¡Dì¸ü©ó¼Æ¾Ç¶Ç¼½¤Q¤@¨÷¤G´Á | |||
Áº¸³X°Ý°O
C.T. Chong;Y.K. Leong
|
Áº¸ (Jean-Pierre Serre) 1926¦~¥Í©óªk°ê¡C¦b°ªµ¥®v½d¾Ç®Õ¬ãŪ¼Æ¾Ç¡C1954¦~¡A28·³®É¡A¥LÀò±o°ê»Ú¼Æ¾Ç¨ó·|ªº Fields ¼ú¡A³o¬O¼Æ¾Ç®aªº³Ì°ªºaÅA¡C¨â¦~«á¡A³Q¥ô©R¬°ªkÄõ¦è¾Ç°|ªº¥N¼Æ©M´X¦ó¾Ç±Ð±Â¡A¦b¨º¨à³sÄò¤j¬ù15¦~¥L¤@ª½¬O³Ì¦~»´ªº±Ð±Â¡C 1985¦~¤G¤ë¤G¤é¦Ü¤Q¤¤é¡A¥L³X°Ý·s¥[©Y°ê¥ß¤j¾Ç¼Æ¾Ç¨t¡A³o¦¸³X°Ý¬O¥Ñ¡uªk¡Ð·s¾Ç³N¥æ¬yp¹º¡v¸ê§U¡C¦b³X·s´Á¶¡¡AÁº¸±Ð±Â´N©w¸q©ó¦³Å骺¥N¼Æ¦±½uºtÁ¿¤F¨â¦¸¡A´N Ramanujan ¨ç¼ÆºtÁ¿¤@¦¸¡C¦¹¥~¡A¥L´£¨Ñ¤@³õ¨â¤p®Éªº°Q½×·|¡A½Í½× Faltings ¹ï Mordell ²q´úªºÃÒ©ú¡A©M¤@³õ¥Hµê¤G¦¸Å骺Ãþ¼Æ¬°¤º®eªº¾Ç³Nµoªí·|¡AÃD¥Ø¬O¡u ¡v¡C¦b1985¦~¤G¤ë¤Q¥|¤é¡A¥LÅý§Ú̧@¤F¤@¦¸³X½Í¡A»¡¨ì¥LªººØºØ¼Æ¾Ç¥Í²P©M¼Æ¾ÇÆ[¡C¤U±´N¬O³X½Í¥»¤å¡A¥Ñ C.T. Chong ©M Y.K. Leong ½s¼g¡A¨Ã¸gÁº¸®Õq¡C
°Ý¡G¤°»ò«P¨Ï§A¿ï¾Ü¼Æ¾Ç§@¬°§A¤@¥Íªº¨Æ·~¡H
µª¡G§Ú°O±o§Ú¶}©l³ßÅw¼Æ¾Ç¤j¬ù¬O¤C¡B¤K·³®É¡C¦b°ª¤¤®É¥N¡A§Ú±`±`°µ¤ñ§Ú°ª¦~¯Åªº°ÝÃD¡C ¨º®É§Ú¦í¦b Nimes «°¨Ñ¿¯ªº±H±J³B¡A¸ò¤ñ§Ú¦~ªøªº«Ä¤l¥Í¬¡¦b¤@°_¡A¥L̸g±`´Ût§Ú¡C¬°¤F°Q¦n¥LÌ¡A§Ú±`±`´À¥LÌ°µ¼Æ¾Ç§@·~¡C³o¸ò¨ä¥L¥ô¦óªº°V½m¤èªk¤@¼ËºÞ¥Î¡C
§Ú¥À¿Ë¬O¦ìÃľ¯®v¡]§Ú¤÷¿Ë¤]¬O¡^¡A¦o³ß·R¼Æ¾Ç¡C¦b¦oÁÙ¬O Montpellier ¤j¾ÇÃľǨtªº¾Ç¥Í®É¡A¯Â¬°¤F¦nª±¡A¦o¿ïפF¤j¤@·L¿n¤À¡A¨Ã³q¹L¤F¦Ò¸Õ¡C¦o¤p¤ß¦a«O¦s¤F·L¿n¤À½Ò¥»¡]¦pªG§Ú¨S°O¿ùªº¸Ü¡A¨º¬O Fabry ©M Vogt ©Ò¼gªº¡^¡C¦b§Ú¤Q¥|¡B¤·³®É¡A§Ú±`±`½¾\¡B¬ãŪ³o¨Ç®Ñ¡C³o´N¬O§Ú¾Ç²ß¾É¼Æ¡B¿n¤À¡B¯Å¼Æµ¥µ¥ªº¸g¹L¡]§Ú¬O¥Î§¹¥þ§Î¦¡¤Æªº¤èªk¾Ç²ß¢w¢w¤]´N¬O Euler ªº¤è¦¡¡G·í®É§Ú¨Ã¤£³ßÅw¡A¤]¤£¤F¸Ñ £`¡B£_¡^¡C¨º®É¡A§Ú¨Ã¤£ª¾¹D·í¼Æ¾Ç®a¥i¥H¹L¬¡¡C¤@ª½¨ì«Ü¤[¤§«á¡A§Ú¤~ª¾¹D¥ú¬O°µ¼Æ¾Ç¤]¦³¤H·|µ¹§AÁ~¤ô¡C §Ú³Ì¥ý·Q·íÓ°ª¤¤¦Ñ®v¡G¹ï§Ú¦Ó¨¥¡A¨º¬O«Ü¦ÛµMªº¡C¨º®É¡A§Ú19·³¡A§Ú³q¹L¦Ò¸Õ¶i¤J°ªµ¥®v½d¾Ç®Õ¡C ¤@¥¹¶i¤F°ª®v¡A·U²M·¡¬Ý¥X¨Ó±N¨Ó·Q·íªº¨Ã¤£¬O°ª¤¤¦Ñ®v¡A¦Ó¬O¼Æ¾Ç¬ã¨sªÌ¡C
°Ý¡G¬O§_¦³¨ä¥Lªº¬ì¥Ø§A´¿¸g·P¿³½ì¡AÄ´¦pª«²z©Î¤Æ¾Ç¡H
µª¡Gª«²z¾Ç¤£«ç»ò¦³¿³½ì¡A¦ý¤Æ¾ÇˬO«Ü¦³¿³½ì¡C§Ú»¡¹L¡A§ÚÂù¿Ë¬OÃľ¯®v¡A¦]¦¹¥L̦³³\¦h¤Æ¾ÇÃÄ«~©M¸ÕºÞ¡A¦b§Ú¤Q¤¡B¤»·³®É¡A°µ¼Æ¾Ç¤§·v¤]ª±¤F¤£¤Ö¤Æ¾Ç¹êÅç¡C§ÚÁÙŪ¤F§Ú¤÷¿Ëªº¤Æ¾Ç½Ò¥»¡]§Ú¤´«O¦s¨ä¤¤«Ü¦³½ìªº¤@¥»¡A¬O Jacques Duclaux ©Ò¼gªº¡mLes Colloides¡n¡^¡CµM¦Ó¡A¦bÀ´±o§ó¦hªº¤Æ¾Ç«á¡A§Ú¹ï¤Æ¾Ç¨º¨Ç¥é¼Æ¾Çªº¥~ªí·P¨ì¥¢±æ¡G¤@ªø¦êªº¦³¾÷¤Æ¦Xª«¡A¹³ CH4¡BC2H6µ¥¡A¥þ³¡¬Ý°_¨Ó³£¦³¨Ç¬Û¦ü¡C§Ú·Q¡A°²Y§A«D±oÀ³¥I¯Å¼Æªº¸Ü¡AÁÙ¬O¹çÄ@°µ¼Æ¾Çªº¯Å¼Æ¡I´N³o¼Ë¡A§Ú¥á¶}¤Æ¾Ç-¦ý¤£¬O¥þµM©ñ±ó¡G§Ú³Ì«á©M¤@¦ì¤Æ¾Ç®aµ²±B¡C
°Ý¡G¦b¾Ç¼Æ¾Çªº¹Lµ{¡A§A¬O§_¨ü¨ì¥ô¦ó¤@¦ì¾Ç®Õ¦Ñ®vªº¼vÅT¡H
µª¡G§Ú¥u¦³¤@¦ì«D±`¦nªº¦Ñ®v¡C³o¬O¦b Nimes ´NŪ°ª¤¤ªº³Ì«á¤@¦~(1943-1944)¡C¥L³Q¼ÊºÙ¬°¡u¤jÄG¤l¡v¡G¨º®É¯dÄG¤l¤HÁÙ¤£¦h¡C¥LÀY¸£«Ü²M·¡¡BÄY±K¡A¥Ln¨D¨C¤@Ó¦¡¤l©MÃÒ©ú³£n²M·¡¼g¤U¡C¬°¤F°Ñ¥[¥þ°ê¼Æ¾Çªº¡uÁ`ÄvÁÉ¡v¡A¥LÄY®æ°V½m§Ú¡C¦b¨ºÓÄvÁɤ¤¡A§Ú²×©óÀò±o¤Fº¼ú¡C
»¡¨ì¡uÁ`ÄvÁÉ¡v¡A¦b¦P¤@¦~(1944)¡A§Ú¤]¦bª«²zªºÄvÁɤW¸Õ¸Õ§Úªº¨¤â¡CÄv¸Õªº°ÝÃD¥þµM¬O¥H§ÚÀ³¸Óª¾¹D¡]¨Æ¹ê¤£µM¡^ªº¬Y¤@Óª«²z©w«ß¬°¨Ì¾Ú¡C©¯¹B±o«Ü¡A§Úı±o¥u¦³¤@±ø¦¡¤l²Å¦X¨ºÓ©w«ß¡C§Ú´N°²³]¥¦¬O¹ïªº¡A¨Ã¥B¥Î¾ã¤»¤p®Éªº®É¶¡¸Ñ³oÓ°ÝÃD¡C§Ú¬Æ¦Ü»{¬°§Ú·|±o¼ú¡C¤£©¯§Úªº¦¡¤l¬O¿ùªº¡A§Ú¤°»ò¤]¨S¦³±o¨ì¢w¢w¥»¸Ó¦p¦¹¡I
°Ý¡G¦bµo²{©w²z¹Lµ{¤¤¡AÆF·P¦³¦h«n¡H
µª¡G§Ú¤£ª¾¹D¡uÆF·P¡v¯u¥¿ªº·N«ä¬O¤°»ò¡C©w²z¡B²z½×¥H¦UºØ¦³½ìªº¤è¦¡§e²{¡C¦³®É¡A§A¥u¬O¤£º¡·N²{¦³ªºÃÒ©ú¡An§ä§ó¦nªº¡A¥H«KÀ³¥Î¨ì¤£¦Pªº±¡¹Ò¡C§Úªº¤@Ө嫬ªº¨Ò¤l¬O¡A¦b³B²z Riemann-Roch ©w²z¡]¤j¬ù1953¡^ªº®ÉÔ¡A§Ú§â¥¦¬Ý¦¨ Euler-Poincare ¥Ü©Ê¼Æ¡]§Ú¨º®É¨Ã¤£ª¾¹D Kodaira [¤p¥¨¹«Û] »P Spencer ¤w¸g¦³¦P¼Ëªº·Qªk¡^¡C §Ú²Ä¤@¥ó¤u§@¬OÃÒ©ú¥N¼Æ¦±½uªº±¡§Î¢w¢w¤@ºØ¤j¬ù¤@¥@¬ö«e¤w¸gª¾¹Dªº¨Ò¤l¡I ¦ý§Ú·Qn¤@ºØ¯S§O¤è¦¡ªºÃÒ©ú¡A·í§ÚµÛ¤â¥h§ä¥¦ªº®ÉÔ¡A§Ú°O±o§Úªá¤£¨ì¤@¡B¨âÓÄÁÀY´N±q¨º¨à±À¨ì¤Gºûªº±¡ªp¡]³oºØ±¡ªpè¥Ñ Kodaira §¹¦¨¡^¡C¤»Ó¤ë¥H«á¡A¤@¯ëªº±¡§Î¥Ñ Hirzebruch ÃÒ©ú¡A¨Ã¥B¦b¥LµÛ¦Wªº±Ð±Â´N¾ºtÁ¿µoªí¡C
³q±`¡A§A¤£¯uªº¬Oµw¸Iµwªº·Qn¸Ñ¨M¤@Ó¯S©wªº°ÝÃD¡C¬Û¤Ïªº¡A§A¤ß¤¤¦³¬Y¨Ç·§©À¡A§Aı±o³o¨ÇÆ[©À«Ü¦³¥Î¡A¦ý§A¤£¯u¥¿ª¾¹D¥¦Ì¬°¤°»ò¦³¥Î¡C©Ò¥H¡A§A¥|³BÁ@Á@¡A¸ÕµÛ¨Ï¥Î¥¦Ì¡C³o´N¹³¦³¤@¦êÆ_°Í¡A§A¹ïµÛ¤@¨Çªù¸Õ¸Õ¬Ý¡C
°Ý¡G§A¬O§_¸g¾ú¹L¡A¦b§Aµo²{¤@Ó°ÝÃD¤£¯à¸Ñ¨Mªº·í¨à¡A§â¥¦ÀÁ¸m¤@¨Ç®ÉÔ¡A¬ðµMÆF¥ú¤@°{¡A¸Ñµª¥X²{¤F?
µª¡G¬Oªº¡A·íµM³oºØ²{¶H¸g±`µo¥Í¡C¨Ò¦p¡A¤j¬ù¦b1950¦~¡A§Ú°µ¦PÛ¸s (homotopy group) ®É¡A§Ú¦Û¤v½T«H¡A¹ïµ¹©wªºªÅ¶¡ X¡AÀ³¸Ó¦s¦b¤@Ó¥iÁYªºÅÖºûªÅ¶¡ (fibre space)E¡A¥L¨ã¦³°ò©³ X¡F³o¼ËªºªÅ¶¡ªº½T¨Ï§Ú¡]À³¥Î Leray ªº¤èªk¡^¥i¥H¦b¦PÛ¸s©M Eilenberg-MacLane ªº¤W¦P½Õ¸s (cohomology group) °µ«Ü¦hpºâ¡C¦ýn¦p¦ó§ä¥X¥¦¡H§Úªá¤F¦n´XÓ¬P´Á¡]«D±`ªøªº®É¶¡¡A¨º®É§ÚÁÙ¬O¡K¡K¡^¤~µo²{ X ¤Wªº©Ò¦³ªº¡u¸ô®|¡v§Î¦¨ªºªÅ¶¡¨ã¦³§Ú»Ýnªº©Ò¦³ªº©Ê½è¢w¢w¬én§Ú´±§â¥¦¬Ý¦¨¡uÅÖºûªÅ¶¡ (fibre space)¡v¡A¦Ó§Ú½T¬O¦p¦¹¡C¦b¥N¼Æ©Ý¾ë¡A³o¬O°j¸ôªÅ¶¡ (loop-space) ¤èªkªº°_©lÂI¡A¦¹«á³\¦hµ²ªG«Ü§Ö±µ³s²£¥Í¡C
°Ý¡G§A³q±`¬O¤@¦¸¥u°µ¤@Ó°ÝÃD¡A©Î¬O¦P®É°µ¦n´XÓ°ÝÃD¡H
µª¡G¤j¬ù¤@¦¸°µ¤@Ó°ÝÃD¡A¦ý¤£Á`¬O¦p¦¹¡C¦Ó¥B§Ú¸g±`©]ùؤu§@¡]¦b¥bºÎ¯vª¬ºA¡^¡A¨Æ¹ê¤W¡A¨º®É§A¤£»Ýn¼g¤U¥ô¦óªF¦è¡A¦Ó±o¥H§ó¶°¤¤¤ß¤O¡A§ó¬°®e©ö§ïÅÜ¥DÃD¡C
°Ý¡Gª«²z¾Ç¦³«Ü¦h·N¥~ªºµo²{¡A¹³ X ¥ú¡B¦t©z®g½uµ¥µ¥¡C§A¦b¼Æ¾Ç¬O§_¦³¦P¼Ëªº¾D¹J¡H
µª¡G¯u¥¿ªº·N¥~«Ü¤Ö¡C¦ý¦³®É§A·|«ÜÅå³Yªºµo²{¡A¦³¨Ç§A¬°¬YºØ¥Øªº¦Ó§@ªº°Q½×¸I¥©¸Ñ¨M¤F¤£¦P¤è¦Vªº°ÝÃD¡FµL½×¦p¦ó¡A§ÚÌ´X¥G¤£¯à§â³oºØ±¡§ÎºÙ¬°¡u·N¥~¡v¡C
°Ý¡G¥N¼Æ´X¦ó©Î¼Æ½×ªº¤¤¤ß°ÝÃD¬O¤°»ò¡H
µª¡G§ÚµLªk¦^µª³oÓ°ÝÃD¡C§Aª¾¹D¡A¦³¨Ç¼Æ¾Ç®a¦³©ú½T¡Bªø»·ªºp¹º¡C¨Ò¦p¡A¹L¥h Grothendieck ¦b¥N¼Æ´X¦ó¦³³oºØ¤jp¹º¡F¥Ø«e Langlands ¦bªí²{½×¡]»P¼Ò¨ç¼Æ¡B¼Æ½×¦³Ãö¡^¤]¦³³oºØ¤jp¹º¡C§Ú±q¨S¦³³o¼Ëªº¤jp¹º¡A§Y¨Ï¬O¤p¤@ÂIªº¤]¨S¦³¡A§Ú¥u¬O°µ·í¤U«ê¦n·P¿³½ìªºÃD¥Ø¡C ¡]¥Ø«e¡A§Ú³Ì¦³¿³½ìªºÃD¥Ø¬Opºâ©w¸q©ó¦³Å骺¥N¼Æ¦±½uªºÂIªºÓ¼Æ¡C³o¬O¤@ºØÀ³¥Î¼Æ¾Ç¡G§A¨Ï¥Î§A¼ôª¾ªº¥N¼Æ´X¦ó©M¼Æ½×ªº¤u¨ã¡K¡K¦Ó§A¨Ã¨S¦³§¹¥þ¦¨¥\¡I¡^
°Ý¡G§A·Q¥N¼Æ´X¦ó©Î¼Æ½×¦b³Ìªñ¤¦~³Ì¤jªºµo®i¬O¤°»ò¡H
µª¡G³o¤ñ¸û®e©ö¦^µª¡CFaltings ¦b Mordell ²q´ú©M Tate ²q´úÃÒ©ú¬O§Úº¥ý·Q¨ìªº¡C §Ú¤]À³´£¤@´£ Gross-Zagier ¦b¤G¦¸¼ÆÅéÃþ¼Æ (class number) ªº¤u§@¡]³o¨Ç¤u§@¬O¥H¹L¥h Goldfeld ªº©w²z¬°°ò¦¡^¡A ¥H¤Î Mazur »P Wiles ¨Ï¥Î¼Ò¦±½u (modular curve) ±´°Q Iwasaua ²z½×ªºµ²ªG¡C ¡]§â¼Ò¦±½u©M¼Ò¨ç¼ÆÀ³¥Î¨ì¼Æ½×¬O«D±`¦³½ìªº¡G¤ñ¦p¡A §A¨Ï¥Î ¥h¬ã¨s ¡IÅãµM±q¨ºÓ¤è¦V·|±o¥X§ó¦hªºªF¦è¢w¢w¬Æ¦Ü¦³¤@¤Ñ¥i¯à±o¨ì Riemann °²³]ªºÃÒ©ú¡I¡^
°Ý¡G¦³¨Ç¬ì¾Ç®a¦b¬YÓ»â°ì§¹¦¨¤F¨M©w©Êªº¦¨´N¡A¤S«Ü§ÖÂà¨ì¥t¤@Ó»â°ì¡C§A¦b©Ý¾ë¾Ç§@¤F¤T¦~«á¤]§ï§@¨ä¥LªºªF¦è¡C³o¬O«ç»ò¦^¨Æ¡H
µª¡G³o¬O³sÄòªº¹Lµ{¡A¤£¬O¬ðµMªº§ïÅÜ¡A1952¦~¡A§Ú¼g§¹¦³Ãö¦PÛ¸sªº³Õ¤h½×¤å«á¡A´N¨ì´¶ªL´µ¹y¡A¦b¨º¨àºtÁ¿³oÓÃD¥Ø¡]¤Î¨äÄò½g¡uC-²z½×¡v¡^¡A¦P®É°Ñ¥[µÛ¦Wªº Artin »P Tate ¦X¿ìªºÃþÅé½× (class field theory) ªº¬ã°Q·|¡C
µM«á¡A§Ú¦^¨ì¤Ú¾¤¡ACartan ªº¬ã°Q·|¥¿¦b°Q½×¦h½ÆÅܨç¼Æ©M Stein ¬y§Î¡CÁ`µ²¬O Cartan-Oka ³Ìªñªºµ²ªG¦pªG¨Ï¥Î¤W¦P½Õ¸s©M§ô½× (sheaf) ªº¤èªk¨Ó°Q½×¡A·|§ó¦³®Ä²v¡A¨Ã¥B§ó²³æ¡C³o«ÜÅý¤H¦YÅå¡A§Ú¦b³oÓÃD¥Ø¤Wªá¤Fµu¼Èªº®É¶¡¡A§â Cartan ©w²zÀ³¥Î¨ì Stein ªº¬y§Î¡CµM¦Ó¡A¦h½ÆÅܫܦ³½ìªº¤@³¡¤À¬O¬ã¨s®g¼v¦h¼ËÅé (projective varieties)¡]¬Û¹ï©ó¥é®g (affine) ¦h¼ËÅé¢w¢w¥¦¹ï´X¦ó¦Ó¨¥¬O¦³¨Ç¯Ê³´¡^¡F©Ò¥H¡A§Ú¶}©l¨Ï¥Î§ô½×¨Ó±´°Q³o¨Ç½Æ®g¼v¦h¼ËÅé¡G³o¬O§Ú¬°¦ó¦b1953¦~±²¤J¥H Riemann-Roch ©w²z¬°¤¤¤ßªº¦UºØ°ÝÃD¡C¦ý¬O½Æ®g¼v¦h¼ËÅé¬O¥N¼Æ¦h¼ËÅé¡]©PÞm¨}ªº©w²z¡^¡A¦]¦¹¨Ï¥Î¸ÑªR¨ç¼Æ¨Ó¬ã¨s³o¨Ç¥N¼Æªº§÷®Æ¬O¦³ÂI¨à¤£¦ÛµM¡A¦]¬°³o¨Ç¸ÑªR¨ç¼Æ¥i¯à¦³³\¦h¥»½è©_²§ÂI (essential singularities)¡CÅãµM¡A¦³²z¨ç¼ÆÀ³¸Ó°÷¥Î¤F¢w¢w¨Æ¹ê¤W¤]¬O¦p¦¹¡C³o¨Ï§Ú¡]¤j¬ù1954¦~¡^¨«¶i¤F©w¸q¦b¥ô¦ó¥N¼Æ³¬Åé (algebraically closed field) ¤§¤Wªº©â¶H¥N¼Æ´X¦ó¡C¦ý¬°¦ón°²³]Åé¬O¥N¼Æ«Ê³¬¡H¦³Åé·|§ó¦³½ì¡A¦p Weil ²q´ú¥H¤Î½Ñ¦p¨ä¥Lªº¤@¨Ç°ÝÃD¡C±q³o¨à¨ì¼Æ½×ªº»â°ì¬O«Ü¦ÛµMªºÂàÅÜ¡K¡K³o¦h¤Ö¬O§Ú©Ò¿í´`ªº¸ô½u¡C
¥t¤@Ó¤u§@¤è¦V¨Ó¦Û§Ú©M Armand Borel ªº¦X§@¡C¥L±Ð§Ú³\¦h§õ¸s (Lie group) ªºª¾ÃÑ¡A¥L»{Ãѧõ¸sªº¤è¦¡Â²ª½»P²³¤£¦P¡C³o¨Ç¸s©M©Ý¾ë¡B¥N¼Æ´X¦ó¡B¼Æ½×¡K¡KªºÃöÁp§â§Ú°g¦í¤F¡C ¥BÅý§Ú¬°§AÁ|Ó¨Ò¡]¨º¬O§Ú¦b1968¦~¥ª¥k¤~¤F¸Ñªº¡^¡C
¦Ò¼{ ³Ì²³æªº¤@ÓÂ÷´²¤l¸s¡A¨º´N¬O £F= ¡C §ÚÌ¥i¥Hpºâ¥¦ªº Euler-Poincare ¥Ü©Ê¼Æ ¡A¥¦¬O ¡]¤£¬O¾ã¼Æ¡A¦]¬° £F¦³ torsion¡^¡C²{¦b ¥¿¥©¬O¾¤°Ò Zeta ¨ç¼Æ¦bÂI £i=-1 ªºÈ £i(-1)¡]Euler ¤w¸gª¾¹Dªºµ²ªG¡^¡C¦Ó¥B³o¤£¬O¥©¦X¡I¥¦¥i¥H±À¼s¨ì¥ô¦ó¥þ¹êªº¼ÆÅé K¡A¨Ã¥B¥i¥H¥Î¨Ó¬ã¨s ªº¤À¥À¡C¡]«á¨Óµo²{¡AÂǵۨϥμҨç¼Æ¡A¥i¥H±o¨ì§ó¦nªºµ²ªG¡^³o¼Ëªº°ÝÃD¤£¥ú¬O¸s½×¡A¤£¥ú¬O©Ý¾ë¡A¤]¤£¥ú¬O¼Æ½×¡A¥¦Ì¥u¯à¥s°µ¼Æ¾Ç¡C
°Ý¡G¼Æ¾Ç³o»ò¦h¤£¦Pªº»â°ì¹F¦¨²Î¦Xªº®i±æ¦p¦ó¡H
µª¡G§Ún»¡³oºØ¹Ò¬É¤w¸g¹F¨ì¤F¡C¦b«e±§Ú¤w¸gÁ|¤F¤@Ө嫬ªº¨Ò¤l¡A¨ä¤¤§õ¸s¡B¼Æ½×µ¥¤w¸g¦X¦Ó¬°¤@¡A¥BµLªk©¼¦¹¤ÀÂ÷¡CÅý§ÚÁ|¥t¤@Ó³o¼Ëªº¨Ò¤l¡]«Ü®e©ö¦AÁ|§ó¦hªº¨Ò¤l¡^¡C
¦³¤@Ó±´°Q¥|ºûºò½o¥i·L¬y§Îªºº}«G©w²z¡A³Ìªñ¤~¥Ñ S. Donaldson ¥[¥HÃÒ©ú¡C¥¦»¡¡A³oºØ¬y§Î¦b¤Gºû¤W¦P½Õ¸s (cohomology group) ªº¤G¦¸§Î¨ü¨ì«Ü±jªº¨î¡GY¥¦¬O¥¿©wªº¡A«h¥¦¬O¥¤è¦X¡C¦Ó¥BÃÒ©úªºnÂI¬O¥h«Ø¥ß¬Y¨Ç»²§Uªº¦@Ãä¬y§Î§@¬°¤@¨Ç°¾·L¤À¤èµ{¡]·íµM¡I¬O«D½u©Êªº¡^ªº¸Ñ¶°¦X¡I³o¬O§â¤ÀªRÀ³¥Î¨ì·L¤À©Ý¾ëªº¤@ºØ¥þ·sÀ³¥Î¡C¦Ó¥¦§ó¤Þ¤Hª`¥Øªº¬O¡A¦pªG§â¥i·Lªº°²³]¥h±¼¡A±¡§ÎÅܱo§¹¥þ¤£¦P¡G¥Ñ M. Freedman ©w²z¡A«h¤Gºû¤W¦P½Õ¸sªº¤G¦¸§Î´X¥G¥i¥H¬O¥ô¦óªF¦è¡C
°Ý¡G§ÚÌn¦p¦ó¤~¯à»°±o¤W¼Æ¾Çª¾ÃѪºÃz¬µ¡H
µª¡G§A¹ê¦b¤£¥²¥h°l»°¡C·í§A¹ï¬Y¤@¯S§Oªº°ÝÃD¦³¿³½ì®É¡A§A«ÜÃøµo²{²{¦¨ªºªF¦è¸ò§A¦³¥ô¦óÃöÁp¡A¦Ó¦pªG¦³¬Y¨ÇªF¦è½T¹ê¸ò§A¬ÛÃö¡A§A·|¾Ç±o«Ü§Ö¡A¦]¬°§Aª¾¹Dn¦p¦óÀ³¥Î¥¦¡C©w´Á¦a¬Ý¼Æ¾Çµû½×¡]¯S§O¬OÃö©ó¼Æ½×¡B¸s½×µ¥ªº¶°¥Z¡^¤]¬OÓ¦n²ßºD¡C§A¤]¥i¥H±q§AªºªB¤Í¨º¨à¾Ç¨ì¤£¤ÖªF¦è¡A¦b¶ÂªOÁ¿µ¹§AÅ¥ªºÃÒ©ú¬On¤ñ¦Û¤v°áªº®e©ö±o¦h¡C
§ó«nªº°ÝÃD¬OÃö©ó©Ò¿×ªº¡u¤j©w²z¡v¡A¥¦Ì¤@¤è±«D±`¦³¥Î¡F¤@¤è±¤Sªø±oµLªkÀËÅç¡]°£«D§A¬°¥¦Ì¯Ó¤U¤@¥Í¬Û·í¦hªº®É¥ú¡^¡C¤@Ө嫬ªº¨Ò¤l´N¬O Feit-Thompson ©w²z¡G¯´¬°©_¼Æªº¸s¬O¥i¸Ñ¸s¡C¡]Chevally ´¿¹Á¸Õ¥H¥¦¨Ó§@¬°°Q½×·|ªº¥DÃD¡A§â¥¦ªºÃÒ©ú¤©¥H§¹¾ãªº°Q½×¡C¨â¦~¤§«á¡A¥L²×©ó©ñ±ó¤F¡C¡^¸U¤@§ÚÌn¨Ï¥Î³o¼Ëªº©w²z®É¸Ó¦p¦ó¡H«H¥ôªº±µ¨ü¥¦Ì¡H¤j·§§a¡I¦ý³o¤£¬O«D±`¥O¤HµÎªAªº±¡ªp¡C
§Ú¤]¹ï¬Y¨ÇªF¦è·P¨ì¤£¦w¡A¥Dn¬O¦b·L¤À©Ý¾ë¤è±¡A§@ªÌµe¤F¤@Ó½ÆÂøªº¤Gºû¹Ï§Î¡An¨D§A±µ¨ü¥¦¬O¤ºû©Î¬O§ó°ªºûªºÃÒ©ú¡A¥u¦³±M®a¤~¡u¬Ý¡v±o¥X¨Ó³o¼ËªºÃÒ©ú¬O¹ï©Î¿ù¢w¢w°²Y§AºÙ¥¦¬O¤@ÓÃÒ©úªº¸Ü¡C
°Ý¡G§A»{¬°¹q¸£±N¨Ó¹ï¼Æ¾Çµo®iªº½ÄÀ»¦p¦ó¡H
µª¡G¹q¸£¹ï¼Æ¾Ç¬Y¨Ç³¡¤À¤w¸g¦³¤£¤Ö¦nªº¼vÅT¡C¨Ò¦p¦b¼Æ½×¡A¤HÌ¥H¦UºØ¤è¦¡¨Ï¥Î¹q¸£¡C·íµM¡Aº¥ý¬O´£¨Ñ²q´ú©Î°ÝÃD¡C¦¹¥~¡A¤]¥Î¨ÓÀËÅç¤@¯ë©Ê©w²zªº¯S¨Ò¢w¢w¥¦¹ïµo²{¥i¯àªº¿ù»~«Ü¦³À°§U¡C
n¶i¦æ¤j«¬ªº¤ÀÃþ®É¤]¦³«Ü¤j§U¯q¡]¨Ò¦p¡A·í§A¥²¶·ÀËÅç 106 ©Î 107 ºØ±¡ªp®É¡^¡CµÛ¦Wªº¨Ò¤l¬O¥|¦â©w²zªºÃÒ©ú¡C¤£¹L³o¨à¦³¤@Ó°ÝÃD¡A¸ò Feit-Thomapson ©w²zªº°ÝÃD¦³ÂIÃþ¦ü¡C³o¼ËªºÃÒ©úµLªk¥Î¤âÀËÅç¡A§A»Ýn¤@¥x¹q¸£¡]¥H¤Î«D±`¥©§®ªºµ{¦¡¡^¡C³o¤]¤£«ç»ò¥O¤HµÎªA¡C
°Ý¡G§ÚÌn¦p¦ó¤~¯à¹ªÀy¦~»´¤H°á¼Æ¾Ç¡A¯S§O¬O¦b¾Ç®ÕùØ¡H
µª¡G§Ú¦b³o¤è±¦³Ó²z½×¬O°_¥ý³Ì¦n¤£n¹ªÀy¦~»´¤H¾Ç¼Æ¾Ç¡A¦]¬°¨Ã¤£»Ýn¤Ó¦hªº¼Æ¾Ç®a¡C¦ý¬O¡A©¹«á¥L̤´°í«ù¾Ç¼Æ¾Ç¡A´Nn½T¹ê¹ªÀy¥LÌ¡BÀ°§U¥LÌ¡C
´N¤¤¾Ç¥Í¨Ó»¡¡A³Ì¥Dnªº¤@ÂI¬OÅý¥L̤F¸Ñ¼Æ¾Çªºªº½T½T¦s¦bµÛ¡A¥¦¤£¬O¦ºªº¡]¥L̦³¤@ºØ¶É¦V¡A¬Û«H¥u¦³ª«²z©Î¥Íª«¦³¥¼¸Ñ¨Mªº°ÝÃD¡^¡C¶Ç²Î¼Æ¾Ç±Ðªkªº¯ÊÂI¬O¦Ñ®v±q¤£´£¤Î³o¨Ç©|¥¼¸Ñ¨Mªº°ÝÃD¡C¯u¥i±¤¡I¨Ò¦p¡A¦b¼Æ½×¤è±¦³³\¦h°ÝÃD¬O¤Q¦h·³¤p«Ä¥i¥H¤F¸Ñªº¡G·íµM¶Oº¿©w²z¬O¡AGoldbach ©w²z¤]¬O¡A¥H¤ÎµL¦h n2+1 §Î¦¡ªº½è¼Æ¦s¦b©Ê¡C¦Ó§Ṳ́£§«¥u±Ôz©w²z¦Ó¤£ÃÒ©ú¥¦Ì¡]¨Ò¦p Dirichlet Ãö©óµ¥®t¼Æ¦C¤¤ªº½è¼Æ¼Æ¥Øªº©w²z¡^¡C
°Ý¡G§A»{¬°¼Æ¾Ç¦bªñ¤T¤Q¦~ªºµo®in¤ñ¹L¥h¤T¤Q¦~ªºµo®i¨Ó±o§Ö¶Ü¡H
µª¡G§Ú¤£¯à½T©w¬O§_¦p¦¹¡C·®æ¬O¤£¬Û¦Pªº¡C¦b¤¡B¤»¤Q¦~¥N¡A¸g±`±j½Õ¤@¯ë©Êªº¤èªk¡G¼s¸q¨ç¼Æ (distributions)¡B¤W¦P½Õµ¥µ¥¡C³o¨Ç¤èªk«D±`¦¨¥\¡A¦ý²{¦b¤HÌ°µ§ó¨ãÅ骺°ÝÃD¡]³q±`¡A¦³¨Ç¬Û·í¥j¦Ñªº°ÝÃD¡G¨Ò¦p¦b½Æ¤Tºû®g¼vªÅ¶¡¤¤¥N¼Æ¦±½uªº¤ÀÃþ¡I¡^¥LÌÀ³¥Î¹L¥hµo®i§¹¦¨ªº¤u¨ã¡A³o¬O¬Û·í¦nªº¡C¡]¦Ó¥B¥L̤]²£¥Í·sªº¤u¨ã¡G·L§½³¡¤ÀªR (microlocal analysis)¡B¶W¦h¼ËÅé (supervarieties)¡B¬Û¥æ¤W¦P½Õ (intersection cohomology)¡K¡K¡^¡C
°Ý¡GŲ©ó¼Æ¾Çª¾ÃѪºÃz¬µ¡A§A·Q¤@¦ì¬ã¨s¥Í¯à°÷¦b¥|¡B¤¡B¤»¦~¶¡§l¦¬¤j¶qªº¼Æ¾Ç¡AµM«á¥ß¨è®i¶}ì³Ð©Êªº¤u§@¶Ü¡H
µª¡G¬°¤°»ò¤£¯à¡H´N¤@Ó¯S©wªº°ÝÃD¡A³q±`§A¤£»ÝnÀ´±o«Ü¦h¡C¦¹¥~¡A«D±`²³æªº·§©À¸g±`´N¯à¸Ñ¨M°ÝÃD¡C
¦³¨Ç©w²z³Q²¤Æ¤F¡A¦³¨Ç¥u¬O³Q¿ò§Ñ¤F¡CÄ´¦p¡A¦b1949¦~§Ú°O±o§ÚÅܱo«Üªq³à¡A¦]¬°·í®É¨C´Áªº¡m¼Æ¾Ç¦~¥Z¡n(the Annals of Mathematics) ³£¦³¤@½g©Ý¾ë¾Çªº½×¤å¡A¨Ã¥B¤@½g¤ñ¤@½gÃø¡C¦ý²{¦b¨S¦³¤H¦A¬Ý³o¨Ç½×¤å¤F¡A¥¦Ì³Q¿ò§Ñ¤F¡]¤]¸Ó·í¦p¦¹¡G§Ú¤£»{¬°¥¦Ì¥]§t¦³¥ô¦ó²`«×ªºªF¦è¡K¡K¡^¡C¿ò§Ñ¬O«D±`°·±dªº¡C
ÁöµM¦p¦¹¡A¥Ñ©ón¨Ï¥ÎÁc«ªº§Þ¥©¡A¦³¨ÇÃD¥Ø¯uªºÁÙ¬O¤ñ¨ä¥LªºÃD¥Ø»Ýn§ó¦hªº°V½m¡C¥N¼Æ´X¦ó´N¬O³o¼Ëªº¨Ò¤l¡Aªí²{½×¤]¬O¡C
µL½×¦p¦ó¡A§ÚÌÅãµM¤£·|»¡¡G¡u§Ún¶}©l°µ¥N¼Æ´X¦ó¤F¡v©Î¨ä¥¦Ãþ¦üªº¸Ü¡C¹ï¬Y¨Ç¤H¦Ó¨¥¡A¶È¬O¸òÀH°Q½×·|¡AŪªF¦è¡A°Ý¦Û¤w°ÝÃD¡F¦Ó«á¾Ç²ß°µ°ÝÃD©Ò»Ýnªºª¾ÃÑ´N°÷¤F¡C
°Ý¡G´«¥y¸Ü»¡¡A§ÚÌÀ³·íº¥ý°w¹ï¤@Ó°ÝÃD¡AµM«á¾Ç²ß³oÓ°ÝÃD©Ò»Ýnªº¦UºØ¤u¨ã¡C
µª¡G¦³ÂIÃþ¦ü³o¼Ë¤l¡C¦ý¦]¬°§Úª¾¹D¹ï¦Û¤v³£¤£¯à¦³¦nªº«Øij¡A§Ú¤]¤£¥i¯àµ¹§O¤H¦nªº«Øij¡C§Ú¨Ã¨S¦³¤@°Æ¸UÀ³ÆF¤¦¡C
°Ý¡G§A´£¨ì³Q¿ò§Ñªº½×¤å¡C¤w¥Xª©ªº½×¤å§A»{¬°¦³¦h¤Ö¦Ê¤À¤ñ¤£·|³Q²^¨O¡H
µª¡G§Ú¬Û«H¬O«D¹sªº¦Ê¤À¤ñ¡C²¦³º¡A§Ṳ́´µM¥Rº¡³ß®®ªº¾\Ū Hurwitz¡BEisenstein¡A©Î¬Æ¦Ü°ª´µªº½×¤å¡C
°Ý¡G§A·Q§A±N¨Ó·|¹ï¼Æ¾Ç¥v¦³¿³½ì¶Ü¡H
µª¡G§Ú²{¦b´N¦³¿³½ì¤F¡C¦ý³o¥i¤£®e©ö¡F¨Ò¦p¡A§Ú¨S¦³©Ô¤B©Î§Æþ¤åªº»y¤å¯à¤O¡C¦Ó¥B§Ú¦³¦Ûª¾¤§©ú¡A¥s§Ú¼g¼Æ¾Ç¥vªº½×¤å¤ñ¼g¼Æ¾Ç½×¤åÁÙnªá®É¶¡¡CµM¦Ó¾ú¥v¬O«D±`¦³½ìªº¡A¥¦§â¨Æ±¡¬Ý±o§ó³z¹ý¡C
°Ý¡G§A¬Û«H¦³³æ¸s (finite simple group) ªº¤ÀÃþ¶Ü¡H
µª¡G¦h¤Ö¬Û«H¢w¢w¤]¤ñ¸û¶É¦V¬Û«H¡C°²¨Ï¦³·sªºÂ÷´²³æ¸s (sporadic group) ³Qµo²{¡A§Ú·|«Ü°ª¿³¡A¦ý§Ú¾á¤ß¤£·|µo¥Í¡C
§ó¾G«ªº»¡¡A³oÓ¤ÀÃþ©w²z¬O¤F¤£°_ªº¨Æ±¡¡C§Ú̲{¦b¥u»Ý§Q¥Î³q¹L¦³³æ¸sªº²M³æ´N¥i¥HÀËÅç³\¦h©Ê½è¡C¡]¨å«¬ªº¨Ò¤l¡G¹ï ¡An «¥i¾E¸s (n-transitive group) ªº¤ÀÃþ¡^¡C
°Ý¡G¦b¦³³æ¸s¤ÀÃþ«á¡A§A·Q¨ìªº·s¶}ºÝ¬O¤°»ò¡H
µª¡G§A¬O·t«ü¬Y¨Ç¦³¸s²z½×®a¦b¤ÀÃþ§¹¦¨«á·|Åܱoªq³àªº³o¥ó¨Æ¹ê¡F¦³¤H»¡¡]©ÎªÌ§ÚÅ¥¨ìªº¡^¡G¡u¦b¨º¤§«á¡A´N¨S¦³¤°»ò¨Æ¥i°µ¤F¡C¡v§Úµoı³o¬O«Ü¥i¯ºªº¡I·íµM¦³³\¦h¨Æn°µ¡Iº¥ý¡A²¤ÆÃÒ©ú¡]´N¬O Gorenstein »¡ªº¡u×¥¿¥D¸q¡v¡^¡CÁÙ¦³´M§ä¥¦¦b¼Æ¾Ç¨ä¥L³¡¤ÀªºÀ³¥Î¡F¨Ò¦p¡A¤w¸g¦³«Ü©_§®ªºµo²{§â Griess-Fischer ©Çª« (monster) ¸s»P¼Ò¨ç¼ÆÁpô°_¨Ó¡C
³o´N¹³¦b°Ý Faltings ¹ï Mordell ²q´úªºÃÒ©ú¬O§_§ã±þ¤F¦±½u¤W¦³²zÂIªº²z½×¡C¤£·|ªº¡I³o¥u¬O¤@Ó¶}©l¡C³\¦h°ÝÃD¤´µM¥¼¸Ñ¡C
¡]¦³®ÉÔ¡A¤]¯uªº¦³¨Ç²z½×³Q®ø·À¤F¡C¤@Ó¦³¦Wªº¨Ò¤l¬O Hilbert ªº²Ä¤Ó°ÝÃD¡GÃÒ©ú¨C¤@Ó§½³¡¼Ú¤óªº©Ý¾ë¸s¬O¤@Ó§õ¸s¡C·í§Ú¬O¤@¦ì¦~»´©Ý¾ë¾Ç®a®É¡A¨º¬O§Ú½T¹ê·Q¥h¸Ñªº°ÝÃD¢w¢w¦ý§Ú¤@µL©ÒÀò¡C¸Ñ¥X³oÓ°ÝÃD¬O Gleason¡BMontgomery »P Zippin¡A¦Ó¥L̪º¸Ñ¥u¬O®ø¥h¤F³oÓ°ÝÃD¡C¦b³oÓ¤è¦VÁÙ¦³¤°»ò¨ä¥Lªº°ÝÃD©O¡H§Ú¥u¯à·Q¨ì¤@Ó°ÝÃD¡GP-¶i¾ã¼Æ¸s¯à¦³®Äªº§@¥Î¦b¬y§Î¤W¶Ü¡H³o¦ü¥G«ÜÃø¢w¢w¦ý´N§Ú©Òª¾¡A³oÓ¸ÑÀ³¸Ó¨S¦³¨ä¥L¥ô¦óªºÀ³¥Î¤F¡^¡C
°Ý¡G¦ý§ÚÌ·|°²³]¤j³¡¤Àªº¼Æ¾Ç°ÝÃD³£¹³³o¼Ë¡A§Y°ÝÃD¥»¨¥i¯à˼Ãø¥B´I¬D¾Ô©Ê¡A¤£¹L·í¥¦Ì¸Ñ¨M¤F¥H«á´NÅܱo¨S¥Î¤F¡C¨Æ¹ê¤W¡A«Ü¤Ö°ÝÃD¹³¾¤°Ò²q´ú¤@¼Ë¡A¬Æ¦Ü¦b¥¼¸Ñ¤§«e¡A¤H̤w¸gª¾¹D¥¦ªº³\¦h¼vÅT¡C
µª¡G¬Oªº¡A¾¤°Ò²q´ú¬O«D±`¦nªº¨Ò¤l¡F¥¦¾É¥X«Ü¦hªF¦è¡]¥]¬A¯Âºé¼Æ¦rªº¤£µ¥¦¡¡AÄ´¦p¦b¼ÆÅ骺§P§O¦¡¡^¡C¦ýÁÙ¦³¨ä¥LÃþ¦üªº¨Ò¤l¡GHironaka [¼s¤¤¥¯§] ªº©_²§ÂI®ø¥h©w²zºâ¬O¤@Ó¡F·íµMÁÙ¦³«e±°Q½×¨ìªº¦³³æ¸s¡C
¦³®É¡A¥Î¨ÓÃÒ©úªº¤èªk¦³³\¦hÀ³¥Î¡G§Ú½T«H³oºØ²{¶H·|¦b Faltings ©w²zµo¥Í¡C¦³®É¡A°ÝÃD¯uªº¨S¹wp·|¦³À³¥Î²£¥Í¡F¥L̬O¹ï²{¦s©w²zªº¤@ºØÀËÅç¡A¢¨Ï§Ú̬ݱo§ó²`¤J¡C
°Ý¡G§A¤´·|¦^¨ì©Ý¾ë¤è±ªº°ÝÃD¶Ü¡H
µª¡G¤£·|ªº¡A§Ú¨S¦³Ä~Äò±µÄ²³Ìªñªº§Þ¥©¡A¦Ó¥B§Ú¤£²M·¡¶êªº¦PÛ¸s¡A ¡A³Ì·sªºpºâÈ¡]§Ú²q¤j¬ù¤wºâ¨ì k=40©Î50¡C§Ú¤@¦V¥uª¾¹D k=10 ¥ª¥k¡^¡C
¦ý§Ú¤´µM¥H§ó¼s¸qªº¤è¦¡¨Ï¥Î©Ý¾ë¾ÇªºÆ[©À¡A¹³¤W¦P½Õ¡B»Ùê½× (obstructions)¡BStiefel-Whitney ¥Ü©ÊÃþµ¥¡C
°Ý¡GBourbaki ¦b¼Æ¾Ç¤è±©Ò³y¦¨ªº¼vÅT¦p¦ó¡H
µª¡G«D±`¦n¡I§Úª¾¹D§â¨C¥óÃa¨Æ³£Âk¸o Bourbaki¡]Ä´¦p¡u·s¼Æ¾Ç¡v¬O¤@ºØ®É©|¡A¦ý³o¬O¤£¤½¥ªº¡CBourbaki ¬O¤£À³t³d¥ôªº¡C¤HÌ¥u¬O»~¥Î Bourbaki ªº®Ñ¡A³o¨Ç®Ñ±q¨S¥´ºâ§@¤j¾Ç±Ð¬ì®Ñ¡A§ó¤£¥²»¡°ª¤¤¤F¡C
°Ý¡G©Î³\À³¸Ó¦³¤@¨Çĵ§iªº°T®§¡C
µª¡G³o¼ËªºÄµ§i°T®§ Bourbaki ªº½T´£¹L¡G¨º´N¬O Bourbaki °Q½×·|¡C³oÓ°Q½×·|¤@ÂI³£¤£¹³®Ñ¥»¨º»ò¥¿¦¡¡F¥¦¥]¬A¦UÃþªº¼Æ¾Ç¡A¬Æ¦Ü¬Y¨Çª«²z¡C°²¨Ï§A§â°Q½×·|©M®Ñ¦X°_¨Ó¡A§A·|Àò±o§ó§¡¿Åªº¬Ýªk¡C
°Ý¡G§A¬O§_¬Ý¨ì Bourbaki ¹ï¼Æ¾Çªº¼vÅT¤w´î°h¡H
µª¡G¥Ø«eªº¼vÅT¦³§O©ó¹L¥hªº¡C¥|¤Q¦~«e¡ABourbaki ·Q§@ªº½×ÂI¬OÃÒ©ú§â¼Æ¾Ç¤©¥H²Õ´¤Æ¡B¨t²Î¤ÆªºÄÄz¬O¥i¯àªº¡C²{¦b³oÓ·Qªk¤w¸g°µ¨ì¤F¡A¦Ó¥B Bourbaki ¤]ŤF¡Cµ²ªG¬O¡A¥L̪º®Ñ²{¦b¥u³Ñ¤U§Þ³N¼h¦¸ªº·N¸q¡F°ÝÃD¥u¬O¥¦Ì¬O§_§â¥DÃD¦n¦nªº¸Ñ»¡¡C ¦³®É¥¦Ì°µ¨ì¤F¡]¦³¤@¥»±´°Q¡u®Ú¨t (root systems)¡vªº¤w¸g¦¨¬°³o¤@»â°ìªº¼Ð·Ç°Ñ¦Ò¸ê®Æ¡^¡F ¦³®É¥¦Ì¨S¦³°µ¨ì¡]§Ú¤£·QÁ|¨Ò¡A³o¤Ó²o¯A¨ì«~¨ý°ÝÃD¡^¡C
°Ý¡G½Í¨ì«~¨ý¡A§A¯à§_½Í½Í¨º¤@Ãþ«¬ªº®Ñ©Î½×¤å¡A§A³Ì³ßÅw¡H
µª¡GÄYÂÔ¦Ó¤£©ë§Î¦¡ªº¡I¨º¬O²z·Q¨å«¬¡A´N¹³¬O¥Î¨ÓºtÁ¿ªº¡C¦b¹³ Atiyah ©Î Milnor µ¥¤Ö³\§@ªÌ¡A§A¥i¥H¬Ý¨ì³oºØ¥O¤H´r§Öªº·»¦X¡C¦ý³oºØ¹Ò¬É¹ê¦b«ÜÃø¹F¨ì¡C¨Ò¦p¡A§Úµo²{«Ü¦hªk°ê¤H¡]¥]¬A§Ú¦Û¤v¡^¦³ÂI¤Ó¥¿¦¡¤F¡A¦Ó¦³¨Ç«X°ê¤H¤S¦³ÂI¤Ó¤£ÄYÂÔ¤F¡K¡K¡C
ÁÙ¦³¤@ÂI§Ú·Q´£ªº¬O½×¤åÀ³¦h¥]§t¨Çµûª`¡B¥¼¸Ñ°ÝÃDµ¥µ¥¡C³q±`¡A³o¨Ç¤ñ©w²zªºÃÒ©ú§ó¦³·N«ä¡C«u¡I¤j¦h¼Æªº¤H«o®`©È©Ó»{¥L̤£ª¾¹D¬Y¨Ç°ÝÃDªºµª®×¡A³s±a¦a¥LÌ´NÁקK´£°ÝÃD¡A§Y¨Ï¬O«D±`¦ÛµMªº°ÝÃD¡C¦h¿ò¾Ñ°Ú¡I¹ï§Ú¦Û¤v¦Ó¨¥¡A§Ú¬O¥H»¡¡u§Ú¤£À´¡v¬°ºa¡C
|
¹ï¥~·j´MÃöÁä¦r¡G ¡DSerre ¡DFields¼ú ¡DFaltings ¡DEuler ¡DKodaira ¡DGrothendieck ¡DRiemann°²³] ¡D§õ¸s ¡DDonaldson ¡DFreedman ¡D¶Oº¿©w²z ¡DGoldbach©w²z ¡DHilbert ¡DHironaka ¡DBourbaki ¡DAtiyah ¡DMilnor |
|
¡]Y¦³«ü¥¿¡BºÃ°Ý¡K¡K¡A¥i¥H¦b¦¹ ¯d¨¥ ©Î ¼g«H µ¹§ÚÌ¡C¡^ |
EpisteMath (c) 2000 ¤¤¥¡¬ã¨s°|¼Æ¾Ç©Ò¡B¥x¤j¼Æ¾Ç¨t ¦Uºô¶¤å³¹¤º®e¤§µÛ§@Åv¬°ìµÛ§@¤H©Ò¦³ |
½s¿è¡G§õ°ê¥Ã ¢A ®Õ¹ï¡G³¯¤å¬O | ³Ì«áקï¤é´Á¡G4/26/2002 |