|
¦b´£¥X¡u¥Í¦¨¨ç¼Æ¡vªº¼Æ¾Ç©w¸q¤§«e¡A§ÚÌ¥ý¦Ò¼{´XÓ²³æªº±Æ¦C²Õ¦X°ÝÃD¡C
- [¨Ò a.1]¦Ò¼{«íµ¥¦¡
(1+ax)(1+bx)(1+cx)=1+(a+b+c)x+(ab+bc+ac)x2+abcx3
¦p±N a,b,c ¬Ý§@¥Nªí¤Tª«¥ó¡A¥¦ªº¥kÃä¬O¤@¦h¶µ¦¡¡A¨ä«Y¼Æ«ê¥Nªí¤F±N a,b,c §@²Õ¦Xªº¦UºØ¥i¯à¡C±`¼Æ¶µ 1 ªí¥Ü¦b¤Tª«¥ó¤¤¤@Ó³£¤£¨ú¡Fx ªº«Y¼Æ a+b+c ªí¥Ü¦b a,b,c ¤¤¨ú¤@Óªº¦UºØ²Õ¦X¡A§Y©Î¨ú a¡A©Î¨ú b¡A©Î¨ú c¡Fx2 ªº«Y¼Æ ab+bc+ac ªí¨ú¤GÓªº¦UºØ²Õ¦X¡Fx3 ¤§«Y¼Æªí¥Ü¤F¤TÓ¬Ò¨úªº°ß¤@¤èªk¡C¦b³oùØ¥i¯à²£¥Í¦UºØ±¡§Î¬O¥Î + ¸¹³s±µ¡A¦P®Éµo¥Í¤§¨Æ¥ó«h¥Î¼ªk¡]§Y²Å¸¹¨Ö¦C¡^ªí¥Ü¡C
- [¨Ò a.2]³]¦³ 5 Ó²y a,a,a,b,c¡A¨ä¤¤¤TÓ²y a §¹¥þ¤@¼Ë¡A«h«íµ¥¦¡
¨ä¤¤ xr ¤§«Y¼Æªí¥Ü¤F¿ï¨ú r Óªº¦UºØ¥i¯à²Õ¦X ()¡C
¦b±Æ¦C²Õ¦X°ÝÃD¤¤¡A¥[ªkì«h»P¼ªkì«h¬O¤j®a¼ôª¾ªº¨âÓªk«h¡C¥[ªkì«h¬OÁ¿¦p¤@¨Æ¥ó¥i¯àµo¥Í±¡ªp¦³ m ºØ¡A¥t¤@ºØ¨Æ¥ó¥i¯àµo¥Í±¡ªp¦³ n ºØ¡A«h³o¨âºØ¨Æ¥ó¨ä¤@µo¥Í±¡ªp¦³ m+n ºØ¡C¼ªkì«h¬OÁ¿¦p¤@¨Æ¥ó¥i¯àµo¥Í±¡ªp¦³ n ºØ¡A¥t¤@¨Æ¥ó¥i¯àµo¥Í±¡ªp¦³ m ºØ¡A«h³o¨â¨Æ¥ó¦P®Éµo¥Í±¡ªp¦³ nm ºØ¡C§Ú̦b¤W±¨â¨Ò¥Î¨ìªº¬O¤@ºØ²Å¸¹¹Bºâ¡A¥¦¿í±q³o¨âªk«h¡C¦b [¨Ò a.2]¡A¦]¤l
1+ax+a2x2+a3x3 ªí¥Ü¤F©Î¤£¨ú a¡A©Î¨ú¤@Ó a¡A©Î¨ú 2 Ó a¡A©Î¨ú¤TÓ a ªº¦UºØ±¡ªp¡F¦Ó¦b [¨Ò a.1] ¤¤¡A(1+ax)(1+bx) ªí¥Ü¤F¦pªG a,b ³Q¤¹³\¦P®É¿ï¨ú®É¥i¯à²£¥Í¤§¦UºØ±¡ªp¡C
¦b«Ü¦h³õ¦X¤¤¡A§ÚÌ¥u¹ï¨Æ¥óµo¥Í¥i¯à¤§Ó¼Æ¦³¿³½ì¡A¦Ó¤£¦b¥G¨Æ¥óµo¥Íªº¨ãÅé§Î¦¡¡C³o®É§ÚÌ¥i¥H¨ú¥Nªí¤£¦Pª«¥óªº²Å¸¹ a,b,c µ¥§¡¬° 1¡A¨Ò¦p¦b [¨Ò a.1] ¤¤¡A¥O a=b=c=1¡A«h
(1+x)(1+x)(1+x)=1+3x+3x2+x3
¨ä¤¤ xr ¤§«Y¼Æ¬°¦b¤TÓª«¥ó¤¤¨ú r Óªº²Õ¦X¼Æ¡C
- [¨Ò a.3] §ÚÌ©Ò¼ôª¾ªº¨â¶µ¤½¦¡
¤¤¤§ xr «Y¼Æ«ê¬O¦b n Ó¤¤¨ú r Ó²Õ¦X¼Æ¡C·íµM¦pªG r>n «h
.
²{¦b§ÚÌ´£¥X¡u¥Í¦¨¨ç¼Æ¡vªº¼Æ¾Ç©w¸q¡C
- ©w¸q
- ³]
¬O¤@¼Æ¦C¡A«h¨ç¼Æ
ºÙ¬°¼Æ¦C
¤§¡]´¶³q¡^¥Í¦¨¨ç¼Æ (ordinary generating function) ©Î²Õ¦X¥Í¦¨¨ç¼Æ (generating function for combination)¡C
¦b [¨Ò a.3] ¤¤¡A(1+x)n ¬O¼Æ¦C
¤§¥Í¦¨¨ç¼Æ¡C§Ú̬ݨìn±q n Óª«¥ó¤¤¨ú r Óªº²Õ¦X¼Æ°ÝÃD»P¨ä¥Í¦¨¨ç¼Æ (1+x)n ªº«Y¼Æ¦³¤@ºØ¹ïÀ³Ãö«Y¦s¦b¡C
- [¨Ò a.4]
³]¦³ n Óª«¥ó¡A¨Ã³] n(r) ¬O¥Ñ n Ó¤£¦Pª«¥ó¤¤¥i¥ô·N«½Æ¦a¨ú r Óª«¥ó¥Í¦¨¨ç¼Æªº²Õ¦X¼Æ
ì½sµù 1
¡C³oÓ²Õ¦X°ÝÃDªº¥Í¦¨¨ç¼Æ§Y¬O¡uxr ¤§«Y¼Æµ¥©ó n(r)¡v¤§¥Í¦¨¨ç¼Æ¡C¹ï¤@Óª«¥ó¨Ó»¡¡A§ÚÌ¥i¥H¤£¿ï¨ú¡A¿ï¨ú¤@¦¸¡A¿ï¨ú¤G¦¸µ¥µ¥¡A¨ä¤èªk¥i¥Î¦¡¤l
ªí¥Ü¡C¹ï²Ä¤GÓ¡A²Ä¤TÓµ¥ª«¥ó¤]¦³¦P¼Ë§@ªk¡C¬G¨ä¥Í¦¨¨ç¼Æ¬O
§ÚÌ¥²¶·±N¥¦¼g¦¨¼Ð·Ç§Î¦¡¡C¦]¬°
¬G
§Ú̱o
- [¨Òa.5]
³] n(r) ¬O¥Ñ n Ó¤£¦Pª«¥ó¤¤¥i¥ô·N«½Æ¦a¨ú r Ó¡A¨Ã¦b¨C¤@¿ï¨ú¤¤¡A¨CÓª«¥ó¥²¶·¦Ü¤Ö¥]§t¤@¦¸ªº²Õ¦X¼Æ
ì½sµù 2
¡C¼Æ¦C {n(r)} ªº¥Í¦¨¨ç¼Æ¬O
¬G±o
¡CÅãµM¦pªG r<n¡A¥»°ÝÃDµL¸Ñ¡C
²³æ±À¼s¤Wz°ÝÃD¡AY¦b¨C¤@¿ï¨ú¤¤¨CÓª«¥ó¥²¶·¦Ü¤Ö¿ï¨ú q ¦¸¡A«h
¤@¯ë±Æ¦C²Õ¦X°ÝÃD¥i¥HÂk¯Ç¦¨±N²y©ñ¤J²°¤¤ªº°ÝÃD¡C¨ä¤¤¥i±N²y»P²°¤l¬Ý¦¨¥i°Ï¤Àªº©Î¤£¥i°Ï¤Àªº¡A¦Ó¨C¤@²°¤l¤S¥i³Q¤¹³\©ñ³Ì¦h¤@Ó²y¡A©Î¶W¹L¤@Ó²y¦Ó²£¥Í¦UºØ±¡ªp¡C²Õ¦X°ÝÃD¥i¬Ý¦¨±N¤£¥i°Ï¤Àªº²y©ñ¤J¥i°Ï¤Àªº²°¤¤¤§°ÝÃD¡C¨Ò¦p [¨Ò a.4] ªº°ÝÃD¬Û·í©ó·Q¨D±o±N r Ó¬Û¦Pªº²y¡A¥i¥ô·N«½Æ¦a©ñ¤J n Ó¤£¦P²°¤¤¤§¤èªkӼơC[¨Ò a.5] ªº°ÝÃD¬Û·í©ón¨D¥X±N r Ó¬Û¦Pªº²y©ñ¤J n Ó¤£¦P²°¤¤¤§¤èªkӼơA¨ä¤¤¨C¤@²°¥²¶·¦Ü¤Ö©ñ¤@Ó²y¡C©ñ²y¤J²°ªº¦UºØ±¡ªp¥i¦Cªí¦p¤U¡G
|
a |
b |
c |
d |
²y |
¤£¥i°Ï¤À(r) |
¥i°Ï¤À(r) |
¥i°Ï¤À(r) |
¤£¥i°Ï¤À(n) |
²° |
¥i°Ï¤À(n) |
¥i°Ï¤À(n) |
¤£¥i°Ï¤À(n) |
¤£¥i°Ï¤À(r) |
¨å«¬°ÝÃD |
²Õ¦X |
±Æ¦C |
¶°¦X¤§¤À³Î |
¾ã¼Æ¤§¤À¸Ñ |
¨ä¤¤ n ©Î r ªí¥Ü²°¤lªºÓ¼Æ¡A©Î²yªºÓ¼Æ¡C¤U±§Ú̱N§Q¥Î¥Í¦¨¨ç¼Æªº¤èªk°Q½×³o¥|Ãþ°ÝÃD¡C
- [¨Ò a.6]
³]±N¬Û¦Pªº²y©ñ¸m©ó n Ó¤£¦P²°¤¤¡A¨ä¤¤¨C¤@²°¦Ü¤Ö©ñ q Ó²y¡A¨Ã¦Ü¦h©ñ q+z-1 Ó²y¡C¦¹°ÝÃD¤§¥Í¦¨¨ç¼Æ¬O
¨Ï°ÝÃD¨ãÅé¨Ç¡C³]¦³¥|¤HÂY»ë¡A¨C¤H¦UÂY¤@¦¸¡A°Ý·í©Ò±oÂI¼Æ¤§©M¬° 17 ®É¦@¦³¦h¤ÖºØ¥i¯à¤è¦¡¡C¥|¤H¥i¬Ý§@¥|Ó¬Û²§ªº²°¤l¡A17 ÂI¥i¬Ý§@ 17 Ó¬Û¦Pªº²y¡C³o°ÝÃD¬O·í n=4,r=17,q=1,z=6 ¤§¯S§O±¡ªp¡C¬Gµª®×¬°
®i¶}¦¡¤¤ x13 ¶µ¤§«Y¼Æ¡A§Y¦@ 104 ºØ¡C
¤W±§Ú̧Q¥Î²Õ¦X¥Í¦¨¨ç¼Æ¨D¸Ñ¤F¤@¨Ç²Õ¦X°ÝÃD¡CÅãµM²Õ¦X¥Í¦¨¨ç¼Æ¨Ã¤£¾A¥Î©ó±Æ¦C°ÝÃD¡C¨Ò¦p³] a,b ¬°¨âª«¥ó¡A¨ä¥þ±Æ¦C¬O {ab,ba} ª½±µÀ³¥Î¤W±¨D²Õ¦X°ÝÃDªº¤èªk¡A§ÚÌ¥²¶·¦³
(1+ax)(1+bx)=1+(a+b)x+(ab+ba)x2
¦¹¦¡¦b§Ú̼ôª¾ªº¼Æ¾Ç¹Bºâªk«h¤¤ÅãµM¤£¦¨¥ß¡C¦ý¦b¨D±Æ¦C¼Æ°ÝÃD¤¤¡A§Ṳ́´µM¥i¥H«O¯d¤W±¥Î¨ìªº«ä¦Ò¤èªk»P¨BÆJ¡A¥un±N´¶³q¥Í¦¨¨ç¼Æ¥Î©Ò¿×«ü¼Æ¥Í¦¨¨ç¼Æ¨Ó¥N´À¡C
- ©w¸q
- ³]
¬O¤@¼Æ¦C¡A«h¨ç¼Æ
ºÙ¬°
¤§«ü¼Æ¥Í¦¨¨ç¼Æ (exponential generating function) ©Î±Æ¦C¥Í¦¨¨ç¼Æ (generating function for permutation)¡C
- [¨Ò b.1]
³] p(n,r) ¬°¦b n Óª«¥ó¤¤µL«½Æ¦a¨ú r Óªº±Æ¦C¼Æ¡C¦]¬°
(1+x)n ¬O¼Æ¦C
¤§±Æ¦C¥Í¦¨¨ç¼Æ¡CÅãµM r>n¡A§Ú̦³ p(n,r)=0¡C§Ú̪`·N¨ì³o°ÝÃD¬Û±`©ó¡u±N r Ó¤£¦Pªº²y©ñ¸m©ó n Ó¤£¦P²°¤¤¡vªº°ÝÃD¡A¨ä¤¤¨C²°³Ì¦h©ñ¸m¤@Ó²y¡C
- [¨Ò b.2]
¦³ p+q Óª«¥ó¡A¨ä¤¤ p Ó¬°¬Û¦P¡Aq ӥ笰¬Û¦P¡A¨ú¥þ±Æ¦C¡C¦¹°ÝÃD¬Û·í©ó p+q ¬Û²§¤§²y©ñ¸m©ó¨â²§²°¤¤¡A²Ä¤@²°«ê¦n©ñ p Ó²y¡A²Ä¤G²°«ê¦n©ñ q Ó²y¡C¨ä±Æ¦C¥Í¦¨¨ç¼Æ
±o¨ä±Æ¦C¼Æ¬O
¡C¦¹¬°¤j®a©Ò¼ôª¾ªº¡C
¨ãÅé¤@¨Ç¡A¥O a,a,a,b,b ¬°¤ª«¥ó¡A¨ä¤¤¤Tª«¬Û¦P¡A¤Gª«¬°¬Û¦P§@±Æ¦C¡C¹ï a ¨¥¥i¥H¤£¿ï¨ú¡A¨ú 1 Ó¡A¨ú 2 өΨú 3 Óµ¥¡C¹ï b ¨¥¥i¥H¤£¿ï¨ú¡A¨ú 1 өΨú 2 Óµ¥¡C¨ä±Æ¦C¥Í¦¨¨ç¼Æ¬°
¥Ñ¦¹±o¦b a,a,a,b,b ¤¤§@ 4 ӱƦC¤§Ó¼Æ¬°
¡C
- [¨Ò b.3]
¦b n Ó¬Û²§ª«¥ó¤¤§@¥i¥H¥ô·N«½Æ¤§±Æ¦C¡C¨ä±Æ¦C¥Í¦¨¨ç¼Æ¬°
¬G±o¦b n Ó¬Û²§ª«¥ó¤¤¨ú r Ó§@¥i¥H¥ô·N«½Æ¤§±Æ¦C¼Æ¬° nr¡C
-
- [¨Ò b.4]
±N¾ã¼Æ 0,1,2,3 ¨ú¨Ó§@ r ¦ì¼Æ¦r¡A¨Ã³] p(r) ¬O¦b¨C¤@¼Æ¦r¤¤ 1,2 »P 3 ¨C¤@Ӧܤ֥X²{¤@¦¸¤§ r ¦ì¼Æ¦rӼơA¹ï©ó¾ã¼Æ 0 ¦Ó¨¥¥i¥H¤£¨ú¡A¨ú¤@Ó¡A¨ú¤GÓ¡K¡Kµ¥µ¥¡A¦¹¤èªk¥i¥Î¦¡
ªí¥Ü¡C¹ï©ó 1,2,3 ¨CÓ¦Ó¨¥¡A«h¥²¶·¦Ü¤Ö¨ú¤@Ó¡A¦¹¤èªk¥i¥Î¤U¦¡
ªí¥Ü¡C¬G¼Æ¦C {p(r)} ¤§±Æ¦C¥Í¦¨¨ç¼Æ¬°
¦]¦¹
¡C
- [¨Ò b.5]
±N r Ó¤£¦Pªº²y©ñ¤J n Ó¤£¦Pªº²°¤¤¡A¨C²°¦Ü¤Ö©ñ¤@Ó¡C¥»°ÝÃDªº±Æ¦C¥Í¦¨¨ç¼Æ¬°
¬G±o©Ò¨D¤§±Æ¦C¼Æ¬°
ÅãµM¦pªG r<n¡A¥»°ÝÃD«h¨S¦³¸Ñ¡C
²{¦b§Ú̲µu°Q½×²Ä¤TÃþ¦³Ãö¶°¦Xªº¤À³Î°ÝÃD¡C¤@¶°¦X¤§¤À³Î¬O±N¦¹¶°¦Xªí¹F¦¨¨ä½Ñ¨â¨â¤£¬Û¥æ¤§¤l¶°¦Xªº¨Ö¶°¡C¤À³Î¤¤ªº¨C¤@¤l¶°¦XºÙ¬°¤@Ãþ¡C¨Ò¦p¦b¤@¯Z¾Ç¥Í¤¤¡A«ö¦~ÄÖ¤À²Õ«K¬O¤@Ó¯Z¯Åªº¤À³Î¡A¦P¦~ªº¾Ç¥Í«K§Î¦¨¤F¤@Ãþ¡C
- [¨Ò c.1]³]¬Y¤@¶°¦X¦³ r Ó¤¸¯À¡A¨Ã³] ¡A±N³o¶°¦Xªí¹F¦¨ n Ó«DªÅ¤l¶°¦X¤§¤À³Î¬Û·í©ó±N r Ó¥i°Ï¤Àªº²y©ñ¸m©ó n Ó¤£¥i°Ï¤Àªº²°¤¤¡A¨ä¤¤¨C²°¦Ü¤Ö§t¦³¤@²y¡CÅãµM¦pªG r<n¡A«h¥»°ÝÃD¨S¦³¸Ñ¡C±N r Ó¤¸¯Àªº¶°¦X¤À³Î¦¨ n Ó«DªÅ¤l¶°¦Xªº¤èªk¼Æ¬O¥Î S(n,r) ªí¥Ü¡A¦b¼Æ¾Ç¤W¬O¤@Ó«Ü«n¼Æ¦r¡AºÙ¬°²Ä¤GÃþ Stirling ¼Æ¡A¥»¨Ò»P [¨Ò b.5] ¤£¦P³B¬O±N²°¤l¬Ý¦¨¬Û¦P¤F¡A¬G±o
¦pªG¦b¤À³Î®É¤¹³\¦³ªÅÃþ¦s¦b¡A«h·í ®É¡A¥¦ªº¤èªk¼Æ¬O
·í r<n ®É¡A¨ä¤èªk¼Æ¬O
³Ì«á§Ṳ́¶²Ð¤@¨Ç¾ã¼Æ¤À¸Ñªº°ÝÃD¡C¤@ºØ¾ã¼Æ n ªº¤À¸Ñ¡A¬O¤@ºØ±N n ªí¹F¦¨¾ã¼Æ©Mªº¤èªk¡G
¦]¶È¬O³Q¥[¼Æ¦¸§Ç¤£¦Pªº©M¬O¬Ý§@¬Û¦Pªº¤À¸Ñ¡A§ÚÌ¥i¥H°²©w
¡K
¡C¨C¤@³Q¥[¼Æ ai ºÙ¬°³o¤À¸Ñªº¤@Ó³¡¤À¡C¤@ºØ¾ã¼Æ n ªº¤À¸Ñ¦¨ r ³¡¥÷ªº©M¬Û·í©ó±N n Ó¬Û¦Pªº²y©ñ¸m©ó r Ó¬Û¦Pªº²°¤¤¡]¬°¤F²ßºD¤W¥Îªk¡A§Ú̥洫¤F n »P r ©Ò¥Nªíªº·N¸q¡^¡C¦]²y¬O¬Ý§@¤£¥i°Ï¤Àªº¡A§Ú̻ݥβզX¥Í¦¨¨ç¼Æ±´°Q¦¹Ãþ°ÝÃD¡C
- [¨Ò d.1]
¹ï¾ã¼Æ§@¤À¸Ñ¡A¨ä¨C¤@³¡¥÷¤£±o¶W¹L r¡A¦b¨ä¤À¸Ñ¤§³¡¥÷¤¤¡A¾ã¼Æ 1 ¥i¤£¥X²{¡A©Î¥X²{ 1 ¦¸¡A©Î¥X²{ 2 ¦¸¡K¡Kµ¥µ¥¡A¨ä¤èªk¥i¥Î¦¡¤l
ªí¥Ü¡C¦P¼Ë¾ã¼Æ 2 ¥i¤£¥X²{¡A©Î¥X²{ 1 ¦¸¡A©Î¥X²{ 2 ¦¸¡A¡K¡Kµ¥µ¥¡A¨ä¤èªk¥i¥Î¦¡
ªí¥Ü¡C¨Ì¦¹Ãþ±À¡A¹ï¾ã¼Æ r ¦P¼Ë¥i¤£¥X²{¡A©Î¥X²{ 1 ¦¸¡A©Î¥X²{ 2 ¦¸¡A¡K¡Kµ¥µ¥¡A¨ä¤èªk¥i¥Î¦¡
ªí¥Ü¡A¬G¾ã¼Æ¤§³¡¥÷¤£¶W¹L r ¤§¤À¸Ñ¤§¥Í¦¨¨ç¼Æ¬O
¤W¦¡®i¶}¦¡¤¤ xn ¤§«Y¼Æ«K¬O¾ã¼Æ n ¤§³¡¥÷¤£¶W¹L r ªº¤À¸ÑӼơCÅãµM¦pªG ¡A¦b¥ô·N n ªº¤À¸Ñ¤¤³£¤£·|¥X²{¤j©ó r ªº³¡¥÷¡A¬G¥¦´N¬O©Ò¦³¾ã¼Æ n ¤§¤À¸Ñ¤§Ó¼Æ¡C
- [¨Ò d.2]
¥ô·N¤@ºØ¾ã¼Æ¤§¤À¸Ñ§¡¥i¥ÎFerrers ¹Ï¥Ü¨Óªí¥Ü¡A³] n=14¡A«h§Ú̦³¤U±¨âºØ 14 ªº¤À¸Ñ©M»P¨ä¹ïÀ³ªº Ferrers ¹Ï¥Ü¡G
¨ä¤¤¦æ¼Æªí¥Ü³¡¥÷¤§Ó¼Æ¡A³Ì¤jªº¦C¼Æªí¥Ü³Ì¤jªº³¡¥÷¡C¦pªG§Ú̱N¤W¨â¹Ïªu¹ï¨¤½uÂàºP¡A¥ª¥k¨â¹Ï«K¤¬´«¦ì¸m¡C³oºØ¤¬´««Ø¥ß¤F¤@ºØ³¡¥÷¤£¶W¹L r ªº¤À¸Ñ»P³¡¥÷¤§Ó¼Æ¤£¶W¹L r ªº¤À¸Ñ¶¡¤@¤@¹ïÀ³Ãö«Y¡A¬G±o¡G¤@¾ã¼Æ¤§³¡¤À¤£¶W¹L r ¤§¤À¸ÑӼƵ¥©ó³¡¥÷ӼƤ£¶W¹L r ªº¤À¸ÑӼơC
§Q¥Î [¨Ò d.1] ¤§µ²ªG§Ú̱o¨ì¤@¾ã¼Æ¤§«ê¦³ r Ó³¡¥÷¤§¤À¸Ñ¤§¥Í¦¨¨ç¼Æ¬O
- [¨Ò d.3]
§Q¥Î Ferrers ¹Ï¥Ü¶¡ªºÂàºP¹ïÀ³Ãö«Y¡A§ÚÌÁÙ¥i¥H±o¨ì¦p¤Uµ²½×¡G¤À¸Ñ¤@Ó¾ã¼Æ n ®É¡A¥H r ¬°³Ì¤j³¡¥÷ªº¤À¸Ñ¤èªk©M¥H r ¬°³¡¥÷Ӽƪº¤À¸Ñ¤èªk¤@¼Ë¦h¡C¬G±o¾ã¼Æ¤§«ê¦³ r Ó³¡¥÷¤§¤À¸Ñªº¥Í¦¨¨ç¼Æ¬O
¦¹µ²ªG»P¥Ñ [¨Ò d.2] ©Ò±o§¹¥þ¤@¼Ë¡C
- [¨Ò d.4]
¦pªG ¡A«h xn ¦b
¤¤ªº«Y¼Æ¬O±N n ¤À¸Ñ¦¨©_¼Æ³¡¥÷ªº¤À¸ÑӼơF¦pªG n>2r+1¡A«h xn ªº«Y¼Æ¬O n ªº³¡¥÷¬O©_¼Æ¥B¤£¶W¹L 2r+1 ªº¤À¸ÑӼơC
¦pªG ¡A«h xn ¦b
¤¤ªº«Y¼Æ¬O±N n ¤À¸Ñ¦¨°¸¼Æ³¡¥÷ªº¤À¸ÑӼơF¦pªG n>2r «h xn ªº«Y¼Æ¬O n ªº³¡¥÷¬O°¸¼Æ¥B¤£¶W¹L 2r ªº¤À¸Ñ¤§Ó¼Æ¡C
¦pªG ¡A«h xn ¦b
¤¤ªº«Y¼Æ¬O¾ã¼Æ n ¤§³¡¥÷¦U¤£¬Û¦Pªº¤À¸ÑӼơF¦pªG n>r¡A«h xn ªº«Y¼Æ¬O n ¤§³¡¥÷¦U¤£¬Û¦P¥B¤£¶W¹L r ªº¤À¸ÑӼơC
¦]¬°§Ú̦³«íµ¥¦¡
¬G¤@¾ã¼Æ¤À¸Ñ¦¨³¡¥÷¨â¨â¬Û²§¤§Ó¼Æµ¥©ó¤À¸Ñ¦¨©_¼Æ³¡¥÷¤§Ó¼Æ¡C
- [¨Ò d.5]
«íµ¥¦¡
ªí¥Ü¥ô·N¾ã¼Æ§¡¥i°ß¤@¦aªí¥Ü¦¨ 2 ªº¾ªº©M§Î¦¡¡A¨ä¤¤¦U¶µ§¡¬Û²§¡C
¾ã¼Æ¤À¸Ñªº°ÝÃD±`¥H¨D¤@¦¸¤£©w¤èµ{¤§¾ã¼Æ¸ÑӼƧΦ¡¥X²{¡A¤U±«K¬O¤@Ó²³æªº¨Ò¡C
- [¨Ò d.6]
¨D¤@¦¸¤£©w¤èµ{ x+y+z=15 ¥Bº¡¨¬ ,, ¤§¥¿¾ã¼Æ¸Ñ¤§Ó¼Æ¡C
º¡¨¬¤W±±ø¥óªº¥¿¾ã¼Æ¸Ñ¤§Ó¼Æ¬O x15 ¦b¥Í¦¨¨ç¼Æ
¤¤ªº«Y¼Æ¡A¨äµª®×¬O 15¡C
§@¬°¥»¤å³Ì«áªº¤@Ó¨Ò¡A§Ú̧Q¥Î²Õ¦X°ÝÃD»P¨ä¥Í¦¨¨ç¼Æ¤§¹ïÀ³Ãö«YÃÒ©ú¤U±µÛ¦Wªº Euler «íµ¥¦¡¡G
¨ä¤¤¡A
º¥ý§ÚÌn¦³¤U±µ²ªG¡G
- [¨Ò d.7]
³] n ¬O¤@¥¿¾ã¼Æ¡A¥OE(n) ªí¥Ü±N n ¤À¸Ñ¦¨°¸¼ÆÓ³¡¥÷§¡¤£µ¥¤§¤À¸ÑӼơFF(n) ªí¥Ü±N n ¤À¸Ñ¦¨©_¼ÆÓ³¡¥÷§¡¤£µ¥¤§¤À¸ÑӼơA«h§Ú̦³
¤W¦¡¬O§Q¥Î Ferrers ¹Ï¥Ü©Ò²£¥Íªº¹ïÀ³¨ÓÃÒ©ú¡C³]¬Y¤@ n ¤§³¡¥÷¬Û²§¤§¤À¸Ñªº¹Ï¥Ü¦³¦p¥ª¹Ï¡]§Ú̥Π23=7+6+5+3+2 ¬°¨Ò¡^¡G
¥O b °O§@©³½u¤W¤è®ØӼơAd °O§@ 45¢X±×½u¤W¤è®ØӼơC³oùئ³¤TºØ±¡ªp¡G
- ¦pªG b<d¡A
«h©³½u¤W b Ó¤è®Ø¥i²¾¦Ü±×½u¤WºÝ¦p¥k¹Ï©Ò¥Ü¡C³o¼Ë n ¤§¤À¸Ñ¤¤³¡¥÷Ӽƫh´î¤Ö¤F¤@Ó¡A¥B¦U³¡¥÷¤´«O«ù¬Û²§¡C
- ¦pªG b=d¡A
«h©³½u¤è®Ø¤´¥i²¾¦Ü±×½u¤WºÝ¡A°ß¤@¨Ò¥~¬O±×½u©M©³½u¬Û¥æ¦p¤U±¥ª¹Ï¡G
¦b³o±¡ªp¤U¡A³o¤À¸Ñ¦³§Î¦¡
- ¦pªG b>d¡A
«h±×½u¤W¤è®Ø¥i²¾¦Ü©³³¡¦Ó¥O¤À¸Ñ¤§³¡¥÷Ó¼W¥[¤@ӨæU³¡¥÷¤´«O«ù¬Û²§¡A°ß¤@¨Ò¥~¬O±×½u©M©³½u¬Û¥æ¦p¤W±¥k¹Ï¥B b=d+1 ¦b³o±¡ªp¤U¡A³o¤À¸Ñ¦³§Î¦¡
·í
®É¡A¤W±¹ïÀ³¨Ï E(n) »P F(n) ¬Ûµ¥¡F·í
®É¡A«h k ¬O°¸¼Æ¨Ï E(n) ¤ñ F(n) ¦h¤@Ó¡Fk ¬O©_¼Æ¨Ï E(n) ¤ñ F(n) ¤Ö¤@Ó¡C¥»¨ÒÃÒ²¦¡C
¦^¨ì§Ṳ́W±´£¨ì¤§ Euler «íµ¥¦¡¡C¥¦ªº¥ªÃä¬O¤@µL½a¼¿n¡A«ê¬O¼Æ¦C {E(n)-F(n)} ªº¥Í¦¨¨ç¼Æ¡C¥Ñ [¨Ò d.7] §ÚÌÃÒ©ú¤F Euler «íµ¥¦¡¡C
¥Í¦¨¨ç¼Æ¦b¼Æ¾Ç¦U¤ÀªK¤Î¨ä¥¦¦U¾Ç¬ì¤¤¦³¼sªxÀ³¥Î¡A¥»¤å¶È´N¥¦¦b±Æ¦C²Õ¦X°ÝÃD¤WÀ³¥Î§@¤@²Ê²L¤¶²Ð¡C¦b³o¸Ì¡A¥Í¦¨¨ç¼Æ¬O¬Ý¦¨¤@¥N¼Æ¹ï¶H¡A§Ú̵L¶·ÅU¼{¥¦ªº¦¬ÀÄ©Ê¡A¨ä²z½×°ò¦½Ð°Ñ¾\°Ñ¦Ò¸ê®Æ4¡C¥Í¦¨¨ç¼Æ¦b·§²v½×¤¤À³¥Î¦b1¤¤¦³°Q½×¡A¶i¤@¨B¦³Ãö¾ã¼Æ¤À¸Ñªº¸ê®Æ¥i¦b2¤¤§ä¨ì¡C¦³Ãö¤@¯ë©Ê¥Í¦¨¨ç¼Æ¦b²Õ¦X¾Ç¤¤ªºÀ³¥Î½Ð°Ñ¾\3,5¡C
- 1. Feller, E.F., ¡mAn Introduction to Probability Theory and Its Application¡n, Vol.I, John Wiley & Sons, 1968.
- 2. Hardy, G. H. & Wright, E.M., ¡mAn Introduction to Theory of Numbers¡n, Oxford Univerdity Press, 1960.
- 3.Liu, C.L., ¡mIntroduction to Combinatorial Mathematics¡n, McGraw-Hill, 1968.
- 4. Niven, I, ¡mFormal Power Series¡n, Amer. Math. Monthly, 76 (1969), 871-889.
- 5. Riodan, J.,¡mAn Introduction to Combinatorial Analysis¡n, John Wiley & Sons, 1958.
|
|
¹ï¥~·j´MÃöÁä¦r¡G ¡D¥Í¦¨¨ç¼Æ ¡D²Ä¤GÃþStirling¼Æ
|