­º­¶ | ·j´M

¡D­ì¸ü©ó¼Æ¾Ç¶Ç¼½²Ä¤@¨÷²Ä¥|´Á
¡D§@ªÌ·í®É¥ô¾©ó¬ü°ê¨©º¸¹êÅç«Ç

¡EµùÄÀ
 

²Õ¦X¾Çº©½Í

¶À¥ú©ú

 
 

§Ú­Ì¥ýÁ|¤@­Ó¨å¨Òªº²Õ¦X¾Ç°ÝÃD¨ÓÁA¸Ñ²Õ¦X¾Ç±´°Qªº¨ì©³¬O¤°»ò¡G¡u®³¤@±i¥Õ¯È¡F¥ô·N§â¥¦¹º¤À¦¨ n ­Ó°Ï°ì¡A¦Ó¥B¨â­Ó¾Fªñªº°Ï°ì¥²¶·¦@Ãä¦Ó¤£¶È¦@ÂI¡C ¨C¤@­Ó°Ï°ìµÛ¤W¤@ºØÃC¦â¡A±ø¥ó¬O¬Û¾Fªº¨â°Ï°ì¤£¯à¦P¦â¡A°Ý¦pªGµ¹§A¥|ºØÃC¦âªº¸Ü¬O§_¤@©w°÷¡H¡v²Õ¦X¾Çªº°ÝÃD±`±`¬O¦p¦¹¡C ¥ý³W©w¤F¤@¥ó­n°µªº¨Æ¡A¹³¥H¥|ºØÃC¦âµ¹°Ï°ìµÛ¦â¡A³o¥ó¨Æ¦h¥b³£¬O«Ü®e©ö°µªº¦Ó¥B¦³¦UºØ¦U¼Ëªº°µªk¡A¦ý§Ú­Ì¦P®É¥[¤W¤F¤@¨Ç±ø¥ó¡A¹³¾Fªñªº°Ï°ì¤£±o¦P¦â¡C ²{¦b¦³¨Ç°µªk¦X©ó±ø¥ó¦³¨Ç¤£¦X±ø¥ó¡A§Ú­Ì°Ý¦X©ó±ø¥óªº°µªk¦³¦h¤ÖºØ¡A©ÎªÌ°Ý¦³¨S¦³¦X©ó±ø¥óªº°µªk¡]¦p©ÒÁ|¨ÒÃD¡^¡A©ÎªÌ­n§ä¥X¤@ºØ¦nªº°µªk¡C

¤W­±©ÒÁ|ªº¨ÒÃDÁöÄݨ嫬«o¨Ã¤£¥­¤Z¡A¥¦¬O¦³¦Wªº¡u¥|¦â¡v°ÝÃD¡A¬Û¶Ç¬O¼Æ¾Ç·í¤µ¤T¤jÃøÃD¤§¤@¡]¥t¥~¨â­Ó¬O¡uRiemann°²³]¡v©M¡uFermat³Ì«á²q´ú µù1 ¡v¡^¡C ¤@¦Ê¦h¦~¨Ó¡A¤£ª¾¦h¤Ö¼Æ¾Ç®a¬°¤§µ±ºÉ¤ß¦å¡A¤@ª½¨ì¤µ¦~¤C¤ë¶¡¤~±o¨ì¤FªÖ©wªº¸Ñµª¡A¬Û«H¤j®a³£¤w¦b³ø³¹¤WŪ¨ì¦³Ãöªº³ø¾É¡A³oùؤ£¦A­«½Æ¡C ¦ý§Ú­ÌÁÙ­n­É¥|¦â°ÝÃD¨Ó¤¶²Ð¤@­Ó¦³¥ÎªºÆ[©À-¡u¹Ï§Î¡v¡C¹Ï§Î¾Ç¬O²Õ¦X¾ÇùØ«D±`­«­nªº¤@¤ä¡C

¤@­Ó¹Ï§Î¬O¤@­ÓÂIªº¶°¦X©M¤@­Ó©w¸q¦b¨âÂI¤Wªº½uªº¶°¦X¡A¡]¦]¦¹¥ô¦ó¨â¤¸©ÊªºÃö«Y³£¥i¥H¥Î¹Ï§Î¨Óªí¥Ü¡A³o´N¬O¬°¤°»ò¹Ï§Î¾Ç¤§À³¥Î¦p¦¹¼sªx¡C¡^ Ä´¦p¦b¥|¦â°ÝÃDùØ¡A§â¨C¤@­Ó°Ï°ì·í¦¨¤@ÂI¡A¦pªG¨â­Ó°Ï°ì¬Û¾F«h¹ïÀ³ªº¨âÂI¶¡³s¤@±ø½u¡]¦p¤£¬Û¾F¡A«hµL½u¡^¡A«h n ­Ó°Ï°ì§Y¥i¥H¤@¹Ï§Îªí¥Ü¡A¦Ó¥B¦]¬°¦b¥|¦âªº°ÝÃDùØ¡A°Ï°ìªº¤j¤p¡A§Îª¬¡A¬Û¹jªº»·ªñµ¥µ¥³£©M°ÝÃD¨S¦³Ãö«Y¡A °ß¤@¦³Ãö«Yªº¬O¨â°Ï°ì¬O§_¬Û¾F¡A¦Ó³o¤@­ÓÃö«Yªí²{¦b§Ú­Ìªº¹Ï§ÎùØ¡C¦]¦¹¥H¹Ï§Î¥Nªí­ì¹Ï¡A¨Ã¨S¦³¥¢¥h¥ô¦ó»ù­È¡C ­ì¨Óªº°ÝÃD¤]¥i§ï¦b¹Ï§Î¤W°Ý¡G¦pµ¹¨C¤@ÂIµÛ¦â¡A¦³½u¬Û³sªº¨âÂI¤£±o¦P¦â¡A¥|ºØÃC¦â°÷¤£°÷¡H

¦]¬°¦b­ìÃD¤¤¡A¯È¤Wªº¨â­Ó°Ï°ì¤£·|¤¬¥æ¡F¦]¦¹¤Æ¬°¹Ï§Î«á¡A¤]¤@©w¥i¥H¨Ï½u©M½u¶¡¤¬¤£¬Û¥æ¡A³o¼Ëªº¹Ï§Î¥s°µ¥­­±¹Ï¡C ¦³ªº¹Ï§ÎÁöµM¦³¨â½u¬Û¥æ¡]¹Ï¤@¡^¡A¦ý­Y´«¤@ºØµeªk¡]¹Ï¤G¡^´N¥i¤£¬Û¥æ¡A¦Ó½uªº¶°¦X¤£ÅÜ¡A«h¤]ºâ¬O¥­­±¹Ï¡C



¹Ï¤@



¹Ï¤G

¦ý¦p¹Ï¤T©M¹Ï¥|ªº¹Ï§ÎµL½×«ç»òµe¡A³£¤@©w¦³½u¬Û¥æ¡A¬G¤£¬O¥­­±¹Ï¡C



¹Ï¤T



¹Ï¥|

§Ú­Ì«ç¼Ë¤À¿ë¨º¨Ç¬O¥­­±¹Ï¡A¨º¨Ç¤£¬O©O¡HKoratowski ÃÒ©ú¤F¡A¦pªG¤@­Ó¹Ï§Îùؤ£§t¹Ï¤T©Î¹Ï¥|«h¬°¥­­±¹Ï¡A¤Ï¤§«h¤£¬O¥­­±¹Ï¡C¬Ý¡I³o¬O¤@­Ó¦hº}«Gªº©w²z¡A¼Æ¾Çªº¬ü´N¦b³o¨Ç¡u¥©¡v©M¡u§®¡v¤W¡C

¤@­Ó¹Ï§Î¦pªG¬O¥­­±¹Ï¡A«h¥|ºØÃC¦â¤@©w°÷µÛ¦â¡F¦pªG¤£¬O¥­­±¹Ï«h¤@©w¤£°÷¡Cªñ¤G¤Q¦~¨Ó²Õ¦X¾Ç¤W¥t¦³¤T¤jºÃ®×³Q¯}Àò¡C ²Ä¤@¬O¬y¶Ç¤Fªñ¤G¦Ê¦~ªº Euler ¦b©Ô¤B¤è°}¤Wªº²q´ú³QÃÒ¬°«D¡C²Ä¤G¬O¤]¦³¤@¦Ê¦h¦~¾ú¥vªº¡uKirkman ¤k¾Ç¥Í°ÝÃD¡v³QÃÒ¦³¸Ñ¡A¥ý»¡«eªÌ¡C

¤@­Ó§Ç (order) ¬° n ªº©Ô¤B¤è°}¬O¤@­Ó n x n ªº¤è°}¡A¨C¤@¦æ¨C¤@¦C©Ò§tªº¤¸¯À³£ºc¦¨ $\{1,\cdots,n\}$ ³o­Ó¶°¦X¡C ¦p¹Ï¤­©M¹Ï¤»¬O¨â­Ó§Ç¬°¤Tªº©Ô¤B¤è°}¡G

\begin{displaymath}
\begin{array}{ccc}
1&2&3\\
2&3&1\\
3&1&2\\
&\mbox{{\fontf...
...tfamily{cwM2}\fontseries{m}\selectfont \char 253}}&
\end{array}\end{displaymath}

¦p§â¹Ï¤­ªº¤è°}Å|¦b¹Ï¤»ªº¤è°}¤W¡AµM«á°á¥X¨C¤@®æ¤º¤W¤Uªº¨â­Ó¤¸¯À¡A§Ú­Ìµo²{ (1,1), (1,2), (1,3),¡K,(3,3) ¤EºØ·f°t¦U³£¥X²{¤@¦¸¡A¦³³o¼Ë©Ê½èªº¨â­Ó©Ô¤B¤è°}§Ú­ÌºÙ¬°¤¬¬Û¥¿¥æ¡C

·í n ¤j©ó¤@®É Euler µo²{¡A°£¤F n ¬O 4k+2¡Ak=0,1,2,¡K ³o¤@«¬¼Æ¦r¥~¡A¥¿¥æªº©Ô¤B¤è°}³£¦s¦b¡C ©ó¬O¥L²q´ú·í n=4k+2¡Ak=0,1,2,¡K ®É¨S¦³¥¿¥æªº©Ô¤B¤è°}¦s¦b¡C¦b¤G¤Q¥@¬öªì¸­¡A¦³¤@­Ó¤H§â©Ò¦³§Ç¬°¤»ªº©Ô¤B¤è°}³£¦C¥X¸ÕµÛ·f°t¡AªGµM§ä¤£¨ì¤¬¬Û¥¿¥æªº¨â­Ó¡A§ó¼W¥[¤F Euler ²q´úªº¥i¾a©Ê¡C

¬ù¤G¤Q¦~«e¡A¨â­Ó¦L«×¤H Bose ©M Shrikhande ©M¤@­Ó¬ü°ê¨Ð Parkor ¤À§O§ä¨ì¤F§Ç¬°¤Qªº¥¿¥æ©Ô¤B¤è°}¡C ¤£¤[«á¥L­Ì¤SÄâ¤â¦X§@§ä¨ì¤F¤@­Ó¤èªk¥i¥H³y©Ò¦³ n=4k+2 ªº¥¿¥æ¤è°}¡A¥u­n n ¤j©ó 6¡A¹ý©³¦aºR·´¤F Euler ªº²q´ú¡C¥L­Ìªºµo²{¾Ú»¡¬O¯Ã¬ù®É³ø²Ä¤@¦¸¦bÀYª©¤W¥Zµo¦³Ãö¼Æ¾Çªº³ø¾É¡C

Kirkman ¤k¾Ç¥Í°ÝÃD¬O³o¼Ëªº¡G¦³ 6k+3 ­Ó¤k¾Ç¥Í¡A¨C¤Ñ¤T­Ó¤@±Æ¦a¥X¥h´²¨B¡C©Ò¥H¨C¤Ñ¨C­Ó¤H¦³¤G­Ó¦P±Æªº¦ñ«Q¡C ¦pªG§Ú­Ì§Æ±æ¨C¨â­Ó¤k¾Ç¥Í³£¦P±Æ¤@¦¸¡A«h³Ì¤Ö»Ý­n 3k+1 ¤Ñ¡C °ÝÃD¬O§_¤@©w¦³¤@­Ó±Æªk¦b 3k+1 ¤Ñ¤º¥ô¦ó¨â­Ó¤k¾Ç¥Í³£¦P±Æ¤@¦¸¡A¹Ï¤C¬O¤@­Ó k=1 ®Éªº±Æªk¡G


\begin{displaymath}
\begin{array}{cccc}
\mbox{{\fontfamily{cwM2}\fontseries{m}\s...
...
(456)&(258)&(267)&(249)\\
(789)&(369)&(348)&(357)
\end{array}\end{displaymath}

¹Ï¤C

¦³¤£¤Ö¤H¬°¤£¦Pªº k ­È°µ¥X¤F±Æªk¡A¦ý«X¥è«X¦{¥ß¤j¾Çªº³Õ¤h¯Z¾Ç¥Í Wilson ©M¥Lªº¾É®v Chauduri¡]¦L«×¤H¡^¦b1971¦~¦ê¤W¤F³Ì«áªº¤@Ãì¦ÓÃÒ©ú¤F Kirkman ¤k¾Ç¥Í°ÝÃD¹ï©Ò¦³ªº k ³£¦³¸Ñ¡C ¤@¦Ê¦h¦~¨Óªº²qºÃ¦Ü¦¹¹Ð®J¸¨©w¡C

©Ô¤B¤è°}°ÝÃD©M Kirkman ¤k¾Ç¥Í°ÝÃD¦b²Õ¦X¾Ç¤W³£ÄÝ©ó¥s°µ¡u¼Æ¾Ç³]­p¡vªº¤@ªù¾Ç°Ý¡C¼Æ¾Ç³]­p¤¤³Ì°ò¥»¦Ó¼sªxÀ³¥Îªº¤@ºØ¥s°µ¡u°Ï¶¡³]­p¡v¡C °²³]§Ú­Ì¦³¤@­Ó§t v ¤¸¯Àªº¶°¦X S¡C ¥t¥~¦³¤@­Ó§t b °Ï¶¡ªº±Ú F¡AF ±ÚùبC¤@°Ï¶¡³£¬O S ªº¤@­Ó k ¤¸¯Àªº¤l¶°¦X¡C¥B S ¤¤¥ô¤G¤¸¯À ³£¦b F ¤¤¥X²{©ó r ­Ó°Ï¶¡ùØ¡AS ¤¤¥ô¤G¤¸¯À³£¦P®É¥X²{©ó F ¤¤ £f ­Ó°Ï¶¡ùØ¡Aº¡¨¬³o¼Ë±ø¥óªº F ºÙ¬°¤@­Ó $(v,b,r,k,\lambda)$ °Ï¶¡³]­p¡C

¹Ï¤K¬O¤@­Ó (9,12,4,3,1) ªº°Ï¶¡³]­p¡G


\begin{displaymath}
\begin{array}{cccccc}
(123)&(145)&(168)&(179)&(249)&(467)\\
(256)&(278)&(348)&(357)&(369)&(589)
\end{array}\end{displaymath}

¹Ï¤K

S ùتº¤¸¯À¦b F ùؤ@¦@¥X²{¦h¤Ö¦¸¡H¦³¨â­Óµª®×¡GS ¦@¦³ v ¤¸¯À¡A¨C¤@­Ó¤¸¯À¥X²{ r ¦¸¡A¬G¦@¥X²{ vr ¦¸¡F¦ý¦P®É F ¦³ b °Ï¶¡¡A¨C¤@°Ï¶¡§t k ¤¸¯À¡A¬G¦@¥X²{ bk ¦¸¡A©Ò¥H vr=bk¡C

¦A°Ý S ùتº¤@¹ï¤¸¯À¦P®É¥X²{¦b F ùتº¤@­Ó°Ï¶¡¦@¦³¦h¤Ö¦¸©O¡H¤]¦³¨â­Óµª®×¡GS ¦@¦³ $\frac{v(v-1)}{2}$ ¹ï¤¸¯À¡A¨C¤@¹ï¥X²{ £f ¦¸¡A¬G¨ä¥X²{ $\frac{v(v-1)\lambda}{2}$ ¦¸¡F¦ý¦P®É F ¦³ b °Ï¶¡¡A¨C¤@°Ï¶¡§t $\frac{k(k-1)}{2}$ ¹ï¤¸¯À¡]k ¤¤¥ô¨ú¤G¡^¡A¬G¨ä¥X²{ $\frac{bk(k-1)}{2}$ ¦¸¡A¬G±o $v(v-1)\lambda=bk(k-1)$

¥H¤W¨â­Ó¤èµ{¦¡¬O¤@­Ó°Ï¶¡³]­p¥²»Ýº¡¨¬ªº±ø¥ó¡A¦ý¬O¤£¬O¥R¤À±ø¥ó©O¡HHanani¡]¥H¦â¦C¤H¡^ÃÒ©ú¤F·í k=3 ©Î 4 ®É¡A¥¦­Ì¬O¥R¤À±ø¥ó¡A¦Ó·í $k\geq5$ ®É«h§_¡C ·í $k\geq5$ ®É¡A¤°»ò¬O°Ï¶¡³]­pªº¥R¤À¥²­n±ø¥óÁÙ¬O¤@­ÓÁ¼¡C³q±`¥Î¨Óºc³y°Ï¶¡³]­pªº¤èªk¬O¡u¦³­­´X¦ó¡v¡A¡u®t¼Æ¶°¦X¡v¡A¡uGalois °ì²z½×¡vµ¥¡C

¤U­±§Ú­Ì¤¶²Ð²Õ¦X¾Ç¤W¨â­Ó¦³½ì¥B¦³¥Îªº©w²z¡C

¥@¬É¤W¥ô·N¿ï¤»­Ó¤H¡A¥H¤»ÂI¥Nªí¤§¡AµM«á°Ý¨C¨â­Ó¤H©¼¦¹¬O§_»{ÃÑ¡A¦pªG»{ÃÑ«hÅý¨âÂI¶¡¹F¤@½u¡A¦p¤£»{ÃÑ«hµL½u¡C «h¤U¦C¨âªÌ¥²¦³¤@¬°¯u¡G

(1)¬Y¤TÂI¶¡©¼¦¹¦³½u¡A (2)¬Y¤TÂI¶¡©¼¦¹µL½u¡C

¦pªG¿ï¤ñ¤»­Ó¤H¦h®É¡A¤]¥²©w·|¦³¥H¤Wµ²ªG¡]¦]¬°¥u­n¬Ý¨ä¤¤¥ô¤»ÂI¶¡ªº¹Ï§Î´N°÷¤F¡^¡A¦ý¿ï¤ñ¤»ÂI¤Ö®É¡A«h¨S¦³³oºØµ²ªG¡CÄ´¦p¹Ï¤E¤¤ªº¤­ÂI¬JµL¤TÂI©¼¦¹¶¡¦³½u¤]¨S¦³¤TÂI©¼¦¹¶¡µL½u¡G



¹Ï¤E

§Ú­Ì¤]¥i¥H§Q¥Î¥H¤Wªºµ²ªG°µ¤@­Ó¨â¤Hªº¹CÀ¸¡C¥ý¦b¯È¤Wµe¤U¤»¨¤§Îªº¤»³»ÂI¡AµM«á¨â¤H½ü¬y¦b³»ÂI¶¡³s½u¡A³s½u®É¥i¥H¥ô·N¥Î¤@¤ä¬õµ§©Î¤@¤äÂŵ§¡A½Ö¦b³s½u«á³y¦¨¤F¤@­Ó¤TÃä¦P¦âªº¤T¨¤§ÎªÌ¬°¿é®a¡C ®Ú¾Ú¥H¤Wµ²ªG¡A¦b©Ò¦³ªº½u³£³Q³s§¹«á¥²©w¦³¤@­Ó¦P¦â¤T¨¤§Î¥X²{¡]¥i¥H§â¬õ¦â¤T¨¤§Î·í¦¨¤TÂI¶¡©¼¦¹¦³½u¡AÂŦâ¤T¨¤§Î·í¦¨¤TÂI¶¡©¼¦¹µL½u¡^¡A¬G¥²©w¦³¤@¿é®a¡C

¼s¸qªºRamsey©w²z»¡¡G ²{¦³¤@­Ó N ÂIªº¶°¦X S¡B§â S ¤¤©Ò§t r ÂIªº¤l¶°¦X¤À¦¨¤¬¤£¬Û ¥æªº k ²Õ S1,¡K,Sk¡C³] l1,l2,¡K,lk ¬° k ­Ó¤£¤p©ó r ªº¼Æ¡A«h·íN¤£¤p©ó nr (l1,l2,¡K,lk)¡]«áªÌºÙ¬°¤@­Ó Ramsey ¼Æ¡^®É¡A¤U¦Cªº³¯­z¹ï©ó¬Y¤@­Ó i ¦Ó¨¥¡Ai=1,¡K,k, ¥²¬°¯u¡G

¡uS ¤¤¦³¬Y li ­Ó¤¸¯Àªº¶°¦X $X=\{x_1,\cdots,x_{l_i}\}$¡A¨ä¥ô·N r ÂIªº¤l¶°¦X³£¦b Si ³o¤@²Õ¤º¡C¡v

³o­Ó©w²z¦³ÂI¤£®e©öÁA¸Ñ¡A¦^¨ì­ì¨ÒÃD¡AS ¬O¤@­Ó N ÂIªº¶°¦X¡A©Ò¦³¤GÂIªº¤l¶°¦X¥i¤À¦¨¦³½u©MµL½uªº¨â²Õ (r=2,k=2)¡C l1=l2=3¡An2(3,3)=6¡A·í $n\geq6$ ®É¡]¨ÒÃD¤¤ n=6¡^¡A¥²¦³¤TÂI¨ä¤¤¥ô¨âÂI¶¡³£¦³½u©Î¥²¦³¤TÂI¨ä¶¡¥ô¨âÂI¶¡³£µL½u¡C

Ramsey ©w²z¬é»¡ Ramsey ¼Æ¤@©w¦s¦b¡A«o¤£§i¶D Ramsey ¼Æ¬O¦h¤Ö¡CÄ´¦p§Ú­Ìª¾¹D n2(3,4)=9, n2(4,4)=18, n2(4,5) ¥H¤W§Y¤£ª¾¹D¤F¡C

µÛ¦Wªº¼Æ½×®a©M²Õ¦X¾Ç®a Erdös ©M Turan¡]¬Ò¦I¤ú§Q¤H¡^¦b¥|¤Q¦~«e¬ã¨s¤@­Ó§Î¦¡¤W«Ü¤£¤@¼Ë¦ý¹ê½è¤W©M Ramsey ©w²z»á¦³Ãöªº¼Æ½×°ÝÃD¡G³]R¬°¥ô·N¤@­Ó¥¿¾ã¼Æ©Ò¦¨ªºµL­­¶°¦X¥B R ªº±K«×¤j©ó¹s¡A§Y¹ï¥ô·N n¡A

\begin{displaymath}\frac{\vert R\bigcap\{1,\cdots,n\}\vert}{n}>0\end{displaymath}

«hµL½× k ¦h¤j¡A¥L­Ì²q´ú R ¤¤¥²¦³¤@­Ó§t k ¤¸¯Àªººâ³N¯Å¼Æ¡CErdös ¥B´£¨Ñ¬üª÷¤@¥a¤¸µ¹¯à¸Ñ¥X¦¹ÃDªº¤H¡]¦b·í®É¤@¥a¤¸¬O Erdös ªº³Ì°ª¼úª÷¡A¨ä¥LÃD¥Ø¦Û¤­¤¸¦Ü¼Æ¦Ê¤¸¤£µ¥¡^¡C¤G¤Q¦~«á Roth ÃÒ©ú¦¹²q´ú¦b k=3 ®É¥¿½T¡A¦A¹L¤F¤Q¦~¤S¤@­Ó¦I¤ú§Q¤H Szemeredi ÃÒ©ú k=4 ¤]¦¨¥ß¡CSzemeredi ¹ï³o°ÝÃDÁæ¦Ó¤£±Ë¡A¤S­±¾À¤Q¦~¡A²×©óÃÒ©ú¤F Erdös-Turan ªº²q´ú¡A¹ï©Ò¦³ k ³£¥¿½T¡CÃÒ©ú«D±`Ác½Æ¡A¾Ú Erdös ±À³\¬°¤HÃþ¸£¤O©Ò¯à¹F¨ìªº·¥­­¡C

¨ä¦¸§Ú­Ì¤¶²Ð Hall ©w²z¡C§Ú­Ì­n§â n ­Ó¤k«Ä©M n ­Ó¨k«Ä°t¦¨»R¦ñ¡A§Ú­Ì°Ý¨C¤@­Ó¤k«Ä¨º´X­Ó¨k«Ä¦oÄ@·N±µ¨ü¬°»R¦ñ¡C³] S ¬°¨k«Äªº¶°¦X¡A«h¨C¤@­Ó¤k«Äªº¦^µª¬O¤@­Ó S ªº¤l¶°¦X¡C²{¦b§Ú­Ì­n¦b¨C¤@­Ó¤l¶°¦XùجD¥X¤@­Ó¤¸¯À¡]§Y¿ï¥X¤@¨k«Ä§@¸Ó¤k«Äªº¦ñ¡^¡A¦ý¬O n ­Ó¤l¶°¦X©Ò¬D¥Xªº¤¸¯À¥²»Ý¤£­«ÂС]¤@­Ó¨k«Ä¤£¯à§@¨â­Ó¤k«Äªº»R¦ñ¡^¡C°Ý¦b¤°»ò±¡§Î¤U¬D¿ï¥i¥H¦¨¥\¡C­º¥ý§Ú­Ì¬Ý¬Ý¦¨¥\ªº¥²­n±ø¥ó¡C¦pªG¦³¬Y k ­Ó¤l¶°¦XªºÁp¶°¨ä©Ò¥]§tªº¤¸¯À¤Ö©ó k «hÅãµM¬D¿ï¤£¯à¦¨¥\¡A¦]¬°§ä¤£¨ì k ­Ó¨k«Ä¤À°tµ¹³o k ­Ó¤k«Ä¡CHall ÃÒ©ú¤F³o­Ó¥²­n±ø¥ó¤]¬O¥R¤À±ø¥ó¡CHall ©w²z¦³¦UºØºA¦¡ªºªí²{¤è¦¡©M±ø¥ó²¤²§ªºÅܧΡA¥¦³QÀ³¥Î¦b§@·~¬ã¨sªº¤À¬£°ÝÃD¤W¡A¹q¸Ü¥æ´«ºô¸ôªº¾Þ§@¤W¤Î«Ü¦h¨ä¥L¦a¤è¡C

¤U­±§Ú­Ì¤¶²Ð¨â­Ó¹Ï§Î¾Ç¤Wªº¥¼¸ÑÃD¡A³o¨â­Ó°ÝÃD©M¥|¦â°ÝÃD´¿³Q¹Ï§Î¾Ç¤j®v Hardy ¦XºÙ¬°¹Ï§Î¾Ç¤W·í¤µ¤T¤jÃøÃD¡C

²Ä¤@­Ó°ÝÃD¬O°Ý¤@­Ó¹Ï§Î¬O§_§t¦³¤@­Ó Hamiliton °é¡A³o­Ó°éªº©w¸q§Ú­Ìµ¥¤@¤U¦Aµ¹¡C¥ý½Í¤@­Ó¦³Ãöªº¡A¦ý¤w¦b¤G¦Ê¦~«e³Q¸Ñ¨Mªº°ÝÃD¡C´N¬O¤@­Ó¹Ï§Î¬O§_¦³¤@­Ó Euler °é¡A³o¤]¬O¾ú¥v¤W²Ä¤@­Ó¹Ï§Îªº°ÝÃD¡C



¹Ï¤Q

Königsberg ³o­Ó°Ï°ì³Qªe¬y¹º¤À¬° A,B,C,D ¥|°Ï¡]¨£¹Ï¤Q¡^¡A¦³¤C®y¾ô·¾³q°Ï»Úªº¥æ³q¡C°Ý¯à§_±q¬Y¤@°Ï¥Xµo¡A¨C¤@®y¾ô¸g¹L¤@¦¸¥B¶È¤@¦¸¦Ó¦^¨ì­ì°Ï¡C

§â¨C¤@­Ó°Ï¥H¤@ÂIªí¥Ü¡A¨C¤@®y¾ô¥H¤@±ø½uªí¥Ü¡A«h±o¹Ï¤Q¤@¡C¦pªG±q¥ô¤@ÂI¥Xµo¡A¨C±ø½u¸g¹L¤@¦¸¥B¶È¤@¦¸¦^¨ì­ìÂI¡AºÙ¬°¤@­Ó Euler °é¡C



¹Ï¤Q¤@

»P¤@­ÓÂI¬Û±µªº½uªº¼Æ¥ØºÙ¬°¸ÓÂIªº«×¼Æ¡A«ÜÅã©úªº¡A¦pªG¦³¥ô¤@ÂI¥¦ªº«×¼Æ¬O©_¼Æ¡A«h Euler °é¤£¥i¯à¦s¦b¡CEuler ÃÒ©ú¤F³o¤@­Ó¥²­n±ø¥ó¤]¬O¥R¤À±ø¥ó¡C

¦pªG±q¤@ÂI¥Xµo¡A¨C¤@ÂI¸g¹L¤@¦¸¥B¶È¤@¦¸¦Ó¦^¨ì­ìÂIºÙ¬°¤@­Ó Hamilton °é¡C ¤@­Ó¹Ï§Î§t¦³Hamilton°éªº¥R¤À¥²­n±ø¥óÁÙ¬O¥¼ª¾¡C­ì«h¤W½u¶V¦h¡AHamilton°é¦s¦bªº¾÷·|¶V¤j¡C ¨ì²{¦b¬°¤î³Ì¦nªº¥R¤À±ø¥ó¬O¡G

1.¹Ï§Î¥²¶·¬°¤@³s±µ¹Ï§Î¡A§Y¨S¦³©t¥ß³¡¤À¡C

2.¦pªG¨C­ÓÂIªº«×¼Æ·Ó¤j¤p¦¸§Ç±Æ¦C¬°

\begin{displaymath}
d_1\leq d_2\leq\cdots\leq d_n\quad\mbox{({\fontfamily{cwM2}\...
...\mbox{{\fontfamily{cwM2}\fontseries{m}\selectfont \char 245})}
\end{displaymath}

«h d1 »Ý¤£¤p©ó 2¡A¥B¹ï©Ò¦³¤£¤j©ó n/2 ªº i¡A¤£¬O $d_i\geq i$¡A´N±o $d_{n+1-i}\geq n+1-i$¡C

²Ä¤G­Ó°ÝÃD¥s°µ¡uUlam ²q´ú¡v¡C¤@­Ó¹Ï§Îùث׼Ƭ° 1 ªºÂI¥s°µ²×ÂI¡C³]¹Ï§Î G ¤¤¦³ k ­Ó²×ÂI¡A¥O Gi ¬°±q G ¤¤®³¨«²Ä i ­Ó²×ÂI¤Î±µ¥¦ªº½u©Ò±o¤§¹Ï¡A±q G ·íµM«Ü®e©ö±o¨ì (G1, G2,¡K,Gk)¡C Ulam ²q´ú»¡±q (G1,G2,¡K,Gk)¡AG ¥i¥H³Q°ß¤@¨M©w¡C·í¹Ï§Î G ¬O¤@´Ê¡u¾ð¡v®É¡A§Y G ¤¤¥ô·N¨âÂI¥u¦³¤@±ø¸ô½u³s±µ¡]³o¸ô½u¥i¥H¸g¹L§OªºÂI¡^¡AUlam ²q´ú¤w³QÃÒ¬°¯u¡A¦ý¹ï¤@¯ëªº¹Ï§ÎÁÙ¬O¤@­Ó¥¼¸ÑÃD¡C

1.Marshall Hall, Jr.¡mCombinatorial Theory¡n,1967¡]»O¥_¥«·s¤ë¹Ï®Ñ¤½¥q¡^¡C
2.Frank Harary,¡mGraph Theory¡n,1971,Addison-wesley.

 
¹ï¥~·j´MÃöÁä¦r¡G
¡DRiemann°²³]
¡DFermat³Ì«á²q´ú
¡DEuler
¡D©Ô¤B¤è°}
¡DRamsey©w²z
¡DRamsey¼Æ
¡DErdos
¡D¥|¦â°ÝÃD

¦^­¶­º
 
¡]­Y¦³«ü¥¿¡BºÃ°Ý¡K¡K¡A¥i¥H¦b¦¹ ¯d¨¥ ©Î ¼g«H µ¹§Ú­Ì¡C¡^
EpisteMath

EpisteMath (c) 2000 ¤¤¥¡¬ã¨s°|¼Æ¾Ç©Ò¡B¥x¤j¼Æ¾Ç¨t
¦Uºô­¶¤å³¹¤º®e¤§µÛ§@Åv¬°­ìµÛ§@¤H©Ò¦³


½s¿è¡G§õ´ô¤Ñ ¢A ø¹Ï¡G²¥ßªY ³Ì«á­×§ï¤é´Á¡G4/30/2002