­º­¶ | ·j´M

¡D­ì¸ü©ó¼Æ¾Ç¶Ç¼½²Ä¤G¨÷²Ä¤T´Á
¡D§@ªÌ·í®É¥ô±Ð©ó¥x¤j¼Æ¾Ç¨t

¡EµùÄÀ
 

¾÷²v¤@Á¿

·¨ºû­õ

 
 

¾÷²v½×ªº¤@­Óµo·½¦a¬O°O­z²Î­p¾Ç¡F©úÁA°O­z²Î­p¾Çªº·§©À¡A¹ï©ó¾÷²v½×ªº¾Ç²ß¡A¤j¦³§U¯q¡I

$\S$1. °²³]§Ú¾á¥ô¤@¯Z¼Æ¾Ç½Ò¡F¦@¦³50¦ì¾Ç¥Í¡A²{¦b¦Ò¼{¬Y¦¸¤ë¦Òªº¦¨ÁZ¡F§Ú­Ì¥Î xn ¥Nªí²Ä n ¸¹¾Ç¥Íªº¦¨ÁZ¡C ©Ò¥H´N¦³¤@°ï¼Æ¾Ú¡Gx1, x2, x3,¡K,xN¡A¡]¦¹¦a N=50¡^¡C§Ú­Ì¥Î X ¨Ó¥Nªí³o­Ó²Î­p¼Æ¾Ú¡C ©Ò¥H¡A¨Æ¹ê¤W X ¬O¬M®g¡G $1 \rightarrow x_1$¡A $2 \rightarrow x_2$¡A¡K ¡K¡F¤£¬O¶°¦X {x1,x2,¡K,xN}¡F ¢w¢w¨Ò¦p¡A³o¶°¦Xªº¤¸¯À­Ó¼Æ¥i¥H¤p©ó N¡A¦Ó¥B¡A­Y¬O¬Ý¦¨¶°¦X¡A«h

¡u1 ¸¹±o 70 ¤À¡A2 ¸¹±o 81 ¤À¡v

»P

¡u2 ¸¹±o 70 ¤À¡A1 ¸¹±o 81 ¤À¡v

¨ÃµL°Ï§O¡F¦ý¬O¡A´N¾Ç¥Íªº¥ß³õ¡A³o·íµM¦³°Ï§O¡A¹ï©ó¦Ñ®v¡A°Ï§O´N¤£¤j¡I­Ë¬O¦³´X­Ó¤H 81 ¤À¡A´X­Ó¤H 70 ¤À¡AÁÙ¦³ÂI°Ï§O¡I

ÁÙ¦³¡A­n°O¦íªº¤@ÂI¬O¡GX ªº©w¸q°ì¡A¦¹¦a¬O 1 ¨ì 50 ¤§¦ÛµM¼Æ¡A³o¤£¤Ó­«­n¡C

$\S$2. °O­z²Î­p¾Çªº³Ìªìªº°ÝÃD¡A¥i¥H«Ü¨ãÅé¦a³o¼Ë¤l¨Ó»¡©ú¡C¦pªG®Õªø°Ý§Ú¡G¡u¥L­Ì³o¦¸¤ë¦Ò¦Ò±o«ç»ò¼Ë¡H¡v¡A§Ú¸Ó«ç»ò³ø§i¡H

¹ï©ó¾Ç¥Íªº®aªø¡A§Ú­nµª¥H¥L¤l¤kªº¦¨ÁZ´N¦n¤F¡F¹ï©ó®Õªø¡A¤@­Ó­Ó¾Ç¥Íªº¦¨ÁZ¥L«o¤£·|­@·ÐÅ¥¡F¥L­nª¾¹D³Ì­«­n«o¤]³Ì°_½Xªº¨â¥ó¨Æ¡G¥Ò¡B¤jÅé¦p¦ó¡H¤A¡B¬O§_°Ñ®t¤£¤j¡H¡]¤]³\¸Ó¦Ò¼{¡u¯à¤O¤À¯Z¡v¡H¡K¡K¡^¡C

®Õªø¤£¤@©wº¡·N©ó¤@­ÓÅ¢²Îªº¡A¡]©w©Êªº¡^»¡ªk¡A¦p¡u¤jÅé«Ü¦n¡A°Ñ®t¤£¤j¡v¡A¥L­n¤@­Ó§óºë½Tªº¡A¡]©w¶qªº¡^»¡ªk¡F©ó¬O¡A§Ú­nµ¹¥L¨â­Ó¼Æ¦r¡G¥Ò¡B¥Nªí­È 1 ¡C¤A¡B°Ñ®t«× 2 ¡C

$\S$3. §Ú¥ý±j½Õ¨âÂI¡G

¤@¡B³q±`¤H¥u·Q¨ì¥Ò¡A¨º¤Ó²Ê¾|¤F¡IÅãµM¤A¤]«Ü­«­n¡C
¤G¡B²Î­p¼Æ¾Ú¥»¨­¤~¬O§¹¾ãªº¸ê®Æ¡F¡]¥j¨åªº¡^°O­z²Î­p´N¬O»Ý­n X ³o»ò§¹¾ãªº¸ê®Æ¡A¦Ó¡]ªñ¥Nªº¡^²Î­p¨Ã¤£ªÖªáºë¤O±o¨ì¥¦¡C¡]³q±`¬O°µ¤£¨ì¡A¤Ó¶Q¤F¡C¡^µL½×¦p¦ó¡A±q X Åܦ¨¨â­Ó¼Æ­È¡AÅãµM¬O¸ê°T (information) ªº¤j¤j¿@ÁY¡]©Î·l¥¢¡^¡C¹ï©ó¬Y¨Ç¨Æ©Î¬Y¨Ç¤H¡]¦p®Õªø¡^¡A³o³Ñ¤Uªº¸ê°T´N«Ü°÷¥Î¤F¡C¹ï¬Y¨Ç¨Æ¡A³o«o¤£°÷¡C

$\S$4. ¦p¦ó¨ú¥Nªí­È £\¡A¤Î°Ñ®t«× £]¡H

³q±`±Ä¥Î

\begin{eqnarray*}
\alpha &=& \mbox{{\fontfamily{cwM2}\fontseries{m}\selectfont \...
...1pt{\fontfamily{cwM4}\fontseries{m}\selectfont \char 207}}(S.D.)
\end{eqnarray*}


ªº¨î«×¡A©ó¬O¡A¹ï©ó®Õªøªº³ø§i¡A´N¬O¡u¥»¯Z¥»¦¸¤ë¦Ò¦¨ÁZ¬° $A.M.(X)\pm S.D.(X)$¡v¡C

\begin{eqnarray*}
A.M.(X)&\equiv&\sum_1^N\frac{x_i}{N}\\
S.D.(X)&\equiv&\sqrt{N^{-1}\sum[x_i-A.M.(X)]^2}\\
&=&\sqrt{{\mbox{Var}}X}
\end{eqnarray*}



\begin{eqnarray*}
\mbox{{\fontfamily{cwM1}\fontseries{m}\selectfont \char 106}\h...
...us0.1pt{\fontfamily{cwM1}\fontseries{m}\selectfont \char 106} })
\end{eqnarray*}


§Ú¥²¶·¦A±j½Õ³o¤@ÂI¡G±Ä¥Î³oºØ¡u$A.M.\pm S.D.$¡v¨î¡A¬O³Ì±`¨£ªº¡A¡]¬Æ©Î¬O³Ì¤è«Kªº¡^¨î«×¡C¦ý¬O¥¦¤@ÂI¨à¤]¤£¬O°ß¤@ªº¨î«×¡C¨Æ¹ê¤W³o±¡§Î¦³¤@ÂI¨à¹³¾ôµPªº¥sµP¨î«×¡G§A¥i¥HÀH«Kµo©ú¤@®M¡A¥u­n»¡²M·¡§Aªº¨î«×¡C

$\S$5. ¦b­pºâ©M¦¡¤¤¡A§Ú­Ì·íµM¥i¥HÁo©ú¤@ÂI¡A¤£¥² x1 + x2 + x3 + $\cdots\cdots$¡]ºCºC¥[¡^¡A¦Ó¥i¥H±Ä¥Î¡]Lebesgue ¦¡ªº·Qªk¡I¡^

\begin{displaymath}
\sum x_i\equiv\sum_x x\cdot (\mbox{{\fontfamily{cwM2}\fontse...
...us0.1pt{\fontfamily{cwM1}\fontseries{m}\selectfont \char 98}})
\end{displaymath}

¬A©·¤¤ªº¥s°µ¤F X=x ¤§ÀW²v (frequency)¡C¥¦ªº·N¸q«Ü©ú¥Õ¡A»·¤ñ¥¦ªºªí¹F¦¡¤l®e©ö¡I¨Æ¹ê¤W§Ú­Ì­pºâ $N^{-1}\sum$ ªº¾÷·|§ó¦h¡A¦]¦¹¡A§âÀW²v¥ÎÁ`ÀW²v N ¥h°£¡A¥s°µ¬Û¹ïÀW²v (relative frequency)¡A°O°µ f¡A«h±o

\begin{displaymath}
A.M.(X)\equiv\sum_x x\cdot f(x)
\end{displaymath}

½Ðª`·N¡G­Y £p ¬O­Ó $\mathbf{R} \longrightarrow \mathbf{R}$ ¤§¨ç¼Æ¡A¥Î $\varphi(X)$ ¥Nªí²Î­p¼Æ¾Ú

\begin{displaymath}
(\varphi(x_1), \varphi(x_2), \varphi(x_3), \cdots, \varphi(x_N))
\end{displaymath}

«h 3

\begin{displaymath}
A.M(\varphi(X))=\sum_x\varphi(x)\cdot f(x)
\end{displaymath}

$\S$6. §Ú­Ì°¨¤W¥i¥H¾É¥X¤@­Ó­«­nªº©w²z¡A³o©w²zªº¤º²[¤Ó®e©ö¤F¡AÁöµM¨äªí¹F¦¡¤Ï­Ë¸û·Ð¡C©Ò¥H§Ú­Ì´N¥Î¡u§Ú­Ì¯Z¡vªº¨Ò¤l¨Ó»¡©ú¡G

¦Ò¸Õ¦¨ÁZ¡A·íµM¦b 0 »P 100 ¤§¶¡¡G $0\leq x_i\leq100$¡F¡]¦¹¦a¤W­­ 100 ¤£­«­n¡^¡C¤µ³]¥­§¡¬° 23 ¤À¡A«h¥þ¯Z 50 ¤H¤¤¡A¤À¼Æ¶W¹L 46 ¤Àªº¡A¤@©w¤£¨ì¤@¥b¡]25 ¤H¡^¡A¥þ¯Z¤À¼Æ¶W¹L 69 ¤Àªº¡A¤@©w¤£¨ì 16.66¡K ¤H¡e¬G·N³o»ò¼g¡A¤H¼Æ¤£¯à¦³¤p¼Æ¡I¡f¡A¤À¼Æ¶W¹L 92 ¤Àªº¡A¤£¨ì 12.5¤H¡K¡K¡C

³o´N¬OµÛ¦Wªº¡]¦Ó¥B¤]´X¥GµL²áªº¡Atrivial¡^Markov ¤£µ¥¦¡¡C

©w²z¡G­Y¤@¤Á $x_i \geq 0$¡A[³æ®Ñ§@ X $\geq$ 0]¡A$\mu = A.M.(X)$¡Ak>1¡A«h

\begin{displaymath}f\{X>k\mu\}<k^{-1} \; ,\end{displaymath}

·íµM¤]¦³

\begin{displaymath}f\{X\geq k\mu\}\leq k^{-1}\end{displaymath}

§Ú·QÃÒ©ú´N¥i¥H¬Ù¤F¡F¥Ñ¡u§Ú­Ì¯Z¡vªº¨Ò¤l´N«Ü©ú¥Õ¤F¡I

­Ë¬O¥²¶·µù¸Ñ¤@¤U¡G

1 ©w²z¤¤¡Ak>1 ¥i¥H§ï¬° k>0¡A¦]¬° $1\geq k>0$ ®É¡A³o¤£µ¥¦¡´N¡uµL²á¦a¦¨¥ß¡I¡v(trivially true)
2 ­Y¤£¬O§Q¥Î¬Û¹ïÀW²v f ¤§·§©À¡A«h©w²zªº¼Æ¾Çªí¹F¦¡´N³Â·Ð¤F¡A­n¼g¦¨

\begin{displaymath}
\frac{\{i:x_i>k\mu\}\mbox{ {\fontfamily{cwM1}\fontseries{m}\...
...ily{cwM1}\fontseries{m}\selectfont \char 98} }}{N}<k^{-1} \; ,
\end{displaymath}

³o¤£¦ý·Ð¡]Ác¡^¡A¦Ó¥B·N«ä¤Ï­Ë¤£²M·¡¡I

$\S$7. ¦b¤W¤@©w²z¤¤·íµM§Ú­Ì¥²¶·°²©w $X\geq0$¡A¡]§Y $x_i \geq 0$¡A¤@¤Á i¡^¡C§A¸Ó³y­Ó¨Ò¤l»¡©ú¡u¦b X<0 ®É¡A±Ô­z¡]¥i¥H¡^¬°»~¡v¡A¤£¹L¡A¤£½× X ¬°¦ó¡A¥O

\begin{eqnarray*}
Y & \equiv & (X-A.M.(X))^2 \\
& \equiv & ((x_1-A.M.(X))^2 \; , \; (x_2-A.M.(X))^2 \; , \; \cdots\cdots)
\end{eqnarray*}


«h Y ´N¬O­Ó²Î­p¼Æ¾Ú¡A«í«D­t¡A¦]¦¹ Markov ¤£µ¥¦¡¹ï Y ¾A¥Î¡I¤]´N¬O»¡¡G¹ï k>0¡A¡]¨ä¹ê k>1 ¤~¦³²á¡I¡^

\begin{eqnarray*}
f\{Y>k\cdot A.M.(Y)\} &<& k^{-1}  , \\
f\{Y\geq k\cdot A.M.(Y)\} &\leq& k^{-1}
\end{eqnarray*}


¦ý¬O¡A·Ó©w¸q¡A

\begin{displaymath}A.M.(Y)={\mbox{Var}}X=(S.D.(X))^2\end{displaymath}

¦Ó¥B°O $k\equiv l^2$, l>0¡A«h±o

\begin{displaymath}f\{(X-A.M.(X))^2>l^2\cdot(S.D.(X)^2)\}<l^{-2}\end{displaymath}

¦ý¬O

\begin{displaymath}(X-A.M.(X)^2>l^2\cdot(S.D.(X))^2)\end{displaymath}

´Nµ¥©ó

\begin{displaymath}\vert x-A.M.(X)\vert>l \cdot S.D.(X).\end{displaymath}

¦]¦¹¦³(Chebyshev ¤£µ¥¦¡)¡G

\begin{displaymath}f\{\vert X-A.M.(X)\vert>l\cdot S.D.(X)\}<l^{-2} \; ,\end{displaymath}

©Î

\begin{displaymath}f\{\vert X-A.M.(X)\vert\geq l\cdot S.D.(X)\}\leq l^{-2}\end{displaymath}

§Ú­Ì¦b³oùØ¥´¦í¡A¤£¦AÁ¿°O­z²Î­p¤F¡A´NÂà¨ì¾÷²v½×¨Ó¡I

$\S$8. §Ú·Q¥ý§â¥DÃDÂI¥X¨Ó¡G¾÷²v½×©M°O­z²Î­p¡A´X¥G§¹¥þ¤@¼Ë¡I¥u¬O¤@µê¤@¹ê¦Ó¤w¡C

¬°¤F»¡©ú³o¤@ÂI¡A§Ú­Ì·Q¹³³oºØ±¡§Î¡C¥h¦~§Ú°µ¤F§¹¾ãªº¬ö¿ý§Ë¦¨¤@±i±i¥d¤ù¡A¨ì¤F³o¤@¦~«×¡A§Ú¨M¤ß°µ­Ó¤£­t³dªº¦Ñ®v¡G­Y§A¬O­Ó¾Ç¥Í¡A§Ú½Ð§A©â¤@±i¥d¤ù¡A´N·í°µ§Aªº¤À¼Æ¡C

³o»ò¤@¨Ó°O­z²Î­p´N¦¨¤F¾÷²v½×¤F¡I¦pªG¡A¥h¦~¦³ 4 ­Ó¤H¤À¼Æ¤£¨ì¤­¤Q¤À¡A¨º»ò¡A

\begin{displaymath}f\{X<50\}=\frac{4}{50}=0.08\end{displaymath}

²{¦b¡A§Aªº¤À¼Æ¤£¨ì¤­¤Q¤Àªº¾÷²v´N¬O 0.08¡A´«¥y¸Ü»¡¡A¡u¬Û¹ïÀW²v¡v§ï¦¨¡u¾÷²v¡v¡A¥Î²Å¸¹ P ªí¥Ü¡G

P{X<50}=0.08

¦pªG¥h¦~¦³ 6 ­Ó¤H¤£¤Î®æ¡A§Y f{X<60}=0.12¡A«h²{¦b§A¤£¤Î®æªº¾÷²v¬O 0.12¡A§Y

f{X<60}=0.12

·íµM¡A²{¦bªº X ±q¡u²Î­p¼Æ¾Ú¡v§ï¦¨¤F¡uÀH¾÷Åܼơv¡AÀHµÛ¾÷·|¡]§Aªº¹B®ð¡^¦ÓÅܪº¼Æ¡F¥t¥~¡A¡uºâ³N¥­§¡¡vA.M.¡A¤]§ï¦¨¡]¼Æ¾Ç¡^´Á±æ­È E¡F¦pªG¥h¦~¥þ¯Z¥­§¡¬° A.M.(X)=74 ¤À¡A«h§A¡]²{¦b¡^ªº´Á±æ­È´N¬O

E(X)=74 .

´«¥y¸Ü»¡¡A§Ú­Ì¦³­Ó²³æªº¤p¦r¨å¨Ó¹ï·Ó³o¨âºØ»y¨¥¡G

°O±Ô²Î­p¾Ç ¾÷²v½×
¬Û¹ïÀW²v f ¾÷²v P
²Î­p¼Æ¾Ú ÀH¾÷ÅܼÆ
ºâ³N¥­§¡ A.M. ´Á±æ­È E.
¤è®t ${\mbox{Var}}.$ ¤è®t ${\mbox{Var}}.$
¼Ð·Ç®t S.D. ¼Ð·Ç®t S.D.
¥H¤U¨â°ê»y¨¥¤j­P¬Û¦P

$\S$9. ¬°¤°»ò»¡°O­z²Î­p»P¾÷²v¬O¤@¹ê¤@µê©O¡H§Ú³y¤F 50 ±i¥d¤ù¡A·í³o¬O°O­z®É¡A³o¬O«Ü¯u¹êªºªF¦è¡]³o¬O§Ú±Ð¾Çªº¦¨ªG¡^¡AX ¥Nªí³o 50 ±i¡A±i±i¬Ò¹ê¡C¤Ï¹L¨Ó¡A§A­n©â¤@±i¡A§ÚÅý§A¥ý¬Ý¹L¤@¹M¡A¦³¨â±i 98¡B¤@±i 92¡A¡K¡K¡A¦ý¡A¥u¦³§A©â¨ìªº¨º±i¤~¬O¯u¹êªº¡A©Ò¥H¡AX ¥u¥Nªí¨º¤@±i¡C¦b°O­z²Î­p¡A¦pªG A.M.(X)=84¡A©ÎªÌ f{X<60}=0.02¡]¥u¦³¤@¤H¤£¤Î®æ¡^¡AÅãµM§Ú³o¦Ñ®v±Ð±o¤£¿ù¡F­Y§ï¦¨¾÷²v¡A«h E(X)=84¡A©Î P{X<60}=0.02¡A¥u¬O§Aªº¾÷·|¤£¿ù¡A´Á±æ­È«Ü°ª¡A©ÎªÌ¡A¤£¤Î®æªº¾÷·|¥u¦³50¤À¤§¤@¡C

¥i¬O¡A§Ú­Ì¤w¸g±j½Õ¹L¤F¡A³o¾÷²v¬Oµêªº¡C¸U¤@¡]¨ä¹ê¤£¬O¡u¸U¤@¡v¡A¦Ó¬O¡u¤­¤Q¤@¡v¡^¡A§A©â¨ì¨º±i¤£¤Î®æªº¥d¤ù¡A¨º»ò X<60¡C¡]¨Ò¦p X=50 §a¡^¡A©pªº¹B®ð¤£¦n¡A¨º»ò³o¨Ç´Á±æ­È¡A©Î¾÷²v¡A³£À°¤£¤F§Aªº¦£¡I»¡¡u§Ú¤Î®æªº¾÷²v°ª¹F 98$\%$¡v¡A©ÎªÌ§Ú¤À¼Æ¤§´Á±æ­È¬° 84 ³£³à¥¢·N¸q¤F¡C¦b§A©â¥d¤§«e¦³·N¸q¡A¦ý©â¤F¥d¤ù¡AX ¬O¦h¤Ö¡A´N¦h¤Ö¡A¦pªG X=50¡A¨º»ò P{X<60}=0.02 ¤Î E(X)=84 ³£¬O¦Û´Û´Û¤Hªº¦w¼¢¡C

$\S$10. ¨º»ò¾÷²vªº·N¸q¬O¤°»ò¡H·íµM¾÷²v«Ü¤j¡]±µªñ 1¡^«Ü¤p¡]±µªñ 0¡^¦³¥¦ªº·N¸q¡A§Ú­Ì¤]©Ó»{³o¥i¥H¦³¤£¦Pªº¨£¸Ñ¡C¤£¹L§Ú»{¬°³o©M¡uªñ¦ü­È¡vªº±¡§Î¤@¼Ë¡A¹ï©ó¨C¤@­Ó¨ãÅ骺±¡§Î¡A¦ÛµM¦³¥¦¨ãÅ骺·N¸q¡C©Ò¥H¡A§Ú­Ì¤£¥´ºâªáºë¯«¨Ó¸ÑÄÀ¡u«Ü¥i¯à¡v¸ò¡u«Ü¤£¥i¯à¡v¡A§â¥¦­Ì·í°µ¬O¤£¶·­n¸ÑÄÀªº¡A´N¸ò¡uªñ¦ü¡v¤§¤£­n¸ÑÄÀ¤@¼Ë¡C

¨º»ò§Ú­Ì«ç»ò¸ÑÄÀ¡u¤@¨Æ¥ó¤§¾÷²v¬° p¡v©O¡H§ÚÃÙ¦¨ Bridgeman ªº¹B§@Æ[ (operationalism)¡A©Ò¥H§Ú§ä±Ä¤j¼Æªk«h¨Ó¸ÑÄÀ¡C

¡]®z¡^¤j¼Æªk«h¡G°²³]¤@¨Æ¥ó A µo¥Í¤§¾÷²v¬° p¡A°²³]§Ú­Ì¯à°÷¤@¦A¦a­«ÂЧڭ̪º¹êÅç¡AÆ[¹î¦P¼Ëªº²{¶H¡A¨C¦¸ªº§G¸m³£¬Û¦P¡]¾÷·|¬Û¦P¡^¡A¦Ó¥B¤@¦¸¦¸¤§¶¡¤¬¬Û¨S¦³ÃöÁp¡A§@¤F n ¦¸¡A¨ä¤¤¦³ k ¦¸µo¥Í¤F³o¥ó¨Æ¥ó¡F§Ú­Ì­pºâµo¥Íªº¬Û¹ïÀW²v $\frac{k}{n}$¡A¨º»ò¡A¦b n ÁͪñµL­­¤j®É¡A³o¬Û¹ïÀW²v $\frac{k}{n}$ ´NÁͪñ©ó p¡A¡]»¡±o«È®ð¤@ÂI¡^¡u $\vert(\frac{k}{n}-p)\vert$ ¤£«Ü¤p¡vªº¾÷·|«Ü¤p¡I

§Ú­Ì¥ý±j½Õ¤@¤U¡G¤£¯à­«½Æ¡]¿W¥ß¡^¦a§@¹êÅ窺¨Æ±¡¡AÁ¿¾÷²v¤£¤Ó¦³·N¸q¡I

§Ú¦A§â¤W­zªº¤j¼Æªk«h±À¼s¤@¤U¡G

©w²z¡G °²³] X1, X2,¡K,Xn ¬OÀH¾÷ÅܼơA¤¬¬Û¿W¥ß¡A¦Ó¥B¾÷²v¤À§G¬Û¦P¡A¨º»ò¡A

\begin{displaymath}
\lim_{n\rightarrow\infty}\frac{X_1+X_2+\cdot+X_n}{n}=E(X_i)
\end{displaymath}

$\S$11. §Ú¸Ó»¡©ú«e¤@±Ô­z¥u¬O«á¤@±Ô­zªº¯S®í±¡§Î¡I¢w¢w³W©w A µo¥Í®É¡AX=1¡AA ¤£µo¥Í®É X=0¡A¨º»ò X ¬OÀH¾÷ÅܼơA§Ú­Ì¥i¥H§@¥X¿W¥ß¡A¦Ó¥B¾÷·|ªºª¬ºA¥þ¦Pªº X1,X2,$\cdots\cdots$,¤@¼Ë¡AP(A)=p ´N¬O E(Xi)=p¡A¬G«e¤@±Ô­z¬O«á¤@±Ô­z¤§¯S¨Ò¡C

À³¥Î¡G¦pªG§Aª¾¹D E(X)=84¡A¸û¦w¥þªº¿ìªk¬O½Ð¦Ñ®v¡]§Ú¡^¦P·N¡G©â«Ü¦h¦¸¡A¡]Áö«h§Ú³W©w©â¥X¨Ó­n©ñ¦^¥h­«·s©â¡^¡C¥Î¥¦­Ìªº¥­§¡ $\frac{(X_1+X_2+\cdots+X_s)}{s} = Y_s$ °µ¬°§Aªº¦¨ÁZ¡C¦p¦¹¥i¥H«OÃÒ³o­Ó¥­§¡·|«Ü±µªñ 84¡C¢w¢w¤£±µªñ 84 ªº¾÷·|«Ü¤Ö¡C

 
¹ï¥~·j´MÃöÁä¦r¡G
¡DLebesgue
¡DChebyshev¤£µ¥¦¡
¡D¾÷²v½×
¡DÀH¾÷ÅܼÆ
¡D´Á±æ­È
¡D¤j¼Æªk«h
¡Dºâ³N¥­§¡
¡D¼Ð·Ç®t
¡D¤è®t
 
«áµù

³q±`ªº¤j¼Æªk«h¡A³£¦A¥[¤W¨Ç¤£¥²­nªº±ø¥ó¡A³o¨Ç±ø¥óÁöµM¤£¥²­n¡A¦ý¦bªì¾Ç®É¡A¬O«Ü¦³§Qªº¡e°²³] ${\mbox{Var}}X_i=\sigma^2<\infty$¡f¡C³oÃÒ©ú¥i¦b©åµÛ¡m´¶³q¼Æ¾Ç¡n¤¤§ä¨ì¡A¤j·N¦p¤U¡G

¥Ñ©ó½Ñ Xi ¤¬¬Û¿W¥ß¡A

\begin{displaymath}
{\mbox{Var}}(\Sigma_1^s X_i)=\Sigma_1^s {\mbox{Var}}X_i=s\sigma^2,
\end{displaymath}

¬G

\begin{displaymath}
{\mbox{Var}}Y_s = s^{-2} \cdot s\sigma^2
= s^{-1} \sigma^2 ...
...ntseries{m}\selectfont \char 231}} s \longrightarrow \infty) ;
\end{displaymath}

¥Ñ Chebyshev ¤£µ¥¦¡

\begin{displaymath}
P\{\vert Y_s-\mu\vert\geq\varepsilon\}=P\{\vert Y_s-\mu\vert\geq k\cdot\sqrt{s^{-1}\sigma^2}\}\leq k^{-2}
\end{displaymath}


\begin{displaymath}
k=\frac{\varepsilon\sqrt{s}}{\sigma} \rightarrow \infty \qua...
...1}\fontseries{m}\selectfont \char 231}} s \rightarrow \infty),
\end{displaymath}

¬G $P\{\vert Y_s-\mu\vert\geq\varepsilon\} \rightarrow 0$

   

¦^­¶­º
 
¡]­Y¦³«ü¥¿¡BºÃ°Ý¡K¡K¡A¥i¥H¦b¦¹ ¯d¨¥ ©Î ¼g«H µ¹§Ú­Ì¡C¡^
EpisteMath

EpisteMath (c) 2000 ¤¤¥¡¬ã¨s°|¼Æ¾Ç©Ò¡B¥x¤j¼Æ¾Ç¨t
¦Uºô­¶¤å³¹¤º®e¤§µÛ§@Åv¬°­ìµÛ§@¤H©Ò¦³


½s¿è¡G¶À«H¤¸ ³Ì«á­×§ï¤é´Á¡G4/26/2002