â¼Ë©M¶Ç²Îªº©T©w¼Ë¥»¤j¤pªºµ{§Ç¬Û¤ñ¦b©â¼Ë¶O¥Î¤è­±¬ù¥i¸`¬Ù¤@¥b¡C

°£¤F¤W­z¥|¤j²Î­p«ä¼é¥~¡A1933¦~«X°ê¼Æ¾Ç®a¬_¼¯­ôù¤Ò (Kolmogorov) µoªí¡mFoundation of the theory of probability¡n¬°²Î­p¾Ç²z½×³þ©w¤FÅÞ¿è°ò¦¡C¦b²Î­pÀ³¥Î§Þ¥©¤è­±¡A¹q¤l­pºâ¾÷ªºµo®i©M¨Ï¥Î¬O¤@¤j­²©R¡C¤Q¤E¥@¬ö¥½¸­¶}©l¡A¬ü°ê¤H¤f½Õ¬d§½ (U.S. Census Bureau) ¨C¤Q¦~Á|¿ì¤@¦¸¤H¤f´¶¬d¡A«á¨Ó¡A¥Ñ©ó¤H¤fªºº¥¼W¡A¤H¤f½Õ¬d§½µo²{¥L­Ì¤w¶V¨Ó¶VµLªk³B²z©Ò»`¶°ªº¦¨°ï¼Æ¾Ú¡C¶Pº¸·ç¯÷ (Herman Hollerith) ·Q¥X³\¦h§Q¥Î¥´¤Õ¥d¤ù (punched card) °O¿ý¼Æ¾Úªº¤èªk¡A¨Ã¥Bµo©ú¾÷±ñ¯àŪ³o¨Ç¼Æ¾Ú©M³B¸m¸ê°T (Information)¡A¦b¶P¤óªº«ü¾É¤U¡A1894¦~¤H¤f½Õ¬d§½ªº¤u§@§Q¥Î¥´¤Õ¥d©MŪ¥d¾÷¡A´£°ª¤£¤Ö®Ä²v¡CÁöµM1890¦~¤H¤f½Õ¬d®É¡A¬ü°ê¤H¤f¤ñ1880¦~¼W¦h¤F¬ù¦Ê¤À¤§¤G¤Q¤­¡A¦ý¬O¤u§@§¹¦¨©Ò¶Oªº®É¶¡«o¶È¬°¨ä¤T¤À¤§¤@¡C

¹q¤l­pºâ¾÷©ó¤G¦¸¤j¾Ô«áµo®i¤@¤é¤d¨½¡A1950¦~«áº¥¶i¤J¹ê¥Î¶¥¬q¡C­pºâ¾÷ªº¥X²{¤£¦ý¨Ï²Î­p­pºâ¤u§@²¤Æ¡A¦Ó¥B§Ö±¶¡C¤×¨ä¬O¦³¤F²Î­p¦¨®Mµ{¦¡ (Statistical package) ¥H«á¡A§ó¬°¤è«K¡A¥u­nª¾¹DÀ³±Ä¥Î¦óºØ²Î­p¤èªk´N¯à¨Ï¥Î¡C1972¦~´f´¶ (Heweleit Packard) ¤½¥qµo®i¥X´x¤W«¬­pºâ¾¹ (calculator)¡A¹ï©ó¤@¯ë¤p²Î­p°ÝÃDªº¸Ñ¨M¡A§ó¬O¤è«K¡A¤£¥²¦]¬°²Î­p°ÝÃD¯S¦a¨ì­pºâ¾÷¤¤¤ß¥h¡C

²Î­p¬°¤@¬ì¾Ç¤èªk¡A¨ä¥iÀ³¥Î½d³ò¡A¹M¤Î¦ÛµM¬ì¾Ç¤ÎªÀ·|¬ì¾Çªº¾ã­Ó»â°ì¤¤ªº³\¦h³¡¤À¡A¤j¤Z¹A·~¡B¤u·~¡B°Ó·~¡B±Ð¨|¡BÂåÃÄ¡B¬Fªv¡BªÀ·|¡B¸gÀÙµ¥µ¥³\¦h°ÝÃDµL¤£¾A¦X±Ä¥Î²Î­p¤èªk³B²z¡A²Î­p¾Ç¶Ç¤J§Ú°êÁö¤w¦³¬Û·í®É¤é¡A¦ý¬O§Ú°ê¥Ø«eÁÙ¥u¦³¬F©²¾÷Ãö¸û¬°­«µø¡A¥Á¶¡¤u°Ó¥ø·~ªñ¦~¨ÓÁöµM¤]º¥º¥Á¿¨D¬ì¾ÇºÞ²z¡A¦ý¬O¤j¦h¥¼¯àÀ³¥Î²Î­p¤èªk¡C

1. Dale E.Varbery ¡mThe development of modern statistics¡n Part I, II, The Mathematics Teacher April 1963 p.252-257 May 1963 p.44-348.
2. Mario F.Triola ¡mMathematics and the modern world¡n Cummings Publishing Company, 1973.

 
¹ï¥~·j´MÃöÁä¦r¡G
¡D¥­§¡¼Æ
¡D¼Ð·Ç®t
¡D²Î­p¾Ç
¡D¾÷²v½×
¡DGalton
¡DKarl Pearson
¡D¤¤¦ì¼Æ
¡D²³¼Æ
¡DBessel
¡D¬ÛÃö
¡D¬ÛÃö«Y¼Æ
¡D±`ºA¦±½u
¡DDe Moivre
¡D¶O³·
¡D¤¤¥¡·¥­­©w²z
¡D°²»¡ÀË©w
¡DHilbert
¡DVon Neumann
¡D¹ï§½½×
¡DKolmogorov

¦^­¶­º
 
¡]­Y¦³«ü¥¿¡BºÃ°Ý¡K¡K¡A¥i¥H¦b¦¹ ¯d¨¥ ©Î ¼g«H µ¹§Ú­Ì¡C¡^
EpisteMath

EpisteMath (c) 2000 ¤¤¥¡¬ã¨s°|¼Æ¾Ç©Ò¡B¥x¤j¼Æ¾Ç¨t
¦Uºô­¶¤å³¹¤º®e¤§µÛ§@Åv¬°­ìµÛ§@¤H©Ò¦³


½s¿è¡G¬x·ë ¢A ø¹Ï¡G²¥ßªY ³Ì«á­×§ï¤é´Á¡G4/26/2002