¤W­¶¡@1¢x2¢x3¢x4¡@¦¸­¶

¾÷²v»P°T®§ ¡]²Ä 2 ­¶¡^

¼BÂ×­õ

 


­º­¶ | ·j´M

¡D­ì¸ü©ó¼Æ¾Ç¶Ç¼½²Ä¤G¨÷²Ä¤T´Á
¡D§@ªÌ·í®É¥ô¾©ó¤¤¬ã°|¼Æ¾Ç©Ò

¡EµùÄÀ
¡E¹ï¥~·j´MÃöÁä¦r
 
¤G¡B¾÷²v½×ªº°ò¥»·§©À

§Ú­Ì°²©wŪªÌ¨ã¦³³Ì°ò¥»ªº¾÷²v½×ªº±`ÃÑ¡C¥»¸`ªº¥Øªº¬O§Q¥Î²¤Æªº¤@¯ë©Ê°Q½×¨Ó±o¨ì§Ú­Ì©Ò»Ý­nªºÂ²³æ¼Ò«¬¢w¢w¦³­­¾÷²vªÅ¶¡¡C¾÷²vªÅ¶¡»P¹ê»Ú°ÝÃD¤§¶¡ªºÃö«Y¬Oªì¾ÇªÌ³Ì·P°g´bªºªF¦è;ªì¾ÇªÌ±`±`°Ý¡G¬°¤°»ò»Ý­n¾÷²vªÅ¶¡¡Hªº½T¡A¦b³q±`ªº¹ê»Ú°ÝÃD¤¤¡A¨Æ¥óªº¾÷²v³£«D±`Åã©ú©ö¨£¡A§Ú­Ì¥u¤£¹L¬O±Ä¥Î¤@¨Ç­pºâ¾÷²vªº¡u³W«h¡v¡A¥H¬Y¨Ç¤wª¾¨Æ¥óªº¾÷²v¨Ó¨D¥X¥t¥~¤@¨Ç¨Æ¥óªº¾÷²v¡C¬É©w¾÷²vªÅ¶¡¦ü¥G¬O¤pÃD¤j§@¡A¦h¦¹¤@Á|¡A®{µMÂZ¶Ã¤è¤o¡]¤ß¡^¡IÃö©ó³o­Ó°ÝÃD¡A§Ú­Ì­n±q¨â­Ó¼h­±¨Ó°µÁ`µ²ªº»¡©ú¡C²Ä¤@­Ó¼h­±¬O­pºâ¾÷²v®É©Ò±Ä¥Îªº¡u³W«h¡vªº¦Xªk©Ê¡C³o¨Ç³W«h©Ò¨Ì¾aªº¤@¨Ç·§©À¡]¨Ò¦pÀH¾÷¿W¥ß©Ê¡^±`¨Ì¦U¤Hªº¸àÄÀ¦Ó²§¡A¦]¦Ó²£¥Í¤F³\¦h¸Þ½×¡C¡]½Ð°Ñ¾\ºµ¬L±Ð±Â¤å¡G¡q ²L½Í´X­Ó©ÎµM²v¤Wªº¸Þ½×¡r¢w¢w­ì¡m¼Æ¼½¡n½sªÌ¡^¾÷²vªÅ¶¡ªº´£¥X´N¦b«Ø³y¤@­Ó¾A·íªºÅé¨t¡A¨Ï±o¬ÛÃöªº¥D­n·§©À³£¯à¨ã¦³©ú½Tªº·N¸q¡A¨Ã¥B§â¤j®aÀq³\ªº¡A¤£¸g·N©Ò±Ä¥Îªº­pºâ³W«h°µ¤@­Ó²M·¡ªº»¡©ú¡A¥H½T©w¥¦ªº¨¤¦â»P¦a¦ì¡C²Ä¤G­Ó¼h­±¬O§Ú­Ì©Ò«Ø³yªº¾÷²vªÅ¶¡¨ì©³¸ò­ì¥ý©Ò¥Xµoªº¹ê»Ú°ÝÃD¦³¤°»òÃö«Y¡A¬O¤£¬O¥R¤Àªº´y­z¤F­ì¥ýªº°ÝÃD¡C³o¬O¤@­Ó­õ¾Ç©Êªº°ÝÃD¡F¹ï©ó¬ì¾Ç¤u§@ªÌ¦Ó¨¥¡A³o­Ó°ÝÃDªº´x´¤«K¬O¹ê½î¡C ¨ä¹ê¡A¨C¤@ªù¼Æ¾Ç³£¦³³o¨â­Ó¼h­±¡F¾÷²v½×ªº³o¨â­Ó¼h­±¸ûÃø»â·|¡A¤@¨Ó¾÷²v½×ªº¦~ÄÖ©|»´¡A§Ú­Ìªº¹ê½îÁÙ¤£¥R¤À¡A¤G¨Ó¾÷²v½×ªº¸gÅç°ò¦©M¨ä¥¦¼Æ¾Ç¤ñ¸û°_¨Ó¡A¬O¦b¤HÃþ¥Í¬¡ÅéÅ礤ÄÝ©ó¸û°ª¼h­±ªº¡C³o¨Ç°ÝÃDªº°Q½×¤£¬O¥»¤åªº¥Øªº¡C§Ú­Ìªº­«ÂI¬O¦b¶Ç¹Fµ¹ÅªªÌ¤@­Ó²³æ¦Ó¦³¥ÎªºÆ[ÂI¡G ¦bÆ[¹îÀH¾÷²{¶H®É¡A§Ú­Ì±o¨ì¤F³\¦h¸ê®Æ¡A±N³o¨Ç¸ê®Æ¥h¿¾¦sµ×¡A³Ì«á©Ò¦C¥X¨ÓªºÂ²©ú¡u¹Ïªí¡v´N¬O¾÷²vªÅ¶¡¡C´«¥y¸Ü»¡¡A¤@­Ó¾÷²vªÅ¶¡´N¬OÆ[¹î¬Y­ÓÀH¾÷²{¶Hªº¹êÅçÁ`µ²¡C

¦b¤U­±ªº°Q½×¤¤¡A¨Ò¤l«Ü¤Ö¡C§Ú­Ì¬Û«H¥ÑŪªÌ¦Û¤v´£¨Ñ¨Ò¤l¡A§ó©ö¹F¨ì¥»¸`ªº¥Øªº¡C

¦b¹qªý¬°¤@¼Ú©iªº¹qªý¾¹ªº¨âºÝ¬I¥H¤@¥ñ¯Sªº¹qÀ£¡AµM«á¶q¤@¶q³q¹Lªº¹q¬y±j«×¡A§Y±o¤@¦w°ö¡F¦pªG¬I¥H¤G¥ñ¯S¤§¹qÀ£¡A¶q±oªº¹q¬y±j«×«h¬°¤G¦w°ö¡C¦b³o­Ó¹êÅ礤¡A¨M©w¹q¬y±j«×ªº­n¥ó¬O¹qªý¾¹¨âºÝªº¹q¦ì®t¡F¥Ñ©ó¹q¦ì®t¬O§Ú­Ì¯à±±¨îªº¡A©Ò¥H¹q¬y±j«×¤]¬O§Ú­Ì©Ò¯à±±¨îªº¡C¦ý¬O¦³ªº¹êÅç«o¤£³o¼Ë¡A¥¦ªºµ²ªG¨ÌµÛ¤@¨Ç§Ú­Ì¤£ª¾¹Dªº¡A©ÎªÌ§Ú­ÌµLªk±±¨îªº¦]¯À¦ÓÅܤơF§Ú­ÌµLªk¹wª¾µ²ªG¡C¨Ò¦pÀH¤â¥áÂY¤@ªTµw¹ô®É¡A§Ú­ÌµLªk¹wª¾³Ì«á¥X²{ªº¬O¥¿­±ÁÙ¬O¤Ï­±¡A¦]¬°¥¦¬O¥Ñµw¹ô¥á¥XÀþ¶¡ªºª¬ºA¡B©Ò¸¨¦a­±¥H¤Îµw¹ôªº¦UºØª«²z©Ê½è¨M©w¡F¦Ó³o¨Ç¦]¯À¡A¹ïÀH¤â¥á¥Xµw¹ôªÌ¨ÓÁ¿¡A¬O¥¼ª¾ªº©ÎµLªk±±¨îªº¦]¯À¡C¥t¥~¡AÆ[¹î¥¥°ü¥Í¨k¥Í¤k¡AÆ[¹î¥áÂY»ë¤l¥X²{ªºÂI¼Æ¡A¤]´N¬OÄÝ©ó³oÃþ©Ê½èªº¹êÅç¡C§Ú­Ì§â³oÃþ¹êÅçºÙ¬°ÀH¾÷¹êÅç¡A©Î²ºÙ¸ÕÅç¡C

§Ú­Ì¥i¥H§â¸ÕÅç¬Ý¦¨¬O¹ï¨ä¤@ÀH¾÷²{¶Hªº¤ù­±Æ[¹î¡A¨Ò¦p¦b¥áÂY¨âÁû»ë¤l®É¡AÆ[¹î¥¦­Ì¥X²{ÂI¼Æ¤§©M¡A©ÎÆ[¹îÂI¼Æ©M¬°©_©Î¬°°¸¼Æ¡A³£¬O¹ï¡u¥áÂY¨âÁû»ë¤l¡v³o­ÓÀH¾÷²{¶Hªº¤ù­±Æ[¹î¡C¬ì¾Ç¤W¥u¦Ò¼{¯à°÷¤@¦A¦a¤©¥H¿W¥ßÆ[¹îªº²{¶H¡A¦]¬°¥u¦³³oºØ²{¶H¤~¦³¥i¯à°µ¬ì¾Ç¤ÀªR¡C§Ú­Ì©Ò¦Ò¼{ªºÀH¾÷²{¶H¤]¥²¶·¦p¦¹¡CÄ´¦p»¡¡A¥áÂY»ÉªO«K¬O¤@­Ó¥i¥H­«ÂпW¥ßÆ[¹îªº²{¶H¡A¤£¦Pªº¤H¥i¥H¦U¦Û¿W¥ß¦a¥áÂY»ÉªO¡AÆ[¹î»ÉªO³Ì«á¥X²{ªº­±¡A©ÎªÌ¦P¤@­Ó¤H¤]¥i¥H¤@¦A¥áÂY¦P¤@»ÉªO¡A³o¨Ç³£¤£·|¼vÅT²{¶H¥»¨­ªºª¬ªp¡C§Ú­Ì¦b³o¨à¤¶²Ðªº¬O¾÷²v½×ªºÂ²³æ³¡¥÷¡A¦]¦¹¦¹¬q°²©w¸ÕÅ窺¥i¯àµ²ªG¥u¦³¦³­­¦h­Ó¡C§Ú­Ìª¾¹D¸ÕÅ窺¥Øªº¬O¦bÁA¸Ñ²{¶H¡A¦pªG§Ú­ÌµLªk±q¸ÕÅ窺¦U­Óµ²ªG§ä¥X¥ô¦ó³W«ß¡A¨º»ò´N¤£¥i¯à¹ï¬ÛÃöªº²{¶H´£¥X¬ì¾Ç©Êªºµ²½×¡A³oºØ²{¶H¹ï¤H­Ì¦Ó«K¬O°g´bªº²{¶H¡A¶·­n°µ¶i¤@¨BªºÆ[¹î¤~¦æ¡C¦b³o¸Ì¡A§Ú­Ì¥u¦Ò¼{¨ã¦³¤U­z³W«ßªº¸ÕÅç¡]¥H«áºÙ¤§¬°ÀH¾÷³W«ß©Ê¡^¡G

°²³] A1, A2,¡K,An ¬°¬Y¤@¸ÕÅ窺©Ò¦³¥i¯àµ²ªG¡C¦pªG¦b¦h¦¸¿W¥ß¦aÆ[¹î³o­Ó¸ÕÅ窺µ²ªG®É¡A¦U­Óµ²ªG Ai ¥X²{ªº¦¸¼Æ»P¸ÕÅ禸¼Æ¤§¤ñ³ò¶¦b¬Y­Ó©T©w¼Æ pi ªºªþªñ¡A«h§Ú­Ì»¡³o­Ó¸ÕÅç¨ã¦³ÀH¾÷³W«ß©Ê¡Cp1, p2,¡K,pn ³o¨Ç¼Æªí²{¤F A1,A2,¡K,An ³o¨Çµ²ªG¥X²{ªº³W«ß©Ê¡C·íµM¡A$p_i\geq0$¡A $\sum_{i=1}^n p_i=1$¡Cpi ºÙ¬° Ai ¥X²{ªº¾÷²v¡A©Î²ºÙ¬° Ai ªº¾÷²v¡CA1, A2,¡K,An ¤Î p1,p2,¡K,pn ¬O¦h¦¸¿W¥ß¦aÆ[¹î¸ÕÅç©Ò±o¸ê®ÆªºÁ`µ²¡A¦]¦¹§Ú­Ì¥Î

\begin{displaymath}\left<
\begin{array}{c}
A_1, A_2, \cdots, A_n \\
p_1, p_2, \cdots, p_n
\end{array}\right>
\end{displaymath}

ªí¥Ü³o­Ó¸ÕÅç¡A©Î²°O¬°¤§ $\left< A_1 , A_2 , \cdots , A_n \right>$¡C

¬°¤F²³æ°_¨£¡A§Ú­Ì¥u¦Ò¼{¬Y­ÓÀH¾÷²{¶Hªº¦³­­¦h­Ó¸ÕÅç¡C¦b¤U­±ªº°Q½×¤¤¡A§Ú­Ì¥ý©T©w¤@­ÓÀH¾÷²{¶H¡F°²³] $\alpha_1, \alpha_2$,¡K,$\alpha_n$¡A¥Nªí m ­Ó¸ÓÀH¾÷²{¶Hªº¸ÕÅç¡C§Ú­Ì¥Î²Å¸¹§â $\alpha_i$ ¼g¦¨ $\alpha_i$= $<A_1^{(i)} , A_2^{(i)} , \cdots , A_n^{(i)}>$¡C¤]´N¬O»¡¡A¦b $\alpha_i$ ³o­Ó¸ÕÅçùØ¡A¤@¦@¦³ ni ºØ¥i¯àªºµ²ªG¡A§Ú­Ì¤À§O§â¥¦­Ì¥Î A1(i), A2(i),¡K,An(i) ªí¥Ü¥X¨Ó¡C¥t¤@¤è­±¡A§Ú­Ì¥i¥H§â³o m ­Ó¸ÕÅç¦X¦b¤@°_¡A¬Ý¦¨¬O¤@­Ó·sªº¸ÕÅç¡C¦b·sªº¸ÕÅçùØ¡AÆ[¹îªºµ²ªG±N¦p¤Uªí¥Ü¡G ( AJ1(1), AJ2(2),¡K,AJm(m))¡A¨ä¤¤ $1\leq
j_i\leq n_i$¡C¤]´N¬O»¡¡A ¦b§Ú­Ì¥Î³o m ­Ó¸ÕÅç¨ÓÆ[¹î¦P¤@ÀH¾÷²{¶H®É¡A¦pªG¨Ì¦¸Æ[¹î¨ìµ²ªG¤À§O¬O AJ1(1), AJ2(2),¡K,AJm(m)¡A«h§â¥¦­Ì¶°¦b¤@¶ô¡A¬Ý¦¨¬O¤@­Ó·sªº¸ÕÅ窺µ²ªG¡C§Ú­Ì¥Î $\alpha_1 \vee \alpha_2 \vee \cdots \vee \alpha_m$ ¨Óªí¥Ü¥H©Ò¦³ªº ( AJ1(1),AJ2(2),¡K,AJm(m)) ¬°¥i¯àµ²ªGªº³o­Ó·sªº¸ÕÅç¡C

Á|­Ó¨Ò§a¡I¦bÀH¤â¥áÂY¨âÁû¥i¤À¿ëªº»ë¤l®É¡A§Ú­Ì¥Î $\alpha_1$ ¤Î $\alpha_2$ ¤À§Oªí¥ÜÆ[¹î²Ä¤@Áû¤Î²Ä¤GÁû»ë¤l¥X²{ªºÂI¼Æ¡C§Y

\begin{displaymath}
\alpha_1=<A_1^{(1)}, A_2^{(1)}, \cdots, A_6^{(1)}>, \alpha_2=<A_1^{(2)}, A_2^{(2)}, \cdots, A_6^{(2)}>
\end{displaymath}

¨ä¤¤ Ai(1)¡BAi(2) ¤À§Oªí¥Ü²Ä¤@Áû»P²Ä¤GÁû»ë¤l¥X²{¤§ÂIªº±¡§Î¡C³o®É¡A

\begin{displaymath}
\alpha_1\vee\alpha_2=<(A_1^{(1)}, A_1^{(2)}), (A_2^{(1)}, A_2^{(2)}), \cdots, (A_6^{(1)}, A_6^{(2)})>
\end{displaymath}

¥­±`§Ú­Ì¬O§â <Ai(1),Aj(2)> ¼g¦¨ (i,j)¡A§â $\alpha_1\vee\alpha_2$ ¼g¦¨ $<(1,1),(1,2), \cdots, (1,6),(2,1), \cdots, (6,6)>$¡C¤@¯ë¨Ó»¡¡A§Ú­Ì§â $\alpha_1$,¡K,$\alpha_m$ ·Q¦¨¬OÆ[¹î¦P¤@ÀH¾÷²{¶Hªº m ­Ó»ö¾¹ªº°O¿ý¡A¨º»ò $\alpha_1\vee\alpha_m$¡A´N¬O³o m ­Ó»ö¾¹ªººî¦X°O¿ý¡C¥H«á§Ú­Ì±N $\alpha_1\vee\cdots\vee\alpha_m$ ªº¨C­Ó¥i¯àµ²ªGºÙ¬°°ò¥»¨Æ¥ó¡C ·íµM¡A¦bÆ[¹î $\alpha_1\vee\cdots\vee\alpha_m$ ®É¡A¦³¤@­Ó¦Ó¥B¶È¦³¤@­Ó°ò¥»¨Æ¥ó¥X²{¡C¬°¤F¤è«K°_¨£¡A§Ú­Ì±N¨C­Ó°ò¥»¨Æ¥óµø¬°¤@ÂI¡A¦Ó±N©Ò¦³³o¨ÇÂI¦XÃl°_¨Ó°O§@ {$\omega_1$,$\omega_2$,¡K}¡A³o¬O­Ó¨ã¦³ $n_1\times n_2\times\cdots\times n_m$ ­ÓÂIªº¶°¦X¡A°O¤§¬° £[¡C£[ ªº¥ô¤@¤l¶° A ¥i¥Î¨Óªí¥Ü¸¨©ó A ªº¨º¨Ç°ò¥»¨Æ¥óªºÁp¦X¨Æ¥ó¡AÁp¦X¨Æ¥ó A µo¥Íªº·N«ä¬O«ü A ¤¤ªº¬Y­Ó°ò¥»¨Æ¥óµo¥Í¤F¡C¦b¤W­±ÀH¤â¥áÂY¨âÁû»ë¤lªº¨Ò¤l¤¤¡A{(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)} §Yªí¥Ü²Ä¤@Áû»ë¤l¥X²{ 1 ÂIªº¨Æ¥ó¡C±q²{¦b°_´NºÙ £[ ªº¤l¶°¬°¨Æ¥ó¡A£[ ªºªÅ¤l¶° $\emptyset$ ¬°¤£¥i¯à¨Æ¥ó¡A£[ ¥»¨­¬°¥²µM¨Æ¥ó¡A¦Ó {$\omega_i$} ¬°°ò¥»¨Æ¥ó¡C¬°¤F²Å¸¹¤Wªº¤è«K¡A§Ú­Ì±`±`¤£¤À¿ë {$\omega_i$} ©M $\omega_i$¡C¦pªG A,B ¬°¨â­Ó¨Æ¥ó¡A«h $A\bigcup B$ ºÙ¬° A¡BB ªºÁp¦X¨Æ¥ó¡A$A\bigcap B$ ºÙ¬° A¡BB ªº¦@¦P¨Æ¥ó¡F $A\bigcap B=\emptyset$ ®É¡AºÙ A¡BB ¬°¤¬¥¸¨Æ¥ó¡C

§Ú­Ì±j½Õ¹L¡A§Ú­Ì¥u¦Ò¼{¨ã¦³ÀH¾÷³W«ß©Êªº¸ÕÅç¡A¦]¦¹¡A§Ú­Ì­n¨D £[ ªº¨C­ÓÂI $\omega_i$ ¨ã¦³¾÷²v pi¡A·íµM¡A¦p $p_i\geq0$,$\sum_ip_i=1$¡C¦pªG $A\subset\Omega$¡A¥O $P(A) = \sum_{\omega_i\in A}p_i$¡A³o¨à $\sum_{\omega_i\in A}p_i$ ¬O«ü©Ò¦³¸¨©ó A ªº°ò¥»¨Æ¥óªº¾÷²vªº©M¡FP(A) ºÙ¬°¨Æ¥ó A ªº¾÷²v¡C®Ú¾Ú«e­±©Ò»¡ªº pi ªº·N¸q¡A´Nª¾¹D¦b¦h¦¸¿W¥ßÆ[¹î¸ÕÅç $\alpha_1 \vee \alpha_2 \vee \cdots \vee \alpha_m$ ®É¡A¨Æ¥ó A ¥X²{ªºÀW²v±N·|³ò¶©ó P(A) ªºªþªñ¡C

¾÷²v½×ªº¥Øªº¬O¦b¬ã¨sÀH¾÷²{¶HùظgÅç³W«ßªº¼Æ¾ÇÃö«Y¤Î¨äÀ³¥Î¡C¥Ñ©ó¤W­zªº¶°¦X £[ »P°ò¥»¨Æ¥óªº¾÷²vºî¦X¦aªí¹F¤F¦h¦¸¿W¥ßÆ[¹î $\alpha_1, \alpha_2$,¡K,$\alpha_m$ ©Ò±o¨ìªº¸gÅç³W«ß¡A­ì¥ýÀH¾÷²{¶Hªº³W«ßÅܦ¨¤F¨Æ¥óªº¾÷²v¡A¦]¦¹¡A¾÷²v½×ªº¥Øªº¤]´N¬O¦b¬ã¨s¾÷²v©Òº¡¨¬ªº¼Æ¾ÇÃö«Y¤Î¨äÀ³¥Î¡F´N¦n¹³¤T¨¤¾Ç¬ã¨sªº¬O¤T¨¤¨ç¼Æ¶¡ªºÃö«Y¤Î¨äÀ³¥Î¤@¼Ë¡C

±q¼Æ¾ÇªºÆ[ÂI¨Ó¬Ý¡A§Ú­Ìªº°_ÂI¬O¤@­Ó¦³­­¶°¦X £[¡A¦Ó¹ï £[ ªº¨C¤@¤l¶° A¡A§Ú­Ì³£ªþ¤W¤F¤@­Ó¼Æ P(A)¡A³o¨Çº¡¨¬¤U­zªºÃö«Y¡G

(1) $0\leq P(A)\leq1$, $P(\emptyset)=0$,$P(\Omega)=1$
(2)¦pªG A¡BB ¬° £[ ¤§¤l¶°¡A¥B $A\bigcap B=\emptyset$¡A«h $P(A\bigcup B)=P(A)+P(B)$

´«¥y¸Ü»¡¡A¦³­­¶°¦X £[ ¤Îº¡¨¬(1)©M(2)ªº¨ç¼Æ P ´N¬O¼Æ¾Çªº°_ÂI¡C£[ ©M P ¦X°_¨ÓºÙ¬°¾÷²vªÅ¶¡¡A²°O§@ ($\Omega,P$)¡C³o®Éªº¾÷²vªÅ¶¡ ($\Omega,P$) ¥i¥H¤£¨ã¦³¥ô¦ó¹ê»Ú·N¸q¡A¥¦¶È¶È¬O­Ó¼Æ¾Ç¨t²Î¡FÁöµM¦p¦¹¡A§Ú­Ì¤´±N ($\Omega,P$) ¸ÑÄÀ¬°¹ï¬Y­ÓÀH¾÷²{¶H§@¦³­­¦h­Ó¸ÕÅç©ÒÆ[¹î¨ìªº¸gÅç³W«ßªºÁ`µ²¡A¦]¦¹ £[ ªºÂI¤´µMºÙ¬°°ò¥»¨Æ¥ó¡A£[ ªº¤l¶°ºÙ¬°¨Æ¥ó¡AP(A) ºÙ¬° A ªº¾÷²v¡A¡K¡K¡C§Ú­Ì¦b¾÷²vªÅ¶¡ùØ·s±o¨ìªºµ²½×¡A¦b¸g¹L³o¼Ëªº¸ÑÄÀ¡]½Ķ¡^¤§«á¡A´N¥i¥H¥Î¨Ó´y­z©M¹w´ú¬Y¨ÇÀH¾÷²{¶H¡A³oÂI«D±`­«­n¡A§_«h¾÷²vªÅ¶¡ªº¬ã¨s´N¹³¬O¤U´Ñ¡Aª±µP¤F¡AµLªk¦b¤HÃþ¤å©úªºµo®i¤¤²£¥Í¿n·¥ªº§@¥Î¡C§Ú­Ì©â¶H¦a¬ã¨s¾÷²vªÅ¶¡¡A¬O§Æ±æ¯à°÷¤@¥ØÁAµM¦a¬Ý¥X¾÷²v»P¨ä¬ÛÃö·§©À¶¡ªºÃö«Y¡F§K±o³Q§Î§Î¦â¦âªº­Ó§O¨Ò¤l±»»\¤F­nÂI¡C§Ú­Ì¶·­n¾A·íªº¸ÑÄÀ¾÷²vªÅ¶¡¡A¤~¯à¨«¦V¥¿½Tªº¤è¦V¡]ÁA¸ÑÀH¾÷²{¶H¡^¡A¨Ï±o§Ú­Ìªº¤ß´¼¬¡°Ê¤£¦Ü©ó²_¬°³æ¯Âªº¼Æ¾Ç¹CÀ¸¡C³o¤@ÂI¡A¦Uªù¼Æ¾Ç³£¤@¼Ë¡A§Ú­Ì¤£·Q¦h¨¥¡C

¥H¤U§Ú­Ì§Î¦¡¦a©w¸q¤@¨Ç³Ì¦³¥Îªº·§©À¡A¦Ó±N®B¾¦¬ÛÃöªºª½Ä±·N¸q¡A¯dµ¹ÅªªÌ¦Û¤v¥h¸É¤W¡C¡]¦P®É½Ð°Ñ¾\·¨ºû­õ¥ý¥Í¼¶¡G¡q¾÷²v¤@Á¿¡r¢w¢w­ì¡m¼Æ¼½¡n½sªÌ¡C¡^

[©w¸q]
(1)¦pªG $P(A\bigcap B)=P(A)\cdot P(B)$¡F«h§Ú­Ì»¡¨Æ¥ó A »P B ¤¬¬°ÀH¾÷¿W¥ß¡C¡]©Î²ºÙ¿W¥ß¡^¡C

(2)¦pªG $P(B)\neq 0$¡A«h $ \frac{P(A\bigcap B)}{P(B)}$ ºÙ¬° A ¦b¤wª¾ B ®Éªº±ø¥ó¾÷²v¡A°O§@ P(A|B)¡F
(3)¦pªG A1,¡K,An ¬° n ­Ó¤¬¥¸ªº¨Æ¥ó¡A¦Ó¥B $A_1\bigcup\cdots\bigcup A_n$ = £[¡C«hºÙ A1,¡K,An ²Õ¦¨ £[ ªº¤@­Ó¤À³Î¡A¨Ã°O¤§¬°¡qA1,¡K,An¡r¡C¤À³Î¤SºÙ¸ÕÅç¡A³o®É¬°¤F©ú¥Õªí¥Ü¨C­Ó¨Æ¥ó Ai ªº¾÷²v¡A§Ú­Ì±`§â¸ÕÅç°O§@

\begin{displaymath}\left<
\begin{array}{ccc}
A_1,&\cdots&,A_n\\
P(A_1),&\cdots&,P(A_n)
\end{array}\right>
\end{displaymath}

(4)³]

\begin{displaymath}\alpha=\left<
\begin{array}{ccc}
A_1,&\cdots&,A_n\\
P(A_1),&...
...
B_1,&\cdots&,B_n\\
P(B_1),&\cdots&,P(B_n)
\end{array}\right>
\end{displaymath}

¬°¨â­Ó¸ÕÅç¡A«h

\begin{displaymath}\left<
\begin{array}{ccc}
A_1\bigcap B_1,&\cdots&,A_n\bigcap ...
...(A_1\bigcap B_1),&\cdots&,P(A_n\bigcap B_m)
\end{array}\right>
\end{displaymath}

ºÙ¬° £\ ©M £] ªº¦X¦¨¸ÕÅç¡A°O§@ $\alpha\vee\beta$ ¦pªG¥ô¦ó Ai ©M¥ô¦ó Bj ³£¬OÀH¾÷¿W¥ßªº¡A§Y $P(A_i\bigcap B_j)=P(A_i)\cdot P(B_j)$,i=1,¡K,n;j=1,¡K,m¡C«hºÙ £\ ©M £] ¤¬¬°ÀH¾÷¿W¥ß¡]©Î²ºÙ¿W¥ß¡^¡C

(5)§Ú­Ì§â©w¸q¦b £[ ¤Wªº¥ô¤@¹ê¼Æ­È¨ç¼Æ¥s°µÀH¾÷ÅܼơC³q±`¥Î x,y,z µ¥¤p¼g¦r¥À¨Óªí¥ÜÀH¾÷ÅܼơC°²³] x ¬OÀH¾÷ÅܼơA«h $\sum_{\omega\in\Omega}x(\omega)P(\omega)$ ºÙ¬° x ªº´Á±æ­È¡A°O§@ Ex¡F¦pªG r ¬O­Ó¹ê¼Æ¡A«h¥Î {x=r} ¨Óªí¥Ü { $\omega\in\Omega: x(\omega)=r$} ¥H¸`¬Ùµ§¾¥¡A{x=r}¬O x ¨ú­È¬° r ªº¨Æ¥ó¡C°²³] r1,¡K,rn ¬° x ©Ò¥i¯à¨úªº­È¡A«h < {x=r1 },¡K, { x = rn }> ºÙ¬°¥Ñ x ©Ò¨M©w¤§¸ÕÅç¡C¦pªG x ©Ò¨M©wªº¸ÕÅç»P y ©Ò¨M©wªº¸ÕÅç¬O¿W¥ßªº¸Ü¡A«hºÙ x »P y ¤¬¬°¿W¥ßªºÀH¾÷Åܼơ]©Î²ºÙ x »P y ¬°¿W¥ßÅܼơ^¡C

(6)¬°¤F¤è«K°_¨£¡A¦pªG $B\subset\Omega$ ¬O­Ó¨Æ¥ó¡A«h¦p¤U©w¸qªº¨ç¼Æ XB ºÙ¬° B ªº«ü¥Ü¨ç¼Æ¡G$X_B(\omega)=1$¡A¦pªG $\omega\in B$¡F§_«h $X_B(\omega)=0$¡C¦pªG x ¬O­ÓÀH¾÷ÅܼơA<{ x=r1 },¡K,{ x=rn } > ¬O x ©Ò¨M©wªº¸ÕÅç¡A«h x ¥iªí¦¨

\begin{displaymath}x=\sum_{i=1}^n r_iX_{\{x=r_i\}}\mbox{;}\end{displaymath}

¦Ó

\begin{displaymath}Ex=\sum_{i=1}^n r_iP\{x=r_i\} \: .\end{displaymath}

   

¤W­¶¡@1¢x2¢x3¢x4¡@¦¸­¶

¦^­¶­º
 
¡]­Y¦³«ü¥¿¡BºÃ°Ý¡K¡K¡A¥i¥H¦b¦¹ ¯d¨¥ ©Î ¼g«H µ¹§Ú­Ì¡C¡^
EpisteMath

EpisteMath (c) 2000 ¤¤¥¡¬ã¨s°|¼Æ¾Ç©Ò¡B¥x¤j¼Æ¾Ç¨t
¦Uºô­¶¤å³¹¤º®e¤§µÛ§@Åv¬°­ìµÛ§@¤H©Ò¦³


½s¿è¡G¶À«H¤¸ ³Ì«á­×§ï¤é´Á¡G4/26/2002